Title: Characterizing useful quantum computers

Date: Feb 28, 2018 04:00 PM

URL: http://pirsa.org/18020110

Abstract: Quantum computers can only offer a computational advantage when they have sufficiently many qubits operating with sufficiently small error rates. In this talk, I will show how both these requirements can be practically characterized by variants of randomized benchmarking protocols. I will first show that a simple modification to protocols based on randomized benchmarking allows multiplicative-precision estimates of error rates. I will then outline a new protocol for estimating the fidelity of arbitrarily large quantum systems using only single-qubit randomizing gates.

| Abstract: Quantum computers can only offer a computational advantage when they have sufficiently many qubits operating with sufficiently small error rates. In this talk, I will show how both these requirements can be practically characterized by variants of randomized benchmarking protocols. I will first show that a simple modification to protocols based on randomized benchmarking allows multiplicative-precision estimates of error rates. In this talk, I will show how both these requirements can be practically characterized by variants of randomized benchmarking allows multiplicative-precision estimates of error rates. In this talk, I will show how both these requirements can be practically characterized by variants of randomized benchmarking allows multiplicative-precision estimates of error rates. In this talk, I will show how both these requirements can be practically characterized by variants of randomized benchmarking allows multiplicative-precision estimates of error rates. In this talk, I will show how both these requirements can be practically characterized by variants of randomized benchmarking allows multiplicative-precision estimates of error rates. In this talk, I will show how both these requirements of the practically characterized by variants of randomized benchmarking allows multiplicative-precision estimates of error rates. In this talk, I will show how both these requirements of the practical propertie

```
<!--[if !supportLineBreakNewLine]--><br /> <!--[endif]-->
```

Pirsa: 18020110 Page 1/33

Characterizing useful quantum computers

Joel Wallman

U. Innsbruck: A. Erhart, R. Stricker, E. Martinez, D. Nigg, P.

Schindler, T. Monz, R. Blatt

U. Waterloo: J. Emerson

U. Sydney: S. Flammia, R. Harper

Perimeter Seminar February 28th 2018

Pirsa: 18020110 Page 2/33

Outline

- What does a quantum computer need to be useful?
- · Estimators and sequence lengths for randomized benchmarking
- · Limitations of randomized benchmarking
- Cycle benchmarking
- Experimental implementation in ion traps

Pirsa: 18020110 Page 3/33

Useful quantum computers

Useful quantum computers need:

- 1. Many qubits
- 2. Universal(ish) operations
- 3. Low error rates

If the quantum computer has too few qubits or too restricted a set of operations, it can be efficiently simulated

If the quantum computer has too much noise, the output is unreliable

How do we characterize these 3 features? Randomized benchmarking

Pirsa: 18020110 Page 4/33

Randomized benchmarking

$$\rho - \mathcal{E} - g_1 - \mathcal{E} - g_2 - \dots - g_m - \mathcal{E} - g_R - \mathcal{E}$$

Apply a random sequence of m+1 gates from a group that multiplies to the identity.

Average probability of an outcome z (or a set of outcomes) over all sequences of length m is

$$Pr(z|m) = Ap^m + B$$

Decay parameter is linearly related to the fidelity

$$\mathcal{F}(\tilde{\mathcal{E}}) = \int d\psi \operatorname{Tr} \left[\psi \tilde{\mathcal{E}}(\psi) \right]$$

Two key issues:

- 1. How does the error in the estimate of the error rate scale with the error rate?
- 2. How do we efficiently characterize a universal gate set?

Magesan, Gambetta, and Emerson, PRL 106, 180504 (2011)

Randomized benchmarking

SPAM parameters are nuisances.

To set B to ½, randomly choose to compile to any gate X that flips the final outcome and set

 $\Pr(z|m) \to 1 - \Pr(z|m)$

Knill et al., PRA 77, 012307 (2008)

Estimating decay rates

Two parameters, so can solve for two values of m:

$$p^{m_2 - m_1} = \frac{2\Pr(\mathbf{z}|\mathbf{m}_2) - 1}{2\Pr(\mathbf{z}|\mathbf{m}_1) - 1}$$

Choose m₁=4 to avoid gate-dependent perturbations

Experimentally, have estimates $\ \hat{\Pr}(z|m_i) = \Pr(z|m_i) + \epsilon_i$

Conservative uncertainty on estimate provided $\epsilon_2 \ll \hat{p}^{m_2-m_1}$ is

$$p \approx \hat{p} + \frac{2\epsilon_1 + 2\epsilon_2}{m_2 - m_1}$$

Choosing $m_2 pprox 1/r$ where r = 1-f gives multiplicative precision:

$$\hat{r} \approx r + 2r(\epsilon_1 + \epsilon_2)$$

JJW, Quantum 2, 47 (2018), Helsen et al, arXiv:1701.04299

Pirsa: 18020110 Page 8/33

Pirsa: 18020110 Page 9/33

Pirsa: 18020110 Page 10/33

Pirsa: 18020110 Page 11/33

Estimating decay rates

Two parameters, so can solve for two values of m:

$$p^{m_2-m_1} = \frac{2\Pr(\mathbf{z}|\mathbf{m}_2)-1}{2\Pr(\mathbf{z}|\mathbf{m}_1)-1}$$

Choose m₁=4 to avoid gate-dependent perturbations

Experimentally, have estimates $\ \hat{\Pr}(z|m_i) = \Pr(z|m_i) + \epsilon_i$

Conservative uncertainty on estimate provided $\epsilon_2 \ll \hat{p}^{m_2-m_1}$ is

$$p \approx \hat{p} + \frac{2\epsilon_1 + 2\epsilon_2}{m_2 - m_1}$$

Choosing $m_2 pprox 1/r$ where r = 1-f gives multiplicative precision:

$$\hat{r} \approx r + 2r(\epsilon_1 + \epsilon_2)$$

Pirsa: 18020110 Page 12/33

JJW, Quantum 2, 47 (2018), Helsen et al, arXiv:1701.04299

Fitting with two points?

Pros:

- Under the decay model, two sequence lengths provides the minimal uncertainty for fixed resources
- The estimator is straightforward and unambiguous (it is the least-squares, MLE, etc)
- Don't need to weight data points, which naturally assigns low weight to the most informative data points
- Clearly motivated choices of sequence lengths
- Simple error analysis
- Relatively insensitive to the distribution of probabilities over sequences

Cons:

No model validation! Howavar with preside actimates of A and p can do hypothesis

Pirsa: 18020110 Page 13/33

Fitting with two points?

Pros:

- Under the decay model, two sequence lengths provides the minimal uncertainty for fixed resources
- The estimator is straightforward and unambiguous (it is the least-squares, MLE, etc)
- Don't need to weight data points, which naturally assigns low weight to the most informative data points
- Clearly motivated choices of sequence lengths
- Simple error analysis
- · Relatively insensitive to the distribution of probabilities over sequences

Cons:

 No model validation! However, with precise estimates of A and p can do hypothesis testing on independent sequence lengths (and use Bayesian methods to update posterior if consistent)

Pirsa: 18020110 Page 14/33

What is wrong with standard randomized benchmarking?

While it is efficient, polynomial factors matter!

A typical n-qubit Clifford gate requires O(n²/log n) generating gates with infidelity r.

The fidelity per Clifford is roughly 1 - r n², could be anywhere in [1 - r n⁴,1]

Cannot fit a decay that goes straight to zero!

Also does not apply to a universal gate set!

Pirsa: 18020110

Cycle benchmarking

Randomized benchmarking requires $O(n^2/\log n)$ to twirl noise to depolarizing noise completely characterized by the fidelity.

Solution: perform a weaker twirl

Bonus: allows characterization of universal gate sets

Trade-off: resulting noise is more complicated, described by 4ⁿ Pauli fidelities

$$\mathcal{F}_P(\tilde{\mathcal{H}}, \mathcal{H}) = \text{Tr}\left[\mathcal{H}(P)\tilde{\mathcal{H}}(P)\right]/d$$

The fidelity is essentially the average Pauli fidelity

$$(d+1)\mathcal{F}(\tilde{\mathcal{H}},\mathcal{H}) = 1 + d \mathbb{E}_P \mathcal{F}_P(\tilde{\mathcal{H}},\mathcal{H})$$

So we can learn a small random set of Pauli fidelities and average to estimate the fidelity. Number of sampled Paulis needed for multiplicative precision is independent of r because $|\mathcal{F}(\tilde{\mathcal{H}},\mathcal{H}) - \mathcal{F}_P(\tilde{\mathcal{H}},\mathcal{H})| \leq r$

Pirsa: 18020110

Estimating Pauli fidelities

For a fixed P, we estimate $\mathcal{F}_P(\tilde{\mathcal{H}},\mathcal{H})=\mathrm{Tr}\left[\mathcal{H}(P)\tilde{\mathcal{H}}(P)\right]/d$ as follows.

- 1. Prepare 2⁻ⁿ(I ±P)
- 2. Apply Q, H, HQ⁻¹H⁻¹ m times with m independent Q's from a unitary 1-design
- 3. Measure the expectation value of $\pm \mathcal{H}^m(P)$ (via coarse-graining)
- 4. Average over twirls and signs and fit to

$$Af(\mathcal{H}(P), \tilde{\mathcal{H}}(P)^m + 1/2$$

To make the above robust to state-preparation and measurement errors, we:

- 1. add a random Q' that commutes with P to the first step; and
- 2. choose values of m that give the same H^m

Pirsa: 18020110 Page 18/33

Pirsa: 18020110 Page 19/33

Pirsa: 18020110 Page 20/33

Quantum computing with global and local operations

$$S_{x,y}^2(\theta)$$

Bichromatic excitation: entangling operations

Resonant excitation: collective local operations

off-resonant excitation: individual local operations (AC Stark shifts)

$$\sigma_z^{(i)}(\theta)$$

Pirsa: 18020110 Page 21/33

Quantum gate operations – unitaries

Quantum circuits:

$$Z_n(\theta,j)=e^{-i\theta\sigma_z^n}$$

$$Z_C(\theta) = e^{-i\theta \sum_i \sigma_z^i}$$

$$C(\theta,\phi) = e^{-i\theta\sum_i \sigma_\phi^i}$$

$$MS(\theta, \phi) = e^{-i\theta \sum_{i < j} \sigma_{\phi}^{i} \sigma_{\phi}^{j}}$$

$$\sigma_z^{(n)}(\theta)$$

local Stark shifts

$$S_z(\theta)$$

collective Stark shifts

$$S_{\phi}(\theta)$$

collective local ops.

$$S_{\phi}^{2}(\theta)$$

entangling MS ops.

additionally available:

- hiding operations (reduce comp. subspace)
- dephasing operations (open systems)
- initialization/reset operation
- quantum (cache) memory

k-th Pauli matrix acting on *j*-th qubit

System Capabilities at a glance: Qubits & Gates

Parameter	Description	Value
Number of qubits (ions)	⁴⁰ Ca ⁺ S>, D> states	up to 14
Qubit preparation fidelity & time	Sideband cool ~ 2ms Raman cool ~ 400μs	99.5% fidelity < n > ~ 1
Coherence times	T ₁ T ₂	1.1 sec 30 ms to 0.55 sec
Measurement time	PMT CCD	400 μs 2 ms
Gate time	$R(\pi,\!\phi)$ $Z(\pi)$ $MS(\pi/2,\!\phi)$	10 μs 10 μs 40-100 μs

Pirsa: 18020110 Page 23/33

The Mølmer-Sørensen gate

Primarily interested in the n-qubit Mølmer-Sørensen gate

$$MS = \exp\left(-i\pi S_x^2/8\right)$$

$$S_x = \sum_j X_j$$

For even n,

$$MS = \frac{1-i}{2}I + (-1)^{n/2}\frac{1+i}{2}X^{\otimes n}$$

For any Pauli P that does not commute with the MS gate,

$$MSPMS^{\dagger} = X^{\otimes n}P$$

Twirling set can be independent Paulis + rotations about the X axis (isomorphic to the dihedral group)

Compiling independent single-qubit gates

Twirling set can be independent Paulis + rotations about the X axis.

Abstractly prefer including $\pi/4$ X rotations as non-Pauli gates systematically convolves Pauli errors between time steps, larger twirl averages such errors at each time step.

However, such Pauli scrambling makes a small contribution to the average error rate.

Pirsa: 18020110 Page 25/33

Compiling independent single-qubit gates

A bigger constraint: primitive gates contain only collective rotations and single-qubit Z rotations.

Such rotations are sufficient to generate a cycle of arbitrary independent single-qubit gates, e.g., $Z(\alpha)X\left(\frac{\pi}{2}\right)Z(\beta)X\left(\frac{\pi}{2}\right)Z(\gamma)$.

However, Z gates are the noisiest gates, want to minimize how many are used. Much fewer gates required to achieve independent Pauli gates.

First pass:

- 1. look for the most common Pauli P
- 2. Choose 4 collective $X\left(\frac{\pi}{2}\right)/Y\left(\frac{\pi}{2}\right)$ rotations that multiply to P (6 for the identity)
- 3. Insert $Z(\pi)$ on qubits in-between collective pulses to obtain arbitrary Paulis.

Pirsa: 18020110 Page 26/33

The experimental implementation

- Mølmer-Sørensen gate is of order 4, so choose sequence lengths to be 4 and the largest multiple of 4 with a decent signal
- Sample Pauli fidelities exhaustively for 2 and 4 qubits, verify the number of Pauli fidelities required for an accurate estimate at 4 qubits (around 50) for larger numbers of qubits

Pirsa: 18020110 Page 27/33

Results

Pirsa: 18020110 Page 28/33

Results

A standard (bad!) estimate of the fidelity of the interleaved gate is the difference between the interleaved and noninterleaved fidelity.

The fidelity is greater with an interleaved gate for n = 2, 4.

Possible explanations:

- Coherent errors cancelling between MS gate and twirling gates
- 2) Context-dependent noise on the twirling gates

Pirsa: 18020110 Page 29/33

Results

A standard (bad!) estimate of the fidelity of the interleaved gate is the difference between the interleaved and noninterleaved fidelity.

The fidelity is greater with an interleaved gate for n = 2, 4.

Possible explanations:

- Coherent errors cancelling between MS gate and twirling gates
- Context-dependent noise on the twirling gates

Pirsa: 18020110 Page 30/33

Detecting coherence (preliminary)

Want to determine whether the noise is coherent.

Apply the MS gate m times between twirling rounds and see how the fidelity decays as a function of m [Sheldon $et\ al$, PRA 93, 012301 (2016)]

"Quadratic" decay => coherent errors, linear decay => stochastic errors

A new laser arrived that should reduce intensity fluctuations... so we have worse data

MS ^m	Fidelity
1	0.974(2)
5	0.937(4)
9	0.91(1)

Pirsa: 18020110 Page 31/33

Summary

- Presented a (relatively) complete analysis of estimates and errors from randomized benchmarking (and variants thereof)
- Standard randomized benchmarking, while efficient in principle, is impractical for larger numbers of qubits
- Developed cycle benchmarking, which is in-principle practical and directly outputs the performance under randomized compiling without further assumptions [JJW and Emerson, PRA 94, 052325 (2016)]
- Shown cycle benchmarking is practical for many qubits (2 hours for 10 qubit data)
- Extracting an accurate fidelity on an individual gate from cycle benchmarking takes more work, waiting for the laser to be set up
- Implementing the protocol for different fractions of the MS gate will show scalable characterization of non-Clifford gates

Pirsa: 18020110 Page 32/33

Pirsa: 18020110 Page 33/33