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Abstract: <p>All physical constraints of the conformal bootstrap in principle arise by applying linear functionals to the conformal bootstrap
eguation. An important goal of the bootstrap program is to identify a suitable basis for the space of functionals -- one that would allow us to solve
crossing anaytically. In my talk, I will describe two particularly convenient choices of the basis for the 1D conformal bootstrap. The two bases
manifest the crossing symmetry of the four-point function of a generalized free boson and generalized free fermion respectively. | will use the bases
to study small deformations of the two theories. Assuming no new operators appear in the OPE, the generalized free fermion allows no small
deformation, and the generalized free boson allows a one-parameter deformation, which coincides with the AdS_2 four-point contact interaction at
the leading order. Time allowing, | will discuss the connection of this work to the conformal bootstrap ala Polyakov.</p>
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Motivation 1

The conformal bootstrap equations place strong constraints on the CFT data.
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Motivation 2: QFT in AdS

Every UV-complete QFT in AdSa.1 with an SO(2, d)-invariant
boundary condition defines a consistent conformally-invariant
d-dimensional theory on the boundary.

[Paulos, Penedones, Toledo, van Rees, Vieira, '16]
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Motivation 2: QFT in AdS

Every UV-complete QFT in AdSq,1 with an SO(2, d)-invariant
boundary condition defines a consistent conformally-invariant
d-dimensional theory on the boundary.

[Paulos, Penedones, Toledo, van Rees, Vieira, '16]

local operators o states in the Hilbert space
on the boundary in AdS
conformal bootstrap S-matrix bootstrap of QFT -
in d dimensions in AdSq. 1

AdS acts as a convenient IR regulator: maximal spacetime symmetry,
and continuum of multi-particle states resolved into a discrete set.

Bonus: if there happens to be a stress-tensor on the boundary, we are
describing a theory including quantum gravity.

[Heemskerk, Penedones, Polchinski, Sully, '09]

Does every boundary theory arise from some bulk theory?
Can we use boundary bootstrap to solve bulk theories?
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Analytic conformal bootstrap to date
2D CFTwith 0 < ¢ < 1 \/ [Belavin, Polyakov, Zamolodchikov, '84]

In general D, analytic progress has generally followed from constraints
in the Lorentzian regime.

-~ SOMeE pairs of operators nearly null- or time-like separated
An important result in general D: a Lorentzian inversion formula  [Caron-Huot, 17]

“The CFT data of exchanged operators with spin > 2
are fixed by the singularity in the crossed channel.”
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Analytic conformal bootstrap to date
2D CFT with 0 < e < 1 \/ [Belavin, Polyakov, Zamolodchikov, '84]

In general D, analytic progress has generally followed from constraints
in the Lorentzian regime.

- SOME pairs of operators nearly null- or time-like separated

An important result in general D: a Lorentzian inversion formula  [caron-Huot, 17]

“The CFT data of exchanged operators with spin > 2
are fixed by the singularity in the crossed channel.”

4

Unification of many results obtained using the large spin expansion

[Komargodski, Zhiboedov; Fitzpatrick, Kaplan, Poland, Simmons-Duffin; Alday, Bissi, Lukowski, Aharony, Perlmutter, ...]

Related results using a Regge-like limit

[Hartman, Jain, Kundu, Afkhami-Jeddi, Tajdini, Hofman, Li, Meltzer, Poland, Rejon-Barrera, Perimutter, Costa, Hansen, Penedones, ...]
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The Euclidean bootstrap program

Expecation:
All bootstrap constraints in principle encoded in the Euclidean regime.

all pairs of operators space-like separated =ws

Numerical bootstrap

a machine to extract optimal constraints from the Euclidean regime

clearly knows about the Lorentzian bootstrap: [Simmons-Duffin, '17]

Natural task: Analytically extract a complete set of optimal constraints
from the Euclidean bootstrap equations.
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The Euclidean bootstrap program

Expecation:
All bootstrap constraints in principle encoded in the Euclidean regime.

all pairs of operators space-like separated =

Numerical bootstrap

a machine to extract optimal constraints from the Euclidean regime

clearly knows about the Lorentzian bootstrap: [Simmons-Duffin, '17]

Natural task: Analytically extract a complete set of optimal constraints
from the Euclidean bootstrap equations.

This talk: a solution of this problem for 1D CFTs (with identical external operators)

4

Formalism unifying numerical bootstrap bounds and analytic Lorentzian bootstrap
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The Euclidean bootstrap program

Expecation:
All bootstrap constraints in principle encoded in the Euclidean regime.

all pairs of operators space-like separated =

Numerical bootstrap

a machine to extract optimal constraints from the Euclidean regime

clearly knows about the Lorentzian bootstrap: [Simmons-Duffin, "17]

Natural task: Analytically extract a complete set of optimal constraints
from the Euclidean bootstrap equations.

This talk: a solution of this problem for 1D CFTs (with identical external operators)

4

Formalism unifying numerical bootstrap bounds and analytic Lorentzian bootstrap

Closely related to a recent approach using Polyakov's “unitary blocks”
[Polyakov, '74; Gopakumar, Kaviraj, Sen, Sinha, Dey, Ghosh '16,17]
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Conformal symmetry in 1D

Spacetime acted on by the symmetry algebra so(1,2) = sl(2,R)

Generators PP, D, K (translation, dilatation, special conformal transformation)
Primary operators O, (x): [K,O;(0)] =0, [D,0;(0)] = A,;0,(0)

A theory completely specified by the CFT data {A,;} ; {(-'-;,,;;i:\}

"‘i\
structure constants
T“ = () = no stresstensor => the theory must be non-local
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Conformal symmetry in 1D

Spacetime acted on by the symmetry algebra so(1,2) = sl(2,R)

~ AR

Generators PP, D, K (translation, dilatation, special conformal transformation)
Primary operators O, (x): [K,O;(0)] =0, [D,0;(0)] = A,;0,(0)

A theory completely specified by the CFT data {A,;} ; {(-'-;,,;;i:\}

"‘i\
structure constants
T“ = () = no stresstensor => the theory must be non-local

There are many interesting examples of such theories:

e conformal boundaries, interfaces, line defects in higher-D CFTs
® CSYK model [Gross, Rosenhaus, "17]
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Conformal symmetry in 1D

Spacetime acted on by the symmetry algebra so(1,2) = sl(2,R)

~ S— iy

Generators PP, D, K (translation, dilatation, special conformal transformation)
Primary operators O, (x): [K,O;(0)] =0, [D,0;(0)] = A,;0,(0)

A theory completely specified by the CFT data {A,;} ; {(-'-;,,;;&}

"‘i\
structure constants
T“ = () = no stresstensor => the theory must be non-local

There are many interesting examples of such theories:

e conformal boundaries, interfaces, line defects in higher-D CFTs
® CSYK model [Gross, Rosenhaus, "17]

e non-gravitational (1+1)D QFTs placed in AdS>

* higher-D CFTs restricted to a line in spacetime
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The 1D conformal bootstrap: Part |

Study the four-point function of a primary operator d),_ a= A0y

(f)

¢ ¢ ¢ ¢

. - * L
rp =10 xy =z r3 = 1 Ty = 00

. . 12034 _ . . o —
Single cross-ratio z = € (0,1) Tij = Ty — T,
L1324
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The 1D conformal bootstrap: Part |

Study the four-point function of a primary operator d),_ a= A0y

(f)

¢ ¢ ¢ ¢

. - * L
rp =10 xy =z r3 = 1 Ty = 00

. . 12034 _ . . o —
Single cross-ratio z = € (0,1) Tij = Ty — T,
L1324

(p(x1)p(x2)p(ws)p(xyq)) = ! G(z)
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The 1D conformal bootstrap: Part |

Study the four-point function of a primary operator d),_ a= A0y

(f)

¢ ¢ ¢ ¢

@ @ @
ry =0 Ty =z r3 =1 L
: . L12034 _ . e —
Single cross-ratio z = € (0,1) x5 = o — x4
13024

(p(x1)p(x2)p(ws)p(xyq)) = ! G(z)

s-channel expansion: 2 = 0 G(z) = E o0 Gao(2)
OQepxop
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The 1D conformal bootstrap: Part |

Study the four-point function of a primary operator d),_ a= A0y

(f)

¢ ¢ ¢ ¢

@ 9 2 4
ry =0 T2 =2

:.—
Iy = ] €ry =00
: . 12034 _ . . o —
Single cross-ratio z = € (0,1) Tij = Ty — T,
21324

(p(x1)p(x2)p(ws)p(xyq)) = ! G(z)

Oepxop u\
conformal blocks

Gal(z) = 22, F (A, A 2A: 2)

2a l

t-channel expansion: 2 — 1  G(z) = (1 = :) Z oo Gae (1 — 2)

Qedx

s-channel expansion: z = 0 G(z) = Z ffj,(,)@ Gao(2
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The 1D conformal bootstrap: Part I

s- and t-channel expansions must be equal

2 j-'_\u('?) - 2 Gﬁ_{,,(l - U)
Z ((fl{fﬁ('} :‘v«‘__)‘”‘ — Z ('q,"‘,u'f)f,) (] — :)2”

O€Epx i OEpx
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The 1D conformal bootstrap: Part I

s- and t-channel expansions must be equal

"2 j'ﬁ” (:') — 2 GJ.U(I o '“)
Z ((f){iﬁ(\k} T — Z ('l]'{)t'jﬁcf,) (] — :)2”

O€Epx OEpx

Rewrite this as a sum of vectors with positive coefficients (unitarity)

o GQ,C_,(.:)

~2a
=

Z r:'j_)(m Fa,(z) =0  where Fa,(2)

Oepx

—(z e 1—2)
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The 1D conformal bootstrap: Part I

s- and t-channel expansions must be equal

2 j-'_\u('") - 2 Gﬁ_{,,(l - U)
Z ((fl{fﬁ('} :‘v«‘__)‘”‘ — Z ('q,"‘,u'f)f,) (] — :)2”

O€Epx i OEpx

Rewrite this as a sum of vectors with positive coefficients (unitarity)

 Gay(2)

~2a
=

Z rz';"}_,(;,o Fao(z) =0 where Fa,(2)

Oepx

—(ze1-2)

Let z be complex. The equation holds in the common region of
convergence of the s- and t-channel OPE
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The 1D conformal bootstrap: Part I

s- and t-channel expansions must be equal

2 j-'_\u (") - 2 GA(,, (l - U)
Z ((fl{fﬁ('} T - Z ('q,"‘,u'f)f,) (] - :)2”

O€Epx i OEpx

Rewrite this as a sum of vectors with positive coefficients (unitarity)

o (;A(,(i)

‘_.'j l
A

Z rz';"}_,(;,o Fao(z) =0 where Fa,(2)

Oepx

—(z e 1—2)

Let z be complex. The equation holds in the common region of
convergence of the s- and t-channel OPE

The 1D bootstrap equation lives in the

vector space V of functions F(z)
holomorphic in the blue region, such that

F(z)==-F(1—-2)

Behaviour for z — 0,1, o0
the same as physical 4-pt function

b
||y
'—

Ty
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The simplest solutions of the 1D bootstrap

Free fields in AdS,

1) Free massive scalar:  mygltygs = ala — 1)

(’]:L’ — l ; h .:’2” = l ‘,\_“(--:_. -.;j;\
Gn(2) +(1 ) " +Z_; a, (2)
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The simplest solutions of the 1D bootstrap

Free fields in AdS;

1) Free massive scalar:  mygltygs = ala — 1)

/AA 1. “")”I + :—')f}
(’ ) .- Z) = l - — | + -:'2” — l + E x\u(‘: A ( if\
J ( ) ( 1 "_) n=>0 ’ [ }
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The simplest solutions of the 1D bootstrap

Free fields in AdS;

1) Free massive scalar:  mygltygs = ala — 1)

/"A,,_ = 2a + 21)..
(;]1( ) =1+ (ﬁ) + z Lda =1+ Z)\,,(vg [ }

n=>0 \W 21 .Ju | )H} |(4H‘ F2n 'I)

'(2a)?T'2n + 1) (da + 4n — 1)

2) Free massive fermion: Ay, = a

/_4- A, =2a+2n+1
gl(-) =1 ( § ) :2” =14 Y‘ A.'r(; .':'.
1 o ) P

A, (%)

=0

i 2I°(2a + 2n + 1)°T'(4a + 2n)
" D(2a)?0(2n + 2)0(4a + 4n + 1)

We will see that in these cases the bootstrap fixes OPE coefficients after we have
fixed the spectrum.
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The dual space

We get one constraint for every element w of the dual space V™.

Define w(A) = w(Fa). Acting with w on the bootstrap equation implies

Z Mow(Ap) =0 | where Ao = r':;“;]d)@

Qepxd
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The dual space

We get one constraint for every element w of the dual space V™.

Define w(A) = w(Fa). Acting with w on the bootstrap equation implies

Z Mow(Ap) =0 | where Ao = r':;“;]d)@

Qepxd

An important goal of the analytic bootstrap is to identify a suitable basis
B ={w,} for V*.
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The dual space

We get one constraint for every element w of the dual space V™.

Define w(A) = w(Fa). Acting with w on the bootstrap equation implies

Z Mow(Ap) =0 | where Ao = r':;“;]d)@

Qepxd

An important goal of the analytic bootstrap is to identify a suitable basis
B ={w,} for V*.

But what does “suitable” mean? Simply evaluating the equation at various
values of 2 is not very revealing. Numerical bootstrap instead typically
uses odd-order derivatives evaluated at z = 1/2, also not too useful for
analytics.
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The dual space

We get one constraint for every element w of the dual space V",

Define w(A) = w(Fa). Acting with w on the bootstrap equation implies

Qepxd

An important goal of the analytic bootstrap is to identify a suitable basis
B ={w,} for V*.

But what does “suitable” mean? Simply evaluating the equation at various
values of 2 is not very revealing. Numerical bootstrap instead typically
uses odd-order derivatives evaluated at z = 1/2, also not too useful for
analytics.

We will construct bases dual to the bases of V' consisting of Fa,, OaFa,
of the free fermion and boson theories.

Pirsa: 18020081 Page 28/63



Pirsa: 18020081 Page 29/63




18020081 Page 30/63




Pirsa: 18020081

The dual space

We get one constraint for every element w of the dual space V",

Define w(A) = w(Fa). Acting with w on the bootstrap equation implies

Y Aow@o)=0 §  where o =20

Qepxd

An important goal of the analytic bootstrap is to identify a suitable basis
B ={w,} for V*.

But what does “suitable” mean? Simply evaluating the equation at various
values of 2 is not very revealing. Numerical bootstrap instead typically

uses odd-order derivatives evaluated at z = 1/2, also not too useful for
analytics.

We will construct bases dual to the bases of V' consisting of Fa,, OaFa,

of the free fermion and boson theories.

The elements of these bases are extremal functionals. [el-Showk, Paulos '12]
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A new class of functionals

Consider functionals taking the form of an integral transform

70 7 =T
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A new class of functionals

Consider functionals taking the form of an integral transform

|
w(F) = /fl:t h(z)F(z) £
boson fJﬂ\ 2= LTl
Ty /r/z 2272 h(1 - 1/2) F(2)

fermion
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A new class of functionals

Consider functionals taking the form of an integral transform

w(F) = /f]*' h(2)F(2) £

| .
54100 .
= s =10 =1l

bhoson ' P _
Ty /(]_3 2270 h(1 = 1/2) F(z2)

fermion

w € V* provided h(l —¢) = ()(f"'!”') and h(z) = (—;:;._)3”‘ ")/}.(l/,:;_]

If, in addition h(z) + h(1 — 2) £ Re[z** *h(1 — 1/2)] = 0, a contour deformation gives

1
wW(FA) =2{1F cos[n(A — 2(1)]}/(1:: h(2)z72"Ga(2)
0

P
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Fermionic functionals

1
w(A) = 4 cos? [T;(A — 2{1.)] /d,;‘-; h(z)z 2*Ga(2)

—

0
The solutions of the functional equations classified by the behaviour as z — 0

oy 2

Two infinite classes of solutions  J,,, = O(z~ """ %) for m=0,1,...
f).-‘,,,_ = O(log(2)z < ‘3) for m=0,1,...

The singularity at z = 0 cancels the double pole at A = 2a + 2m + 1
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Fermionic functionals

1
w(A) = 4 cos? [T;(A — 2{1.)] /d,;‘-; h(z)z 2*Ga(2)

—

0
The solutions of the functional equations classified by the behaviour as z — 0

Two infinite classes of solutions  h,, = O(z~ %" ?) for m=0,1,...
f).-‘,,,_ = O(log(2)z < ‘3) for m=0,1,...

The singularity at z = 0 cancels the double pole at A = 2a + 2m + 1

We find the following behaviour at the free fermion spectrum A,, = 2a + 2n + 1

w’”(A”) =0 C.L), (AH) - 51‘”.”

Tri
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Fermionic functionals

1
w(A) = 4 cos? [T;(A — 2(1.)] /d;: h(z)z 2*Ga(2)

e

0
The solutions of the functional equations classified by the behaviour as z — 0

Two infinite classes of solutions  h,, = O(z~ %" ?) for m=0,1,...
hm = O(log(2)z2"=2) for m=0,1,...

The singularity at z = 0 cancels the double pole at A = 2a + 2m + 1

We find the following behaviour at the free fermion spectrum A,, = 2a + 2n + 1

It can be shown these functionals form a basis for the dual space.
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Fermionic functionals

1
w(A) = 4 cos? [T;(A — 2(1.)] /d;: h(z)z 2*Ga(2)

e

0
The solutions of the functional equations classified by the behaviour as z — 0

Two infinite classes of solutions  h,, = O(z~ %" ?) for m=0,1,...
hm = O(log(2)z2"=2) for m=0,1,...

The singularity at z = 0 cancels the double pole at A = 2a + 2m + 1

We find the following behaviour at the free fermion spectrum A,, = 2a + 2n + 1

It can be shown these functionals form a basis for the dual space.

The free fermion crossing-symmetric <& «,,(0) = —\,,
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More on the fermionic functionals

; ( z —_— i)
Closed formula for h'rr'-(“) when a ]/"’ . Legendre polynomials

h-m.(-':) =z : P'Zm_.—{—l (2/: l) f)'u-’m_.—Jrl (2: 1)

Closed formula for the action of wq for a = 1/2

o

b

. ['(2A) .,/ 7A i 1 ) 1 A l) o
wi(A) = ) sn2{ T2 _AA - Ry Y
o(8) = Fzye Sin ( 2 ){(A—E)(Ml) lA” ”*J { ( > ) ! (

wol(A) °f
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More on the fermionic functionals

’ (~ — 2
Closed formula for h’"”-(“) when a 1/"’ == Legendre polynomials

h-m.(-':) =z : P'Zm_.—{—l (2/: l) f)'u-’m_.—Jrl (2: 1)

Closed formula for the action of wq for @ = 1/2 //,. Trigamma function

o T@a) L AN ! aa - Y e (A ‘) _ —) —2
wo(Q) = F(A) sin ( 5 ){(3_2](3+” l:—\-(.l 1) + 2} [L ( 5 i) (2] 2

wol(A) °f

8

o

b

A

"
1 < k] 4 o [

For any a, functional wp proves that the free fermion maximizes the gap
among all unitary 1D solutions to crossing: Ag.p < 2a + 1
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More on the fermionic functionals

Closed formula for fL:,,,_(.Z) when a = 1/2 e egendre polynomials

h—-m.(.w) - ‘::_IPE-:N..+1. (2/: l) ' Hu-’m..—Jrl (2: 1)

Trigamma function

Closed formula for the action of wq for @ = 1/2 /,
L(24) . ,(7A\ | 1 Caa o A 1) _l 3) -
' (7 Nammarn - [2e-v+] [/ (55) - (3)] -3

[(A)? )

wo(A) =

wol(A) °f

A

b

For any a, functional wp proves that the free fermion maximizes the gap
among all unitary 1D solutions to crossing: Agap < 2a + 1

Dream: are there analytic formulas for the functionals of interacting extremal CFTs?
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Deformations of the free fermion solution

A deformation of the free fermion, such that no new operators appear in the OPE:

An(g) =2a+2n+1++Vg+ 0(g?)

Ang) = X+ Mg + O(g?)
Impose crossing symmetry

Fo(z) + Y Aa(9)Fa,(2) =0

n=>0

Apply Wy, and expand to the firstorderin g = ~Y =0

Apply @W,, and expand to the firstordering = A =0

The free fermion admits no deformations
unless we introduce new states in the OPE!
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Bosonic functionals

wW(A) = 4sin? {g(i — 2(1,)J /d: h(2)272Ga(2)

=l

0
The structure of solutions to the functional equations is similar to the fermionic
case except one functional is “missing”. {,-A Y+ 2. mn=0.1....

Specifically, every functional vanishing on the whole spectrum has at least
two simple zeros in the spectrum, rather than one.

The complete basis now consists of w,,, for m =1,2,...

and w,, for m=20,1,...

— : -
suchthat § w,,(A,)=0 form>1,n2>0 wh (A) = Oy for myn > 1
| W (A,) = 0y for m,n >0 w (Ay)=0form>0,n>1

but  w;,(Ao), @, (8o) # 0

/.—- Legendre polynomials

For example, for a =1  hp(2) = Poy1 (2/2 — 1) + Poppp1 (22 — 1) — -

o
A
e | =
+
o]
|
pa—y
~—

Hence hy(z) =0 (missing functional)
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Deformations of the free boson solution

A deformation of the free boson, such that no new operators appear in the OPE:
An(g) =20+ 2n 4+ g + 12 g° + O(g°)
Aa(9) = A+ A0 g + A2 g + 0(g%)
One functional missing <>  Aone-parameter deformation allowed

Define the coupling as the anomalous dimension of the first operator g = Ag(g) — 2a
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Deformations of the free boson solution

A deformation of the free boson, such that no new operators appear in the OPE:
An(g) =20+ 2n 4+ g + 12 g° + O(g°)
Aa(9) = A+ A0 g + A2 g + 0(g%)
One functional missing <>  Aone-parameter deformation allowed

Define the coupling as the anomalous dimension of the first operator g = Ag(g) — 2a

Tree-level:  Apply w,,,w,, and expand to the first order in ¢

(0)
oy AT
no A([))

( (0) ~/ /e
), (20) MY = A, (2)
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Deformations of the free boson solution

A deformation of the free boson, such that no new operators appear in the OPE

An(g) = 2a + 2n + -}-‘,(1) g+ -‘}'_f.,_"g).g"‘) + ()(.r_;";_)

A (g) = A0 1 XD g 1 A2 g2 L O(¢?)
One functional missing < A one-parameter deformation allowed
Define the coupling as the anomalous dimension of the first operator

g=20(g) — 2a
Tree-level:

Apply w,,,w,, and expand to the first order in g

A DO
’}:(r.l) A([))“‘?n(za) /\51 /\() n(“”
n
7(1) (2n)!(a ) (da — 2)2, A — C)_ ()\((1)7(1))
" (n.!_) (2a),(2a — 1), (2a )::“_ " 20n \ " "

We recover the only U\/-complete leading- _order

deformation of the 4pt function of a free massive scalar
in AdS, namely the tree-level #* interaction,

d>1: [Heemskerk, Penedones, Polchinski, Sully, '09]

Pirsa: 18020081

Page 49/63



An integrable theory in AdS2?

Haandewnnmedtm3CFTdau1m(Mgk)apquh“dhrmfmd Aw+y)q&kH)

1. v
a=1
Ag=2+yg
l ‘317 5 .
Ay =4+ - — =3 ) ¢* + O(g*
1 =4+ g+ (1-1-1 36 )) 9=+ 0(g)
| (25127 28 - .
A — 6 (3)) g2 + O(g*
2=6+ -9 (lumul 15“{J)” HO(g”)

) . il o ,
Ap = 2 &;l(,=uw)i )H‘EUWH
2 15

6 37 [ 612119  19((3) ﬂ).. o
M=z - - + -+ — ¢+ 0y
"5 1m0Y ( os000 T 15 T a5 )¢ TOW)

L5 1627 (88010127 1ITI((3) +_yy‘) PR
2701 793807 ( 3000564000 2835 126/ 7 g

o

Pirsa: 18020081

Page 50/63



An integrable theory in AdS2?

HaandewnnmedtmaCFTdau1M(My*Lapquhpdhrmfmd AM+L)quH)

n AY)
a=1
Ay=2+yg 0
L /317 5N . O(g") = + +
Ay=4+-g+ __—Tqm)yﬂ+omﬂ
G 14 30
1 25127 28 .\ . Y
Ay =6 (3 ) * 4+ 0(g* Yoly —
2 =04 159 (IUSWI 153 )97+ 0lg") Og) =
- 5 [P TL—.I 2 ~7 3
.)\“ = :.). Bf/ | (.) IL‘(-“ | = _ff‘ } ()(f[ ] i "
- 15, O(g°) = + crossed
6 37 [ 612119  19¢(3) n') s
A=z — - T ) g2+ 0y
‘5 1507 ( w0000 T 15 T 25 )¢ TOW
10 Lrd 4 29Q v 4 ' Lrd el Tl 3 . 4 . .
Ao — )il _ _‘{;fi‘”.,, ( 3889170127 | 1177¢(3) | = )ﬂza +0(g% reproduce 1-loop results in AdS:
= A

3000664000 2835 | 126

1-loop in d>1: [Aharony, Alday, Bissi, Perimutter, '16]
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Having determined the CFT data at O(¢*), apply Wy, Wy, to find AK+D 4 kD

Ag=2+yg

L (317
Ay =4+ =
1 =ATEIT (1.-1.-1

| 26127
g
15 ( 10800

w) o

Q(li}) g+
' Q‘(:&_))

1

) PPN TL—.I B ~7 3
Ao =229+ (5 —4C(3) 4 g+ 0O(g”)
2 15
6 37 612119 19¢(3)
A=< g+ [ - +
ST} ( 108000 15
N, 51620 BSSOIT0I2T | TT(3)
21 T9380° 3000564000 2835

+T) g- +(J(q )

T

126

a=1
‘. N\
L0¢ (5 299 o 1225 2 6995 +
l O T I T 3333] g
4
9>+ 0(g") .

. two-loop bootstrap result

 O(g*) = + crossed

)«; +0(g% reproduce 1-loop results in AdSz

1-loop in d>1: [Aharony, Alday, Bissi, Perimutter, '16]
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3889170127
3000564000

AC(3) 4

D lvd
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)

An integrable theory in AdS27

Having determined the CFT data at O(¢"*), apply w,,, Wy, to find AFF1)

=14 (3)) g* +O(g")
15

™ Y o
5 g+ 0O(g”)

(k+1)
n
a=1
N
299 1225 2 6995| 4 +
!.} E— '
TR T W g 3&%3] g
4
. two-loop bootstrap result
O(g*) = + crossed

19¢(3)

T +—)f+0ww

L177¢(3)

5 150°
5 1627 n ’
21 793807

2835 126

- . ~
3T )‘.!:ur()w», reproduce 1-loop results in AdS:

1-loop in d>1: [Aharony, Alday, Bissi, Perimutter, '16]

We are getting an interacting theory with “no particle production” in AdS.
A natural guess is that it is the sinh-Gordon theory in AdS background.

An explicit calculation of particle production in sG in AdS refutes this conjecture.
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Bootstrapping Witten exchange diagrams 1

Introduce into the OPE a new “single-trace” operator of dimension A
and OPE coefficient v9, g < 1

Crossing symmetry implies the double-trace operators must acquire
anomalous dimensions and OPE coefficients.

G (z) = Ga(z Z AD(8)Gaatan(2) + MO (A)0Ga0120(2)

n=>0
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Bootstrapping Witten exchange diagrams 1

Introduce into the OPE a new “single-trace” operator of dimension A
and OPE coefficient v9, g < 1

Crossing symmetry implies the double-trace operators must acquire
anomalous dimensions and OPE coefficients.

ﬂ(l)( Z [/\U) )Goaron(2) + /\(n)ﬂ}l)(A)UGQHIg,“(_g)

n=>0

Expectation from the bulk: ALY (A) - v (A) fixed to be those arising
from the crossing-symmetric combmatlon of exchange Witten diagrams

(up to contact diagrams)

jU) @ . .

d=4: [Alday, Bissi, Perimutter, '17]
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Bootstrapping Witten exchange diagrams 1

Introduce into the OPE a new “single-trace” operator of dimension A
and OPE coefficient v9, g < 1

Crossing symmetry implies the double-trace operators must acquire
anomalous dimensions and OPE coefficients.

G (z) = Ga(z Z AD(8)Gaatan(2) + MO (A)0Ga0120(2)

n=>0
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Bootstrapping Witten exchange diagrams 2
Crossing:

Z [)\“) Vo qon(2) + /\((1) f};l)(‘i)é)ﬁﬂ)‘&z”(z)] ok

n=0

APPlY Wy, Wy AD(A) = —@,(A)
0) (1) | up to the contact interaction
AV (A) = —wn(A)
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Bootstrapping Witten exchange diagrams 2
Crossing:

Z [’\“) _ ‘_u+ )u( ) /\[U) fr(al (A)é’ﬁj“")”‘{hg“(z)} i

n=0

APPlY Wy, Wy AD(A) = —@,(A)
(0) (1) _ up to the contact interaction
'\ F}f(l (A) - _U"’w_(iﬁ)

The values of the basis functionals w,(4A), w,(A) are equal to (minus)
the corrections to scaling dimensions and OPE coefficients of double-trace

- operators from a tree-level exchange of OAa.
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Bootstrapping Witten exchange diagrams 2
Crossing:

Z [’\“) ) ‘_u+ )u( )+ /\[U) fu (A)(’I )”+)“( )] a (]

n=0

APPlY Wy, Wy AD(A) = —@,(A)
0) (1) | up to the contact interaction
'\( F}f(l (A) - _UJ-‘H.(A)

The values of the basis functionals w,(4A), w,(A) are equal to (minus)
the corrections to scaling dimensions and OPE coefficients of double-trace

- operators from a tree-level exchange of OAa.

The recent approach to the conformal bootstrap using Polyakov’s
crossing-symmetric blocks is equivalent to expressing crossing equations
in the basis of w,,,w,, functionals. Clear hint for a d>1 generalization.
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Conclusions and Outlook

We found complete bases for the 1D conformal bootstrap equation
consisting of extremal functionals.
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Conclusions and Outlook

We found complete bases for the 1D conformal bootstrap equation
consisting of extremal functionals.

The bases can be used to see how a conformal block in the crossed channel
influences the direct-channel CFT data, and compute Feynman diagrams

in AdSs.

We found an interesting “integrable” deformation of the free scalar in AdS:.

What is its relationship to the sine-Gordon theory in AdS2?
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Conclusions and Outlook

We found complete bases for the 1D conformal bootstrap equation
consisting of extremal functionals.

The bases can be used to see how a conformal block in the crossed channel
influences the direct-channel CFT data, and compute Feynman diagrams

in AdS’

We found an interesting “integrable” deformation of the free scalar in AdS:.
What is its relationship to the sine-Gordon theory in AdS2?

What is the physical origin of the functional kernels?

The relationship to the Caron-Huot formula and Polyakov bootstrap? \/

d>1
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Conclusions and Outlook

We found complete bases for the 1D conformal bootstrap equation
consisting of extremal functionals.

The bases can be used to see how a conformal block in the crossed channel
influences the direct-channel CFT data, and compute Feynman diagrams

in AdS’

We found an interesting “integrable” deformation of the free scalar in AdS:.
What is its relationship to the sine-Gordon theory in AdS2?

What is the physical origin of the functional kernels?

The relationship to the Caron-Huot formula and Polyakov bootstrap? \/

d>1

Thank you!
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