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Abstract: <p>The study of black holes has revealed a deep connection between quantum information and spacetime geometry. Its origin must liein
a quantum theory of gravity, so it offers a valuable hint in our search for a unified theory. Precise formulations of this relation recently led to new
insights in Quantum Field Theory, some of which have been rigorously proven. An important example is our discovery of the first universal lower

bound on the local energy density. The energy near a point can be negative, but it is bounded below by a quantity related to the information flowing
past the point.</p>
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Quantum Information and Quantum Gravity

The study of Quantum Information is revolutionizing how we
pursue Quantum Gravity.

As a byproduct, we are discovering new results in

nongravitational physics (QFT), which can be (laboriously)
proven.

All of these developments originate with the study of black
holes.
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Black Hole Event Horizon
The event horizon of a black hole is the surface of no return.

Example: Schwarzschild black hole, sphere with R = 2GM.
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Black Hole Event Horizon
The event horizon of a black hole is the surface of no return.

Example: Schwarzschild black hole, sphere with R = 2GM.

Suppose that matter falls into a black hole, or two black holes merge.

What happens to the horizon area?
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Area Theorem for Event Horizons

Hawking 1971: In GR, the total area of
all event horizons cannot decrease:

dA>0.
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Area Theorem for Event Horizons

Hawking 1971: In GR, the total area of
all event horizons cannot decrease:

dA>0.

v Proven, assuming the Null Energy
Condition (NEC):

Tik = Tuk"k” > 0.

True for classical matter.
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Black Holes and the Second Law

What happens to the entropy of a matter system that is lost into a black hole?
Cannot be accessed, not even by jumping after it.

2nd Law violated/transcended?
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Black Holes and the Second Law

What happens to the entropy of a matter system that is lost into a black hole?
Cannot be accessed, not even by jumping after it.

2nd Law violated/transcended?

Bekenstein 1972: Black holes must themselves have entropy!

Inspired by area theorem:

up to O(1) factor.
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Generalized Entropy

To an outside observer, the total entropy consists of the entropy of all the matter

outside the black hole, plus the entropy of the black hole.

A
Sgen = —— + Sout -

4Gh

Generalized Entropy

Geometry
.|.
Information
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Generalized Second Law for Event Horizons

In the presence of black holes, the ordinary 2nd law becomes
the Generalized Second Law:

ngen Z 0 9

where

A
Sgen = 4aGh + Sout + ... i Sout = —Trpout log pout -

v Proof (semiclassical limit)
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Hawking Radiation

» Had to be there since T~! = dS/dE.
» Found by explicit calculation.  Hawking (1974)
» Black holes are thermodynamic objects.

The area decreases as they evaporate!

This is possible because the Null Energy Condition
is violated. (Also, e.g., in Casimir energy.)

Amazingly, the Generalized Second
Law still holds.

Hawking radiation increases Syt
enough to compensate for area loss.
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The Facts So Far

The GSL is simultaneously a statement about geometry and
about quantum info!

o It becomes the ordinary
It becomes Hawking'’s :
) second law in the case
area theorem in the
where there are no black

classical limit.
holes.

But neither law survives on its own, if black holes are present
and treated at the quantum level.
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Alternative Fact

From the New York Alternative Times,
December 12, 1974:

Stephen Hawking Discovers
“2nd Law of Thermodynamics”

Claims It Follows From General Relativity
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The Facts So Far

The GSL is simultaneously a statement about geometry and
about quantum info!

o It becomes the ordinary
It becomes Hawking'’s :
) second law in the case
area theorem in the
where there are no black

classical limit.
holes.

But neither law survives on its own, if black holes are present
and treated at the quantum level.
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Generalized Entropy

To an outside observer, the total entropy consists of the entropy of all the matter

outside the black hole, plus the entropy of the black hole.

A
Sgen = —— + Sout -

4Gh

Generalized Entropy

Geometry
.|.
Information
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General Relativity as a Discovery Tool

1. Start with a classical gravity theorem involving area.

2. Add a quantum correction to make it robust against
violations of the Null Energy Condition:

3. Take a limit where gravity becomes unimportant.
4. Obtain a quantum law.

Can we actually do this, starting with other GR theorems?
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General Relativity as a Discovery Tool

1. Start with a classical gravity theorem involving area.

2. Add a quantum correction to make it robust against
violations of the Null Energy Condition:

3. Take a limit where gravity becomes unimportant.
4. Obtain a quantum law.

Can we actually do this, starting with other GR theorems?
Yes: Classical Focussing Theorem — Quantum Focussing
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Expansion of Light-rays

The classical expansion, 6, is the (logarithmic)
derivative of an area element, when transported
along orthogonal light-rays.
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Classical Focussing Theorem

In General Relativity,
matter focusses light:

0 <0.

Like the Area Theorem, this assumes the Null Energy Condition, T, > 0.
Quantum effects can violate this. Example: evaporating black hole.

— Formulate a more robust, quantum-corrected focussing theorem!
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Generalized Entropy Off the Horizon

Generalized entropy can be defined not just for slices of event horizons. ..

Eout

... but for any 2D surface ¢ that divides space into two sides.
This means we can consider what GR tells us about general surfaces.

Let’'s see what happens when we add a quantum correction, A — A + 4GhSgy to
appropriate GR formulas.
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Classical Expansion — Quantum Expansion
Define a quantum expansion using A — Sgen = A + 4GhSqut:

Zout

Olo; y4] is the rate (per unit area) at which the generalized entropy changes
when an infinitesimal area element of o at y; is deformed in one of its
future orthogonal null directions.
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Classical Expansion — Quantum Expansion
Define a quantum expansion using A — Sgen = A + 4GhSout:

Olo; y1] is the rate (per unit area) at which the generalized entropy changes
when an infinitesimal area element of ¢ at y; is deformed in one of its
future orthogonal null directions. RB, Fisher, Leichenauer & Wall, 2015
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Classical Expansion — Quantum Expansion
Define a quantum expansion using A — Sgen = A + 4GhSt:

4Gh
— 01
0 A

/
Sout '

Olo; y4] is the rate (per unit area) at which the generalized entropy changes
when an infinitesimal area element of o at y; is deformed in one of its
future orthogonal null directions.
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Classical — Quantum Focussing Conjecture

The classical expansion will not increase along any light-ray,

#' <0,

the NEC holds.
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Classical — Quantum Focussing Conjecture

The quantum expansion will not increase along any light-ray,

©'<0,

regardless of whether the NEC holds.
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Quantum Focussing Conjecture

The QFC appears to be quite powerful. It implies:

. Classical focussing theorem

. Bekenstein’s GSL (and so Hawking’s area theorem) for
black holes

. Covariant Entropy Bound
. New GSL for cosmology (and a new area theorem)
. Quantum Null Energy Condition

| will briefly describe items 3 and 4, then 5 in more detail.
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QFC Implies the Covariant Entropy Bound

Consider the case
where the generalized
entropy is initially
decreasing away from
the surface o.

Then the QFC implies that Sge, cannot increase anywhere along N, and

hence
Sgen[U'] < Sgen[”] :
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QFC Implies the Covariant Entropy Bound

UnpaCk Sgen — out + A/4Gh —

Tou '
A[U] - A[J] > Sout[o',] — Sout[U] :

 Sew T 4Gh

For isolated matter systems on N, and in the special case where A[o'] = 0,
we recover the Covariant Entropy Bound, S(N) < A/4Gh.
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Area Theorem for Holographic Screens

A future holographic screen is a 2+1D hypersurface foliated by marginally
trapped 2-surfaces o(r).

Big Bang
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2nd Law for Cosmology

Definition: A future (past) Q-screenis a
hypersurface foliated by marginally quantum
(anti-)trapped surfaces.

Conjecture: A past or future Q-Screen obeys
the GSL.:
dSgen > 0.

Hig Bany

The cosmological 2nd law, too, is implied by the Quantum Focussing
Conjecture.
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GR - QG — QFT

We lifted a GR theorem to a (semi-classical)
quantum gravity conjecture,

o' <0.

Now, let’'s throw away* the gravity part,
and learn something new about QFT!
We obtain the Quantum Null Energy Condition.
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From the QFC to the QNEC

SENE 4Ghsg

ut -

A

Expanding © into its classical and quantum part, we notice that the first
term generally dominates, because it is O(G°).

For example, if the initial surface is a sphere in Minkowski space, 0 = 2/R.
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From the QFC to the QNEC

We can suppress such geometric contributions to 6, if we choose the initial
surface to be a flat plane in Minkowski space. Then initially 6 = 0.
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From the QFC to the QNEC

4Gh

Away from the initial surface, € will not vanish, because gravity bends the
light-rays.

But now, the leading contributions to 6 are O(G), and so are of the same
order as the “gquantum correction.”
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From the QFC to the QNEC

4

A

Finally, we can “tame” the effects of gravity by taking G — 0.
This ensures that only the O(G) term contributes to 6.

It also means that G cancels out as an overall factor. This is why the final
result makes no reference to gravity at all. It is a QFT statement.
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From the QFC to the QNEC

The QFC becomes

/ / 4Gh // /
0>0 = 9"‘7( out — oute)

1 4Gh oy o
= —592 — §2 — 87TG< Tkk> + A } ( out Sout(’))

For a null surface with vanishing classical shear and
expansion, # = ¢ = 0, this implies
h S!

1
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Quantum Null Energy Condition

h S//
Tor) > — lim —out
(Tkk) = o AM

First lower bound on the local energy density.
RHS: nonlocal, information-theoretic quantity.

Conversely, the local energy density limits how rapidly one can increase
the rate at which information is acquired.
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Quantum Null Energy Condition

/!

<Tkk> 2£ ||m OUt X

A0 A

Since G dropped out, we can try to
prove this statement within QFT.
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Pro
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of for Free Fields

4.1 The Replica Trick

I'he replica trick prescription is to use the following formula for the von Neumann
entropy |

Sour Tr|plog p)
This ean be written as
Dlog Z,
where A = Tr[p"]" and the operator D is defined by

Df(n) = (1 =nd,)f(n)

where f(n) is some function of n. Since £, is only defined for integer values of n
we first must analytically continue to real n > 0 in order to apply the D operator
The analytic continuation step is in general quite tricky, and will require care in our
calculation. (Our analytic continuation is performed in Sectior

On general grounds discussed above, we must study the second-order term in a per
turbative expansion of the entropy nbout the state p'™'. Suppressing all A dependence,
we -!ll!\'l‘
Z, =T [(p" + o) 4.4)
Expanding Z, to quadratic order to isolate §'%, we have

¢ . " X e (ks (0
Z, It (p")"] =+ H'I'r[mj,-a 1" + ELI:'[I_;)“}mp

Using the notation introduced in (3.10) we can write

n-1
Zy = Tr [(A )] 4 n'Tr [O(p)"] 4 '2‘2_ Ir [(p') *O(p'™ ) O(p™)"]
‘

We denote by O™ the operator O conjugated by (p

ol ‘.“Jn] .C)‘.F)” i
‘,g-l.kCJf dm kK

In the replica trick one often works with the partition function Z,,, in terms of which Z,,
ZaJ(Z1)", Chooring Zs over Zi, e equivalent to choosing s different normalization for p, but we find

it comvenlent to keep Trp

MU A/ 1S LG DIGERL G UL UPEIALHD Wil GLEIED U S U s & IL IULHUWS Lilal W o
be an integral over operators with angles 27k < @ < 2=(k + 1).” Furthermore, since
rotations by 2rk commute with translations by A, we can obtain Q' from O simply
by letting the range of integration that defines O shift from [0, 27] to 27k, 27 (k + 1)),

ns long as we define f,(r, 0) to be periodic in § with period 2%
It will also be convenient to introduce an angle-ordered expectation value, defined
e[ (p" )" T (4.9)

Ir[(p'™)

where T |.. .| is f-ordering. Then (4.6) can be written

Z, =[] (1400, + 5 Y (0¥0) (4.10)

I'nking the logarithm of Z, and extracting the part quadratic in o gives
3 n £ o) s\ n? 3
logZ, >, Y (o¥0), - (O)],
2 b 2
where we have kept only the part quadratic in ©. The contribution of the second term
to the entanglement entropy will be proportional to (@), which vanishes because of the

tracelessness of o, Therefore we only need to consider the first term

Since we are considering angle-ordered expectation values, we have the identity

T | 1
o nd (oMo,

and so from the first term in (4.11) the relevant part of log Z,, « be written as

1

- n 1 - i

log Z, 5 — (Q0), + O
%8 2 Wi T g Lj

Restoring the A dependence and taking A derivatives gives
N I L) 13

O :
s Dlog 2.(A)
ljnx‘l \ e .

n-1
(©O),«D (| o (4

P

Ome could worry that the phase factor in (3.5) spoils this relation, but notice that the phase he

period n 0 and so doos not appenr when shifting by
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Proof for Free Fields

applies to free or superrenormalizable bosonic fields, stationary null
surfaces

null quantization — operator algebra factorizes over generators
(“pencils”)

each pencil is 1+1 CFT

in any global finite energy state, individual pencils are near the vacuum
— small expansion parameter
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Proof for Free Fields

expand state, p = po + ()
expand entropy in powers of o, S = 3~ S()
find that (S© + S(M)” would saturate the QNEC

compute S®” using replica trick, prove < 0.
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Holographic Proof

Interacting theories with a gravity dual (“AdS/CFT”) satisfy the QNEC.

This follows
» via
» from entanglement wedge nesting ,
» which in turn is necessary for consistent subregion duality.
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Proof for Interacting Fields

—
—’
(@

=

=
—
o0

9

'l [hep-th]
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A General Proof of the Quantum Null Energy Condition

Srivatsan Balakrishnan, Thomas Faulkner, Zuhair U. Khandker, Huajia Wang
Department of Physics, University of lllinois, 1110 W. Green St., Urbana IL 61801-3080, U.S.A.

Abstract

We prove a conjectured lower bound on (7" (.‘r))w in any state 1 of a relativistic QFT dubbed the
Quantum Null Energy Condition (QNEC). The bound is given by the second order shape deformation, in
the null direction, of the geometric entanglement entropy of an entangling cut passing through z. Our
proof involves a combination of the two independent methods that were used recently to prove the weaker
Averaged Null Energy Condition (ANEC). In particular the properties of modular Hamiltonians under shape
deformations for the state ¢ play an important role, as do causality considerations. We study the two point
function of a “probe” operator O in the state ¢ and use a lightcone limit to evaluate this correlator. Instead
of causality in time we consider causality in modular time for the modular evolved probe operators, which we
constrain using Tomita-Takesaki theory as well as certain generalizations pertaining to the theory of modular
inclusions. The QNEC follows from very similar considerations to the derivation of the chaos bound and the
causality sum rule. We use a kind of defect Operator Product Expansion to apply the replica trick to these
modular flow computations, and the displacement operator plays an important role. Our approach was
inspired by the AdS/CFEF'T proof of the QNEC which follows from properties of the Ryu-Takayanagi (RT)
surface near the boundary of AdS, combined with the requirement of entanglement wedge nesting. Our
methods were, as such, designed as a precise probe of the R surface close to the boundary of a putative
gravitational /stringy dual of any QF1 with an interacting UV fixed point. We also prove a higher spin
version of the QNEC.
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Proof for Interacting Fields

Combines techniques used in two
recent proofs of the ANEC (from
quantum info/from causality):

» Modular flow

» Monotonicity of the full modular
Hamiltonian

irsa: 18020079 Page 55/61



Pirsa: 18020079 Page 56/61




Recent and Ongoing Work

Saturation of the Diagonal QNEC!

Holographic proof & general conjecture
Leichenauer, Levine, Shahbazi-Moghaddam (2018)

Defect OPE  +Faulkner, Chandrasekharan, Balakrishnan (in progress)

Pirsa: 18020079 Page 57/61



Pirsa: 18020079 Page 58/61




Pirsa: 18020079 Page 59/61




Pirsa: 18020079 Page 60/61




Pirsa: 18020079 Page 61/61




