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Abstract: <p>Quantum computers can only offer a computational advantage when they have sufficiently many qubits operating with sufficiently
small error rates. In this talk, | will show how both these requirements can be practically characterized by variants of randomized benchmarking
protocols. | will first show that a ssmple modification to protocols based on randomized benchmarking allows multiplicative-precision estimates of
error rates.&nbsp; | will then outline a new protocol for estimating the fidelity of arbitrarily large quantum systems using only single-qubit
randomizing gates.<br />

<!--[if IsupportLineBreakNewLine]--><br />

<!--[endif]--></p>
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Outline

What does a quantum computer need to be useful?

Estimators and sequence lengths for randomized benchmarking
Limitations of randomized benchmarking

Cycle benchmarking

Experimental implementation in ion traps
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Useful quantum computers

Useful quantum computers need:
1. Many qubits

2. Universal(ish) operations

3. Low error rates

If the quantum computer has too few qubits or too restricted a set of operations, it
can be efficiently simulated

If the quantum computer has too much noise, the output is unreliable

How do we characterize these 3 features? Randomized benchmarking
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Randomized benchmarking

P — 5 — 91 g — g2 —---— 9m 8 — 9R ‘i/7/\

Apply a random sequence of m+1 gates from a group that multiplies to the identity.

Average probability of an outcome z (or a set of outcomes) over all sequences of
length m is

Pr(zlm) = Ap™ + B
Decay parameter is linearly related to the fidelity
Fé)= [dyTr [f,.-«é(z,n_)]
Two key issues:

1. How does the error in the estimate of the error rate scale with the error rate?
2. How do we efficiently characterize a universal gate set?

Magesan, Gambetta, and Emerson, PRL 106, 180504 (2011)
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Randomized benchmarking
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SPAM parameters are nuisances.

To set B to %, randomly choose to compile to any gate X that flips the final outcome

and set
Pr(zjm) — 1 — Pr(z

m)

Knill et al., PRA 77, 012307 (2008)
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Estimating decay rates

Two parameters, so can solve for two values of m:

pM2—m1 — 2""(7-"”;’) |
! 2Pr(z|m;)—1

Choose m,=4 to avoid gate-dependent perturbations

Experimentally, have estimates ﬁl‘(.;|111;) = Pr(z|m;) + ¢

ST — 110

Conservative uncertainty on estimate provided €2 < p is

A D) Q€0
p & P+ ke

Mo —1]

Choosing 1o ~ 1/7' where r = 1-f gives multiplicative precision:

F 14 2r(e; + €2)

JJW, Quantum 2, 47 (2018), Helsen et al, arXiv:1701.04299

Pirsa: 18020110 Page 7/33



Pirsa: 18020110 Page 8/33




Pirsa: 18020110 Page 9/33




Pirsa: 18020110 Page 10/33




Pirsa: 18020110 Page 11/33




Pirsa: 18020110

- | Page

= Joel Wallman_APS_2018 pdf

6 /24 Vv e 2 B2 Find, Ja

Estimating decay rates

Two parameters, so can solve for two values of m:
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JJW, Quantum 2, 47 (2018), Helsen et al, arXiv:1701.04299

Fitting with two points?

Pros: 1

* Under the decay model, two sequence lengths provides the minimal uncertainty
for fixed resources

* The estimator is straightforward and unambiguous (it is the least-squares, MLE,
etc)

* Don’t need to weight data points, which naturally assigns low weight to the most
informative data points

* Clearly motivated choices of sequence lengths

* Simple error analysis

* Relatively insensitive to the distribution of probabilities over sequences

Cons:

- AMa waadal vialidatiamwl lLlaiiiaiiaw 1siidblh thavaniaa Aacbicvamban af A cdnd b faav da Liinablaaaia
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Fitting with two points?

Pros:

* Under the decay model, two sequence lengths provides the minimal uncertainty
for fixed resources

* The estimator is straightforward and unambiguous (it is the least-squares, MLE,
etc)

* Don’t need to weight data points, which naturally assigns low weight to the most
informative data points

* Clearly motivated choices of sequence lengths

* Simple error analysis

* Relatively insensitive to the distribution of probabilities over sequences

Cons:

* No model validation! However, with precise estimates of A and p can do hypothesis
testing on independent sequence lengths (and use Bayesian methods to update
posterior if consistent)
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What is wrong with standard randomized benchmarking?

P — 5 — 91 g —1 92 —: ««—{ 9mn S — 9R ‘i/7/\

While it is efficient, polynomial factors matter!

A typical n-qubit Clifford gate requires O(n?/log n) generating gates with infidelity r.
The fidelity per Clifford is roughly 1 - r n?, could be anywhere in [1 - r n4,1]

Cannot fit a decay that goes straight to zero!

Also does not apply to a universal gate set!
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Cycle benchmarking

Randomized benchmarking requires O(n?/log n) to twirl noise to depolarizing noise
completely characterized by the fidelity.

Solution: perform a weaker twirl

Bonus: allows characterization of universal gate sets

Trade-off: resulting noise is more complicated, described by 4" Pauli fidelities
Fp(H,H)=Tr [’H(I’)’f{.(}’)] /d

The fidelity is essentially the average Pauli fidelity

(d+ 1)F(H,H) =1+dEpFp(H,H)

So we can learn a small random set of Pauli fidelities and average to estimate the
fidelity. Number of sampled Paulis needed for multiplicative precision is independent

of r because \f(HH) - fp("?%.'HH <r
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Estimating Pauli fidelities

For a fixed P, we estimate f;v[’H, H) =Tr [’H(P)’H(P)] /d as follows.

Prepare 2"(I £P)

Apply Q, H, HQ*H! m times with m independent Q’s from a unitary 1-design
Measure the expectation value of =H"*(F) (via coarse-graining)

Average over twirls and signs and fit to

/]f(H(P),}‘Z(I))m ' ]/2

Lol b L

To make the above robust to state-preparation and measurement errors, we:
1. add arandom Q' that commutes with P to the first step; and
2. choose values of m that give the same H™
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The Quantum Information Processor with
Trapped Ca* lons
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The Quantum Information Processor with
Trapped Ca* lons

i &4 & & - """ "W -

P. Schindler et al., New. J. Phys. 15, 123012 (2013)
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Level Scheme of 4°Ca* qubit on narrow S - D
quadrupole transition

T~ 158

P3/2
P1/2
Ds/z
393 nm
40Ca+
S1/2
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Quantum computing with global and local operations
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Quantum gate operations — unitaries

: (n) 0)
. . ; *IQUZ},I P ( /
uantum circuits: , —i Z
5 Z” (9’]) . local Stark shifts
— Zl +— i B ZC(()) — e_iO Y0, *S“(())
| i collective Stark shifts
B 1 = —i0y ol S4(0)
__14¢/ [ ms C6,¢)=e LiCp 54
7 o i collective local ops.
—{ 4 }— &
. 1 ~ 7
: - i0Y ;0o Sz(6)
. — <]V¢"¢ e\
y MS(G’ (P) ¢ entangling MS ops.
additionally available: U‘P = €OS (PUI + sin 4)(’T_1/
/
T o = . - ;. .
® hiding operations (reduce comp. subspace) C k ieth Pauli matrix acting ony~th qubit

® dephasing operations (open systems)
® initialization/reset operation
® quantum (cache) memory
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System Capabilities at a glance: Qubits & Gates

Number of qubits (ions)

Qubit preparation fidelity
& time

Coherence times

Measurement time

Gate time

40Ca* |S>, | D> states

Sideband cool ~ 2ms
Raman cool ~ 400us

up to 14

99.5% fidelity
<n>~1

1.1 sec
30 ms to 0.55 sec

400 ps
2 ms
10 ps
10 ps

40-100 pus

Page 23/33



The Mglmer-Sgrensen gate

Primarily interested in the n-qubit Mg@lmer-Sgrensen gate
[ e SRS O s GV S
MS = exp (—imS2/8)
Sz = Z'j X
1= 7 n/21+1 v®n
MS = L£] 4 (—1)/24 X

For even n,

For any Pauli P that does not commute with the MS gate,

MSPMS' = X®"p

Twirling set can be independent Paulis + rotations about the X axis
(isomorphic to the dihedral group)

Pirsa: 18020110 Page 24/33



Pirsa: 18020110

Compiling independent single-qubit gates

Twirling set can be independent Paulis + rotations about the X axis.

Abstractly prefer including /4 X rotations as non-Pauli gates systematically convolves
Pauli errors between time steps, larger twirl averages such errors at each time step.

However, such Pauli scrambling makes a small contribution to the average error rate.
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Compiling independent single-qubit gates

A bigger constraint: primitive gates contain only collective rotations and single-qubit Z
rotations.

Such rotations are sufficient to generate a cycle of arbitrary independent single-qubit
gates, e.g., Z(a)X (g) Z(p)X (g) Z{y).

However, Z gates are the noisiest gates, want to minimize how many are used. Much
fewer gates required to achieve independent Pauli gates.

First pass:
1. look for the most common Pauli P

2. Choose 4 collective X(g) /Y(g) rotations that multiply to P (6 for the identity)

3. Insert Z(rt) on qubits in-between collective pulses to obtain arbitrary Paulis.
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The experimental implementation

* Mpglmer-Sgrensen gate is of order 4, so choose sequence lengths to be 4 and the
largest multiple of 4 with a decent signal

* Sample Pauli fidelities exhaustively for 2 and 4 qubits, verify the number of Pauli
fidelities required for an accurate estimate at 4 qubits (around 50) for larger

numbers of qubits
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Results

| Approximately
® 1.75 Z pulses per
g qubit, reference
0.95 s decay is
# _ . .
B i consistent with a
i fidelity of 0.995
ey 0.9 including any
S crosstalk
=
= OS5 +
0.8 Uncertainties
e single-qubit cycle - obtained from
0.75 —a— dressed MS cycle e EZ:;Z:EIZS
2 4 6] ol 10

number of qubits
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Results

1 A standard (bad!) estimate of
the fidelity of the interleaved
0.95 gate is the difference between
s = the interleaved and non-

0.9 - interleaved fidelity.

fidelity

0.85 The fidelity is greater with an
- + interleaved gate forn = 2, 4.

0.8

Possible explanations:
e i TS e 1) Coherent errors cancelling
0.75 between MS gate and
2 | 6 8 10 twirling gates
number of qubits 2) Context-dependent noise on

the twirling gates

e single-qubit cycle =
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Detecting coherence (preliminary)

Want to determine whether the noise is coherent.

Apply the MS gate m times between twirling rounds and see how the fidelity decays
as a function of m [Sheldon et al, PRA 93, 012301 (2016)]

“Quadratic” decay => coherent errors, linear decay => stochastic errors

A new laser arrived that should reduce intensity fluctuations... so we have worse data

1 0.974(2)
5 0.937(4)
9 0.91(1)
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Summary

Presented a (relatively) complete analysis of estimates and errors from randomized
benchmarking (and variants thereof)

Standard randomized benchmarking, while efficient in principle, is impractical for
larger numbers of qubits

Developed cycle benchmarking, which is in-principle practical and directly outputs the
performance under randomized compiling without further assumptions [JJW and
Emerson, PRA 94, 052325 (2016)]

Shown cycle benchmarking is practical for many qubits (2 hours for 10 qubit data)

Extracting an accurate fidelity on an individual gate from cycle benchmarking takes
more work, waiting for the laser to be set up

Implementing the protocol for different fractions of the MS gate will show scalable
characterization of non-Clifford gates
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Thank you !




