Title: Projective symmetry of partonsin the Kitaev honeycomb model
Date: Feb 27, 2018 03:30 PM
URL.: http://pirsa.org/18020088

Abstract: <p>Low-energy states of quantum spin liquids are thought to involve partons living in a gauge-field background. We study the spectrum
of Mgjorana fermions of the Kitaev honeycomb model on spherical clusters. The gauge field endows the partons with half-integer orbital angular
momenta. As a consequence, the multiplicities do not reflect the point-group symmetries of the cluster, but rather its projective symmetries,
operations combining physical and gauge transformations. The projective symmetry group of the ground state is the double cover of the point
group.</p>
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Context

What we do

Study the spectrum of Majorana fermions of the Kitaev honeycomb model on spherical clusters.

Why

1. To examine the properties of partons in the Kitaev honeycomb spin model.

2. To find clean applications of projective symmetry to exactly solvable models of spin
liquids.

What we found

¢ Parton excitations in the Kitaev honeycomb model on spherical clusters have half-integer orbital
angular momenta due to a gauge background resembling the field of a magnetic monopole with a half-
integer charge.

For spherical clusters the projective symmetry group for the ground state is the double cover of the

-

point group.
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Quantum Spin Liquids Ji

Conjectured states of matter that have no long-range magnetic order and thus cannot

be distinguished by their physical symmetries.

Their low-energy physics is often described in terms of partons —matter particles

with fractional quantum numbers — interacting with emergent gauge fields.

Solvable models in more than one spatial dimension are hard to find.
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Motivation

Spin variables in terms of Abrikosov fermions or Schwinger bosons. Hamiltonian, quartic in

parton fields, treated at the mean-field level.

5 1o
S = 5@lﬂwwﬁ -y

a, B =1,1

Spin Exchange
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Hypr = Z l-(?.-j‘-”:(]’_j”‘, + A((_I,j_'?a{t . + (?lT(r!i ¢_) + ...

(Y]

Justified when N — Ol

N: parton flavors
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Projective symmetry group, PSG

Two spin liquids (SL) cannot be distinguished by their physical symmetries

Classify SL on the basis of Projective Symmetry

Wen 2002, PhysRevB.65.165113

PSG: A combination of physical and gauge symmetries.

association of projective symmetry with ad hoc fractionalization schemes
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The PSG does not need to be tied to to a mean field theory
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Landau levels on a sphere. .

Massive particle as a rigid rotor—a particle pivoted on a massless rod of length r —with mutually

orthogonal axes §,1, C=r/r

L: Ly and L¢ commute with Ly Ly and L,, so we may use as basis vectors the simultanecous
eigenstates of L? L,and L

2 2 2
oI ' 21, ' 21,

Ie =1, = mr?

LQ
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[ ,l:r)

magnetic monopole g at the center.
H is modified by replacing L —TrrXp — A =T X (p — A)

— —

(L —7x A)?
2mr?

Although the magnetic field is spherically symmetric, the vector potential is not
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Landau levels on a Sphere

Performing a rotation will change A !!
Gauge away the change induced in A: follow it up with a gauge transformation.
The combined operation—a gauged rotation—leaves the vector potential, and H

invariant.

— — - — Q’r
Generator of gauged rotations J — L — T X A — -

J=AN—-g(

[t satisties the standard algebra of angular momentum

Je=Le —g=—g

This constraint restric alf-integer values

Pirsa: 18020088 Page 12/43



Gauged angular momentum

gl+1,|g|+2,...,

gauged angular momentum ] = |g| g

/ N\
( ordinary orbital angular momentum | = O’ L 2’ el )
\ /

o (A A 7 — (|J‘2—92)
2mr? 2 mr 2

The PSG does not n

0 a mean field theory.
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Al

Gauged angular momentum

gl +1,1g] +2, ..,

gauged angular momentum ] = |g|,

N

( ordinary orbital angular momentum | = 0’ L 2’ noe's )

N\

The resulting group of gauged rotations is a PSG

o (A 7 — (IJ1* — g%)
2mr? 2 mr 2

The PSG does not n -.

i

o

0 a mean field theory.
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What we do about 1t? « »

Partons in this model are Majorana fermions moving in a background of a Z gauge field.

[

To find that

cter Institute, Waterloo, Feb 2
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‘The Kitaev’s model

Spins 1/2 on sites of a Honeycomb lattice

v e s i

- § : T T § : Y ~Y § : z .z
H = J—’I‘ OmOn Jy Omn JZ OmOn

x links vy links z links
Spins i 4 Majorana fermions
@12 __(X¥12 3 X112 FRX12 — )
o1 205" = (b7 % c1) (b5 2 c2) = —iu2 Cc1C2
Umn = —Unm = 105 b7 = 1 Z> gauge variable

e e =) . g " o oy > o
H — : E E t'm.'n..(-“m Cn tnn = =20 ntlnn ”“I"F’I”I'L- matrix
2 hermitian
m T
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o Z> and U(1) fluxes

’—b W = (—e)n U12U23...Up 1

Z» magnetic flux

’
Different gauge representations {u! of . — .
£aug F N { ' ”"-np.*n. - A'HJ. ”‘HP."H A'N. ;]
the same flux pattern {W} are related
- . !
o aatoe franelarm: 7 i
by a gauge transformation ¢, = A..“_( -

A, = +1
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Z: and U(1) tluxes /H

’—> W = ( —1 ) "u 12U23...Up1

Z» magnetic flux

. . -~ " .
Different gauge representations {u} of Uy = A'm,‘”"mnA‘n.p [1 . (_15@ '
the same flux pattern {W} are related -
~ . I
by a gauge transformation C, = A“(.“ ! U(]_) gauge flux
A-”: —_ jlj‘l

— ::7T/2 For any loop of perimeter L odd

P

Flux pattern

in the GS ()
P

|
-

L=2mod 4 (ex: hexagon)

|
=

L=0mod 4 (ex:octagon)
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Complex fermions on a triangle

3 ‘ .
; Symmetry transformations
H=- E 2 Zlnrn)._)(“.,.\ "

m=1 n#m A _
3 7N I'e
VA AN AR
/1 \ < A
(] f'l"l 3‘.];; 0 l ] \\ ~ x\\
J e - A
[ ] ® [ 7 .
Lyr 32 0 -1 =10 ; I 2 2/ 3
¥
001 0 ta) 139 If H remains invariant after
R= | O 0 . it =Rt R = tia 0 12 transformation R, R is a symmetry of H.
010 tog to; 0 _ All symmetries of H form a group.
001 010 100 00 1 010
R.=(100]. =001 |.,oy=(001),00=[010),03=]100
010 | 00 010 1 00 00 1

t invariant under +/-120 rotations and reflections exchanging two sites of the triangle. E, two
rotations, three reflections: symmetry group of the equilateral triangle.
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The symmetry group of t

3- dimensional (reducible) representation of the triangle group.

iI'I'Cp b‘ 2[‘) 30. ------------ > 3 conjugacy classes

3 irreducible representations: 17+12+2% = 6: group order.

(N
Do
|
o

® The fermion operators transform in terms of each other under these symmetries.

* the reducible representation is a sum of irreps | and 2. We expect the energy levels to have degeneracies 1 and 2.

. Diagonalizing t with all off diagonal elements equal to 1 yields eigenvalues -2, 1 and |
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Gauge transformations

Cil — -Ci t=11 0 -1

1 0 0 L0
The energy levels remain the same but the symmetry of the Hamiltonian is now lower o1 = (” 0 ') k= (“ I
0 10 00

1 0 O

Symmetry of H restored if we follow the :
ll’.+ — l 0 () symmetry operations with gauge A;; 0 1 0
transformation ¢3 — -¢3 0 0 J.

AsRytRI AL =1t AR tRUAL, =t
And similarly with all the other transformations. ..

any combined symmetry+gauge operation has a twin obtained by acting with the global gauge transformation, which alters the signs of all fermions:

Cm — =-Cm

G ={e,ANj23, ARy, Ao Ry Ao R A 3R, 01, N o301, Avoa, Ayzoa, Asos, Apos})
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c Majorana fermions in a static magnetic background

Eigenvalues of tm, come in pairs e

G — Z 1.[;’("';{.‘)(:” —_ Z t,,_” 'H-'dj'!f- — f'l/h‘l'*

" o Positive eigenvalues are the excitation energies of the
Majorana eigenmodes
I
Archimedean Solids Links in two flavors

* Ji > 0 on edges inherited from
Platonic solids

*And J» > J;1 > 0 on the edges
resulting from truncation.

The presence of a gauge field endows edges with a sense of direction and thereby

reduces the symmetry.
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PSG of Majoranas on Archimedean Solids

1 chamnped

Flux pattegmme hanged

hexagons

5 d =0
4 ) 2 restore t by a 7> gauge transformation on vertices labeled with dots,
)
= -~ r - v .
A( ER n) 7> Gauge transformation
Lt

). l)

) 2w 2 2T
Gauge rotation R ( R n) = A—,n) H(T ,71) leaves t invariant

9 2 2

r

‘e and the complementary —A Jn) R , 7)) oo
Spectrum Majorana modes form 3 doublets He complementary ( 3’ ) B( 3 )
[y oy /5 fo . ; o . . .
V2(T - V33) (2), 2V2 (2), /2(7 + V33) (2) Every point-group symmetry generates two gauged symmetries
: Ve 2 2 2
T hasirreps 1 1717 3 P(Or & 3 AT L «T
P R(2m,n) = RS(T,_?L) =-1= A(T,'n.)h‘.(T,n)
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Regular v/s gauged rotations . |

regular rotations gauged rotations

o 2 : >
R‘S(?)=R(2ﬂ’) =1 Ra(%ﬂ) —

includes irreps with double dimensions

Pt

T C SO3) T C SUQ)

Z: symmetry broken by u

Use the irreps for which a rotation through 2x vields a factor of —1. The double cover

of T has three such irreps: 2 ,2°, and 2™

A~

PSG of the GS of Majorana fermions on the tetrahedron: 1’

generalization of T to half-integer spins
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| Blame the gauge ficld felt by Majorana fermions. « ;

i hicnilil ]

1 y o+ h o I‘._ maocnetic
— R o g : charge ol a magnetic
(I)H(Jt _ :I:27T P = 47‘-9 9= ia monopole at the cluster’s

center.

I. L of a parton with unit electric charge incremented by the angular momentum of the
electromagnetic field g.

2. gis half integer in the GS of Archimedean solids.

3. The net angular momentum is converted from integer to half-integer. Point group must be enlarged.

Similar scenarios apply to other spherical clusters

PSG of the ground state

G C SUQ2)
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&
| Vi

1 PSG construction for the ground-state flux sector .

Ia

2T |
1. Construct two gauged rotations ’R( T, 111) and R(

L3

2T )
— . 1l
307

Pirsa: 18020088 Page 30/43



Ia

2T |
1. Construct two gauged rotations ’R( T, 111) and R(

L3

2T )
— . 1l
307

2. Use multiplication table of SU(2) (of its subgroup T) to generate new elements and
label them accordingly:

27 |, 2T

R(T ny)R~ (T n;) = R(m,n3)
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Ia

2T |
. Construct two gauged rotations ’R( T, 111) and R(

L3

2T )
— . 1l
307

o

. Use multiplication table of SU(2) (of its subgroup T) to generate new elements and
label them accordingly:

2 2
’R(Tﬂ no )R~ : (Tﬂ n;) = R(m, ny)

3. Check that each new element 1s a gauge transformation: a composition of

R(¢,n) € T and A(¢p,n)
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2T |
1. Construct two gauged rotations ’R( T, 111) and ’R(

L3

2T )
— . 1l
g 1

2. Use multiplication table of SU(2) (of its subgroup T) to generate new elements and
label them accordingly:

2 2
R(Tﬂ-, flz)R_] (?ﬂ-, ﬁ_’l) —_ 7\"(7{3 ﬁd)

3. Check that ecach new element 1s a gauge transformation: a composition of

R(¢p,n) € T and A(¢,n)

4. Check that the multiplication tables of the new group and T are the same.
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[

Number of vertices = Order of GCSO(3)

States of a fermion living on the
vertices transform under the
regular representation of the group

G

R2|Rzl.> = |R2Ril_>-

Regular representation of G =T

12=1x14+1x1"41x1"4+3x%x3

Complex fermions transform under the regular representation of the point group G
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12=2x2+2x2 +2x2

regular representation

Spectrum for Majorana

\/3{7 —V33) (2), 2v2 (2), V/9f7'* V33) (2)

Summary of PSG

Solid

Multiplicities

Truncated tetrahedron 2,2,2

Truncated octahedron

Truncated cube

4,2, 4,2

Truncated icosahedron | 6, 2, 4, 6, 2, 6, 4

In agreement with exact diagonalization
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12=2x2+2x2 +2x2"

regular representation

Spectrum for Majorana

V2(7 - V33) (2), 2v2 (2), \/'3(7-+ V33) (2)

Summary of PSG

Solid Multiplicities
Truncated tetrahedron 2,2,2
Truncated octahedron L, 4, 4
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6, 2, 4, 6,2, 6,4

In agreement with exact diagonalization




Parton spectrum

R’ (follows right multiplication) analogs of rotations about axes attached to a rigid body

f.‘H,fH'Hih‘(f ratations
about three fold axis

primed rotations
about three fold axis

unprimed (a) and primed (b) rotations commute  R3R;[R|) = |R3R|R2) = Ry R3|R))

t _commutes with unprimed rotations

Primed rotations form T
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Parton spectrum

R’ (follows right multiplication) analogs of rotations about axes attached to a rigid body

wnp imed rotations
about three fold axis

primed rotations
about three fold axis

unprimed (a) and primed (b) rotations commute  R3R;[R|) = |[R3R|R2) = Ry R3|R))

t_commutes with unprimed rotations

t = —2i[iR (m, ) — JLR' (3], 0y) + JoR/(—2F 1y

{ superposition of primed rotations  Primed rotations form 7T
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S Use 1rreps of R’ to block diagonalize t

il 1. T (o Pl 2n o (2T Replace block of irrep A by
“""‘l'jt R (ﬂ" n ) J*’ R ( 3 113-) 1 J~" R (\ 3! n-’-)l SU((2) rotation matrices

R (¢, 1) — DN (=g, ) = (T )P/2
J:e7%midn I. irrep 20f T (spin-1/2) block 2x2

t? = 2Jy0, +2Jy(0, + 0, +02)

=20/ 02— 201 0o + 33

matches the energy of one of the Majorana doublets

2. irrep 2! 4 2" (spin-3/2) block 4x4

p]

P(e) = €' — (3J% + 2J1Jo + 2J3)e* + 16(Jy + J2)*J3

matches the energy of the other two Majorana doublets

Diagonalization procedure also works ¢ wnd states of the other spherical clusters
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Energy eigenstates: )= |g

The positive eigenvalues of the Majorana hopping matrix mirror the negative ones.
The parton multiplet with the highest energy will have angular momentum j =

by multiplets with j = |g| + 1, |g/+ 2,... until the continuum approximation breaks

down.

" ~ Connection to Haldane continuum model

i b v

Highest energy partons form a quartet j = 3/2 and a sextet | = 5/2

) trealand>0 ¢ = ()
- Gs: V,, = 1 (lattice analog) s state.

Excited states: 1= 1, 2, 3,... Multiplicities: 2]+1

2y ®=4ng

g/t 1, |g|*+ 2.... Multiplicities: 2j+1

s

g|, followed

3

Buckyball g = 5
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Conclusions

- Parton excitations in Kitaev's honeycomb model on spherical clusters have half-integer orbital
angular momenta due to a gauge background resembling the field of a magnetic monopole with

a half-integer charge.

- Parton multiplets have even dimensions, incompatible with point-group symmetry. Their

structure can be understood in the framework of projective symmetries.

- For spherical clusters, the PSG for the ground state is the double cover of the point group.

First application of projective symmetries in a solvable model of a spin liquid.

Mellado, Petrova, Tchernyshyov, Phys. Rev. B 91, 041103(R)(2015)

{1 sl
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Open question

A disclination is a line defect in which rotational symmetry is violated. It can be

obtained by removing a pi/3 sector of a honeycomb lattice and gluing the resulting edges
together. Because of the presence of odd-length cycles, the honeycomb lattice can no

longer be globally partitioned into A and B sublattices.

In graphene, the boundary conditions across the cut have drastic consequences for the

low energy wavefunctions: they switch the sub lattice and the valley.

Consider the case of the buckyball:

This is an example of a honeycomb net with 12 disclinations realized by 12 pentagons.
When the coupling joining pentagons is made smaller than the exchange around

pentagons, Majorana modes localize on them. These finding calls for further analysis.
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Conclusions

- Parton excitations in Kitaev's honeycomb model on spherical clusters have half-integer orbital
angular momenta due to a gauge background resembling the field of a magnetic monopole with

a half-integer charge.
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First application of projective symmetries in a solvable model of a spin liquid.

Mellado, Petrova, Tchernyshyov, Phys. Rev. B 91, 041103(R)(2015)
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