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The energy-entropy diagram
as a fundamental tool of thermodynamics
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Extraction of work is coupling the system to an empty battery
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A similar analysis applies to the case of a heat engine. Let's take the

initial state to

and by symmetry the final state

P
P——

Determine

coincides with the initial macrostate.

» T his model of a heat engine abstracts away from concepts of

“\“aiarle ln o t Ay Aar Yevurla!
WOrkKing Dody Ol CYCLIC

» [ here exists some protocol transforming one into the other if and

only if these states define the same macrostate
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@ Grew up in Israel, BSc Tel Aviv University, MSc PSI program @ Pl
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@ Grew up in Israel, BSc Tel Aviv University, MSc PSI program @ PI
e Currently PhD student at P’I, supervisor: Laurent Freidel.

e Answered more than 1000 math and physics questions on Quora
(Top Writer 2015 and 2016).

@ Mentored high school students in PI's ISSYP program for the last
3 years.

@ Many other outreach activities at P’1.

e Hobbies: Board games and role-playing games, playing and
composing music.
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Grew up in Israel, BSc Tel Aviv University, MSc PSI program @ PI

Currently PhD student at P1, supervisor: Laurent Freidel.

Answered more than 1000 math and physics questions on Quora
(Top Writer 2015 and 2016).

Mentored high school students in PI’s ISSYP program for the last
3 years.

Many other outreach activities at PI.

Hobbies: Board games and role-playing games, playing and
composing music.

['ve been running a game of Dungeons and Dragons at PI for the
last 2 years (let me know if you want to join!)
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Yang-Mills Gauge Theory

@ Yang-Mills action, choose gauge group = SU (2):

5—/T1 (F A xF) /F!”F’

;H
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Yang-Mills Gauge Theory

@ Yang-Mills action, choose gauge group = SU (2):

5= / i1 (F A *F) = % / Fli”’F;u:d._l-.\’,

e A =su(2)-valued connection 1-form.
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Yang-Mills Gauge Theory

@ Yang-Mills action, choose gauge group = SU (2):

5= / i1 (F A *F) = % / Fli”’F;u:d._l-.\’,

e A =su(2)-valued connection 1-form.

o F=dA + 3'_; (A, A| = su(2)-valued curvature 2-form.
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Yang-Mills Gauge Theory

@ Yang-Mills action, choose gauge group = SU (2):

5= / i1 (F A *F) = % / Fli”’F;u:d._l-.\’,

e A =su(2)-valued connection 1-form.

o F=dA + 3'_; (A, A| = su(2)-valued curvature 2-form.

e Bold = su (2)-valued quantities throughout!
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Yang-Mills Gauge Theory

@ Yang-Mills action, choose gauge group = SU (2):

S_/T1 (F A xF) /F’“ -

e A =su(2)-valued connection 1-form.
o F=dA + 3'_; (A, A| = su(2)-valued curvature 2-form.
e Bold = su (2)-valued quantities throughout!

@ Invariant under SU (2) gauge transformation:

geSURR) = A—glAg+¢ldg = Fr ¢ 'Fy
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Yang-Mills Gauge Theory

@ Hamiltonian formulation (3+1 split, 2 = spatial slice):

S — ./.dt./; (E-a,A+A-G— % (E2+(*F)2)>.
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Yang-Mills Gauge Theory

@ Hamiltonian formulation (3+1 split, 2 = spatial slice):

S :./.dt./; (E-H;A+A-G—%(Ez+(*F) ))

e First term: A = configuration variable, E = conjugate momentum
4 — r0a
(E; = F}®).
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Yang-Mills Gauge Theory

@ Hamiltonian formulation (3+1 split, & = spatial slice):

S:./.dt./; (E-H;A+A-G—%(E2+(*F) ))

e First term: A = configuration variable, E = conjugate momentum
4 — r0a
(EJ! : F" ). . . . . . -
e Second term: A is a Lagrange multiplier imposing the Gauss
constraint G = d4E = 0, which generates infinitesimal SU (2)
gauge transformations:

{A,G(a)} =dyun, g = e, x € su(2).
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Yang-Mills Gauge Theory

@ Hamiltonian formulation (3+1 split, & = spatial slice):

S:./.dt./; (E-H;A+A-G—%(E2+(*F) ))

e First term: A = configuration variable, E = conjugate momentum
4 — r0a
(EJ! : F" ). . . . . . -
e Second term: A is a Lagrange multiplier imposing the Gauss
constraint G = d4E = 0, which generates infinitesimal SU (2)
gauge transformations:

{A,G(a)} =dyun, g = e, x € su(2).

e Third term: energy density.
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Holonomies and Wilson Loops

e Holonomy = parallel transport along a curve 7:

e[ )

exp = path-ordered exponential.
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Holonomies and Wilson Loops

e Holonomy = parallel transport along a curve 7:

e[ )

exp = path-ordered exponential.

@ Holonomy around an infinitesimal loop measures the curvature at

a point.
hy, = exp (Sﬁ A) ~ 1+ ¢°F.
' ’}’
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Loop Gravity

@ Hamiltonian for mulation of GR (3+1 split), change variables to
Ashtekar variables

S = /df/ -a,A+A-G+N'-\7+Nc).
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Loop Gravity

@ Hamiltonian formulation of GR (3+1 split), change variables to
Ashtekar variables:

S = /dt/ (E-3¢A+/\-G+N-\7+NC).
" JE

e First term: A = configuration variable, E = conjugate momentum.
(E = [e, e] where e is the frame field, g;, = e, - e.)
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Loop Gravity

@ Hamiltonian formulation of GR (3+1 split), change variables to

Ashtekar variables:
S = /dt/ (E-B;A+/\-G+NI- \7+NC).
: JE

e First term: A = configuration variable, E = conjugate momentum.
(E = [e, e] where e is the frame field, g;, = e, - e.)

e A and E are valued in su (2) since we started with so (3,1) (Lorentz)

in 3+1D, so on the 3D spatial slice X it reduces to so0 (3) = su (2).
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Loop Gravity

@ Hamiltonian formulation of GR (3+1 split), change variables to
Ashtekar variables:

S = /dt/ (E-3¢A+/\-G+N-\7+NC).
. JE

e First term: A = configuration variable, E = conjugate momentum.
(E = [e, e] where e is the frame field, g;, = e, - e.)

e A and E are valued in su (2) since we started with so (3,1) (Lorentz)
in 3+1D, so on the 3D spatial slice X it reduces to so0 (3) = su (2).

e Second term: A is a Lagrange multiplier imposing the Gauss
constraint G = d4E = 0.
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Loop Gravity

@ Hamiltonian formulation of GR (3+1 split), change variables to
Ashtekar variables:

S = /dt/ (E-3¢A+/\-G+N-\7+NC).
" JE

First term: A = configuration variable, E = conjugate momentum.
(E = [e, e] where e is the frame field, g;, = e, - e.)

A and E are valued in su (2) since we started with so (3,1) (Lorentz)
in 3+1D, so on the 3D spatial slice X it reduces to so0 (3) = su (2).
Second term: A is a Lagrange multiplier imposing the Gauss
constraint G = d4E = 0.

Third term: the shift N imposes the vector constraint V=El F,
which generates infinitesimal spatial diffeomorphisms.
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Loop Gravity

@ Hamiltonian formulation of GR (3+1 split), change variables to
Ashtekar variables:

S = /dt/ (E-3¢A+/\-G+N-\7+NC).
" JE

First term: A = configuration variable, E = conjugate momentum.
(E = [e, e] where e is the frame field, g;, = e, - e.)

A and E are valued in su (2) since we started with so (3,1) (Lorentz)
in 3+1D, so on the 3D spatial slice X it reduces to so0 (3) = su (2).
Second term: A is a Lagrange multiplier imposing the Gauss
constraint G = d4E = 0.

Third term: the shift N imposes the vector constraint V=El F,
which generates infinitesimal spatial diffeomorphisms.

Fourth term: the lapse N imposes the scalar constraint C, which
generates time evolution.
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Loop Gravity

= /dt/ (E-a,A+A-G+K/-\7+Nc).

e Gravity now looks like Yang-Mills theory, with two additional
constraints and no energy density (totally constrained system).

Pirsa: 18030095 Page 35/124



Loop Gravity
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e Gravity now looks like Yang-Mills theory, with two additional
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Loop Gravity

= /dt/ (E-O;A+A-G+N-\7+NC).

e Gravity now looks like Yang-Mills theory, with two additional
constraints and no energy density (totally constrained system).

e Now we can quantize gravity similarly to how we quantize
Yang-Mills theory. In particular, the theory is background
independent: we quantize the full geometry, not just
perturbations over a flat background.

Pirsa: 18030095 Page 37/124



Spin Networks

@ Classical spin networks are graphs composed of nodes n
connected by links ¢ = (nn').

Pirsa: 18030095 Page 38/124



Spin Networks

@ Classical spin networks are graphs composed of nodes n
connected by links ¢ = (nn').

@ Thereis a holonomy /i, € SU (2) and a flux X; € su (2) associated
to each link.
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Spin Networks

@ Classical spin networks are graphs composed of nodes n
connected by links ¢ = (nn').

@ There is a holonomy /iy € SU (2) and a flux X; € su (2) associated
to each link.

@ The Gauss constraint implies, for each node, } X, = 0 where the
sum is over the links meeting at the node.
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Spin Networks

@ The phase space structure is given by the following symplectic
potential, describing a product of T*SU (2) cotangent bundles per
link:

=Y A(h)-Xp,  A(h)=0hh" €su(2).
(el

The symplectic form is given by () = 0.
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Spin Networks

@ When quantizing loop gravity, we find that the quantum states of
space are quantum spin networks. We would like to understand
the geometry described by such a spin network.

@ In the usual approach, loop gravity is both discretized and
quantized in one step. Our approach is to disentangle the two.
First we deal with the discretization classically, and see what we
can learn from it. Later, we can proceed to quantization.
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A Toy Model: 2+1 Gravity

@ BF action:

S:l/'e-F(A).
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A Toy Model: 2+1 Gravity

@ BF action:

S:l/'e-F(A).

e Symplectic potential:

(H):/e-&'A.
JE

A and e are the phase space variables.
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A Toy Model: 2+1 Gravity

@ BF action:

S:l/'e-F(A).

e Symplectic potential:

(H):/e-&'A.
JE

A and e are the phase space variables.

@ Equations of motions: no curvature or torsion.
1
F=dsA=dA+ 5 AA| =0,

T=dse=de+ [A,e| =0.
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Curvature and Torsion Defects

@ Since F =T = 0 everywhere, we introduce curvature and torsion
as topological defects. At a point v, we take:

F=Myo (v), T =Sy (v).

M, is the mass and S, is the spin of a point particle at v.
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Curvature and Torsion Defects

@ Since F =T = 0 everywhere, we introduce curvature and torsion
as topological defects. At a point v, we take:

F=Myo (v), T =Sy (v).

M, is the mass and S, is the spin of a point particle at v.

@ Let 0" be a disk around v and let dv* be its boundary, then by
Stokes’ theorem

Raps = (ﬁ% (S}S A) = ex. (/ F) =exp (My) .
Jao Jo*
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The Cellular Decomposition

e We sprinkle some point-like defects at various points v,v’, etc. and
then connect them by edges ¢ = (vv') as shown.
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The Cellular Decomposition

e We sprinkle some point-like defects at various points v,?’, etc. and
then connect them by edges ¢ = (vv') as shown.

@ This splits the spatial manifold into cells.

@ By construction, F = T = 0 inside the cells and the curvature and
torsion are located only at the vertices v. We call this a
piecewise-flat geometry.
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Winding Holonomies

@ At each vertex, we define a connection and a frame field:

M,
A = —do,
2nL¢

Since d?¢ = 2715 (v), we get the desired distributional curvature
and torsion: F = M0 (v) and T = S0 (v).
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Winding Holonomies

@ At each vertex, we define a connection and a frame field:
A= —(dcp e = —dcp

Since d?¢ = 2715 (v), we get the desired distributional curvature
and torsion: F = M0 (v) and T = S0 (v).
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Winding Holonomies

@ At each vertex, we define a connection and a frame field:
A= —(dcp e = —dcp
Since d*¢ = 2716 (v), we get the desired distributional curvature

and torsion: F = M0 (v) and T = S0 (v).

@ Using this connection, we define a winding holonomy:

/ ¢! "
pi? = exp (/ A) = exp (1;4—7; (¢ — (P)) e SU (2),

where ¢ and ¢’ are any two angles around v.

Page 52/124



Pirsa: 18030095

Winding Holonomies

@ At each vertex, we define a connection and a frame field:
A= —(dcp e = —dcp
Since d?¢ = 2716 (v), we get the desired distributional curvature

and torsion: F = M0 (v) and T = S0 (v).

@ Using this connection, we define a winding holonomy:

/ ¢/ =
pi? = exp (/ A) = exp (1;4—7; (¢ — (P)) e SU (2),

where ¢ and ¢’ are any two angles around v.
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Winding Holonomies

v

@ Note that the holonomy is calculated at v itself, with the angles ¢
on an infinitesimal circle (enlarged in the figure for clarity).
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Winding Holonomies

v

@ Note that the holonomy is calculated at v itself, with the angles ¢
on an infinitesimal circle (enlarged in the figure for clarity).
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Winding Holonomies

v

@ Note that the holonomy is calculated at v itself, with the angles ¢
on an infinitesimal circle (enlarged in the figure for clarity).

@ The holonomy in a loop from some angle ¢ to itself depends on
the number, s, of windings around v:

b’ M‘f*
¢ =¢p+21s = i’ =exp (E (¢" — (P)) = exp (sMy) .
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The Dual Graph

@ We place a blue node n inside each cell and connect those nodes
with blue links ¢ = (nn').

Pirsa: 18030095 Page 57/124



The Dual Graph

@ We place a blue node n inside each cell and connect those nodes
with blue links ¢ = (nn').

@ There is a 1-to-1 correspondence: nodes<cells and links<-edges.
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The Dual Graph

@ We place a blue node n inside each cell and connect those nodes
with blue links ¢ = (nn’).

@ There is a 1-to-1 correspondence: nodes<cells and links<-edges.

e We define a holonomy /1,y on each link ¢ = (nn"). The holonomy
simply allows us to parallel-transport from one cell to the other.
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The Dual Graph

@ The blue graph look suspiciously like a spin network. But does it
have the same phase space structure?
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The Dual Graph

@ The blue graph look suspiciously like a spin network. But does it
have the same phase space structure?

@ Let us find the phase space structure of the piecewise-flat

geometry, and see how it can be related to the phase space of spin
networks.
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Probing Curvature Defects with Holonomies

Vi

n

e We would like to probe the curvature at v by taking a loop of
holonomies along the blue links:

¢ v — h;m’hn’n”hn”n-
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Probing Curvature Defects with Holonomies

Vi

n

e We would like to probe the curvature at v by taking a loop of
holonomies along the blue links:

Op = hyphyryn gy

@ How will these holonomies know about the curvature at v?
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Probing Curvature Defects with Holonomies

Vi

n

e We would like to probe the curvature at v by taking a loop of
holonomies along the blue links:

Op = hyphyryn gy

@ How will these holonomies know about the curvature at v?
@ We deform them such that they take into account the winding
holonomies around v.
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Deforming the Links

!
nn
Ny = Moty Ny

@ /1y is the holonomy from 1 to v,
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Deforming the Links

e We deform every one of the links in the loop in this way.
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Deforming the Loops

e If there is curvature at v, then we get:
Oy = Ry gy By

/ !oalt 1
(/1,,.{,[;,;:” /1.(.,,,,) (lz,,f.{.,qm_jf ] h—w) (/I”u.[,,(’[)_:,f ”/,.{,,,)
nn' o n'n" o n"n
= o (4’1‘1 Yy " Py ) hon

Mo 1,

—_— . ]
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Translational Holonomies

@ So far, we have only discussed holonomies /1 € SU (2). These
holonomies rotate group and algebra elements, and thus we call
them rotational holonomies.
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Translational Holonomies

@ So far, we have only discussed holonomies /1 € SU (2). These
holonomies rotate group and algebra elements, and thus we call
them rotational holonomies.

@ We also define translational holonomies w € su (2), which
translate algebra elements. Thus, for example, for a group element
¢n and algebra element z,, we have the relations:

n
_n-— hnw(‘s’m In = /n'nw (Zw — Wp) hww

Page 69/124



Pirsa: 18030095

Translational Holonomies

@ So far, we have only discussed holonomies /1 € SU (2). These
holonomies rotate group and algebra elements, and thus we call
them rotational holonomies.

@ We also define translational holonomies w € su (2), which
translate algebra elements. Thus, for example, for a group element

¢n and algebra element z,, we have the relations:
n
_n-— hnw(‘s’m In = /n'nw (Zw — Wp) hww

@ The group element ¢, (located at v) is rotated by /1, into g,
(located at n). The algebra element z, (located at v) is first
translated by wij, and the result is then rotated by /1, into z.
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Translational Holonomies

@ These relations follow directly from considering the action of the
ISU (2) group. Indeed, ISU (2) = SU (2) x R® and R® 2 s5u (2), so
we can write

(hno, wy,) , (8n,2n) € 1SU (2),

and then use the usual ISU (2) group product to get

((‘s’nr Zn) = (hnw W:;) > ((‘x’m Zt”) - (hnm‘{ruhnw (Zw — Wii) hw:) .
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Translational Holonomies

@ These relations follow directly from considering the action of the
ISU (2) group. Indeed, ISU (2) = SU (2) x R® and R® 2 s5u (2), so
we can write

(hno, W;;) ’ (Hm z,) € ISU (2),

and then use the usual ISU (2) group product to get

(Rm Zn) (hnu ) (‘\m ) - (hmﬂgwhnw (Zw — Wi:) hw:) .

@ We also define the translational winding holonomy

= (4> $) € s5u(2).
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The Phase Space of Piecewise-Flat Geometries

v

From this construction, we can work out the symplectic potential:

@ = Z A (hyp) - (W;{r” o W;;) i 2 A (Pohon) -

(=(nn’) [on)

(/rm,f, w;;’), (Mo, W2, cISU(2),  A(h) =dhh.
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The Phase Space of Piecewise-Flat Geometries

ol

8
O = Z A (hyy) - (W;r” - W;;) e 2 A (Pphon) -

(=(nn’) [on]

@ First term = links connecting the node 1 to adjacent nodes,
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The Phase Space of Piecewise-Flat Geometries

ol

it
O = Z A (hyy) - (W;r” — W;;) e Z A (Pphon) -

{=(nn') [on]

@ First term = links connecting the node n to adjacent nodes,
@ Second term = extra links connecting the node 1 to each vertex on
its boundary,
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The Phase Space of Piecewise-Flat Geometries

ol

[
O = Z A (hyy) - (W;;’ - W;;) i Z A (Pphon) -

{=(nn') [on]

@ First term = links connecting the node n to adjacent nodes,

@ Second term = extra links connecting the node 1 to each vertex on
its boundary,

@ Third term = point particle.

Pirsa: 18030095 Page 76/124



Relation to the Spin Network Phase Space

[f there is no torsion, S, = ¢, = 0 for all v:
O = Z A (he) - X,
{er
where the holonomies and fluxes per link are given by

74l 0

— — (4
he = hyy, Xpw =Wy — W

Pirsa: 18030095
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Relation to the Spin Network Phase Space

@ This is the spin network symplectic potential that we introduced
before, describing a product of T*SU (2) cotangent bundles per
link.
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Relation to the Spin Network Phase Space

@ This is the spin network symplectic potential that we introduced
before, describing a product of T*SU (2) cotangent bundles per
link.

@ Thus, we have embedded the spin network phase space into the
larger piecewise-flat geometry phase space!
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Page 79/124



Outlook (Work in Progress)

e Generalization to 3+1 gravity with Ashtekar variables. Vanishing
curvature and torsion are imposed by hand to mimic the 2+1 case.
We get a piecewise-flat geometry, with curvature and torsion
defects on the edges (instead of vertices).

e This again gives rise to a discretized piecewise-flat geometry
phase space, which we expect to reduce to the spin network phase
space if torsion is assumed to vanish.
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Outlook (Work in Progress)

e Generalization to 3+1 gravity with Ashtekar variables. Vanishing
curvature and torsion are imposed by hand to mimic the 2+1 case.
We get a piecewise-flat geometry, with curvature and torsion
defects on the edges (instead of vertices).

This again gives rise to a discretized piecewise-flat geometry
phase space, which we expect to reduce to the spin network phase
space if torsion is assumed to vanish.

We expect that this will provide a rigorous interpretation of the
classical geometry corresponding to spin network states in 3+1
dimensions.

Our work is heavily related to recent work by Bianca Dittrich,
Clement Delcamp, Jonathan Ziprick, Maite Dupuis, Marc Geiller,
and others.
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Equal portions of pi(e):

Balancing the gender equation in science

Shohini Ghose




Female Nobel Laureates in physics...
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Female Nobel Laureates in physics

ﬂ'._

<

o>
)

Marie Curie (1903) Maria Goeppert Mayer (1963)
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Women in Physics
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American women who earned physics doctorates in the US, by race
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Physics: Assistant: 25%, Associate: 15.7%, Full: 5.6% (CAUT 2013-2014)
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WOw, YOu WOW, GIRLS
SUCK AT MATH. SUCK AT MATH.
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Math performance

Learning to count

3 year old children
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“not a shred of evidence” Spelke, American Psychologist 2005
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Math performance

NAEP report cards: 8" grade
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Math performance

Grade 8 science

CHART 3.3 Results in science by gender

1

Females | 501

Males | 499

440

Mean Score

TaBLE 3.5 Results by sub-domain in science by gender

Nature of science Life science Physical science Earth science

Mean Cl Mean Cl Mean a Mean Cl
Females 501 2.7 501 2.5 499 2.5 501 3.3
Males 499 2.8 499 2.1 501 2.4 500 29
Difference 2 2 2 1

Pan Canadian-Academic Program Report 2013
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PISA 2012: Science results across countries
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Perceptions and environment

Adjusted for SAT
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Problem Math Test Teaching
Solving Intervention

Johns, M., Schmader, T., & Martens, A. (2005). “Knowing is half the battle: Teaching stereotype threat as a means of
improving women'’s math performance.” Psychological Science, 16, 175-179.

Spencer, S. 1., Steele, C. M., & Quinn, D. M., (1999), "Stereotype threat and women's math performance," Journal of
Experimental Social Psychology, 35(1), p. 13.
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Math performance and university choices

Proportion choosing a STEM university program among
YITS-PISArespondents who attended university, by high
school grades in mathematics

B80% to 89% 90% to 1009
High school grades in mathematics
owaomen |aMen
Note: STEM includes science, technology, engineenng, mathematics and computer saence

Sources: Statistics Canada and Human Resources and Skills Development Canada uth in Transition
Survey (YITS); Orgamsation for Economic Co-operation and Development, Programme for International
Student Assassment (PISA), 2000 to 2010
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Perceptions and environment

What does a scientist look like?
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Perceptions and environment

What does a scientist look like?

www.open.ac.uk/invisible-witnesses
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Perceptions and environment

What does a scientist look like?

A. Bodzin, M. Gehringer, Breaking science stereotypes, Science and Children (2001)
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Perceptions and environment

Parents/mentors
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Perceptions and environment

Implicit bias

Fig. 1. Competence, hireability, and mentoring by student gender condition

(collapsed across faculty gender). All student gender differences are significant Fig. 2. Salary conferral by student gender condition (collapsed across faculty

(P < 0.001). Scales range from 1 to 7, with higher numbers reflecting a greater gender). The student gender difference is significant (P < 0.01). The scale

extent of each variable. Error bars represent SES. N, .. siudent condition 63, ranges from $15,000 to $50,000. Error bars represent SEs. n,,
won = 64 63, n,

ale ytudent condition

Moss-Racusin, C. A., Dovidio, J. F,, Brescoll, V. L., Graham, M., & Handelsman, )., Proceedings of the National Academy of Sciences
109, 16474 (2012)
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Perceptions and environment

IUPAP Global Survey of physicists

« Women were:
* Less likely to have adequate resources

* More likely to do majority of
housework/childrearing

* More likely to experience slower career
advancement

https://www.aip.org/statistics/reports/global-survey-physicists
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Strategies for change

Destroy invisibility
Un-normalize

Lay down the law
Measure

Connect

WOMEN IN SCIENCE

wlu.ca/wins
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“...black holes ain’t as black as they are painted. They
are not the eternal prisons they were once
thought...things can get out of a black hole both on the
outside and possibly to another universe. So if you feel
you are in a black hole, don’t give up— there’s a way
out.”

-Stephen Hawking
1942-2018
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