Title: PSI 17/18 - Foundations of Quantum Mechanics - Lecture 13

Date: Feb 14, 2018 10:15 AM

URL: http://pirsa.org/18020072

Abstract:

Pirsa: 18020072

Final comments on Bell's theorem and Contextuality

Pirsa: 18020072 Page 2/53

Pirsa: 18020072 Page 3/53

Magic is a natural force that can be used to override the usual laws of nature.

-- Harry Potter entry in wikipedia

Pirsa: 18020072 Page 4/53

Magic is a natural force that can be used to override the usual laws of nature.
-- Harry Potter entry in wikipedia

Bell-inequality violations are natural phenomena that can be used to override the usual (classical-like) laws of nature

Pirsa: 18020072 Page 5/53

Pirsa: 18020072 Page 6/53

Monogamy of Bell-inequality violating correlations

Bob

Adversary

Pirsa: 18020072 Page 7/53

Quantum advantages for computation

Anders and Browne. PRL 102, 050502 (2009).

Pirsa: 18020072 Page 8/53

Pirsa: 18020072

Pirsa: 18020072

Pirsa: 18020072 Page 11/53

Categorizing quantum phenomena

Those arising in a restricted statistical classical theory

Those not arising in a restricted statistical classical theory

Noncommutativity
Entanglement
Ambiguity of mixtures
EPR Steering
Collapse
Coherent superposition
Teleportation
No cloning

Bell inequality violations
Contextuality
Computational speed-up
Certain aspects of items on the left
Others...

Others...

Weak Nonclassicality

Strong Nonclassicality

Pirsa: 18020072 Page 12/53

What we want in a notion of nonclassicality

Subject to direct experimental test

Constitutes a resource

Applicable to a broad range of physical scenarios

Pirsa: 18020072 Page 13/53

What we want in a notion of nonclassicality

Subject to direct experimental test

Constitutes a resource

Applicable to a broad range of physical scenarios

Failure to admit a locally causal model

Pirsa: 18020072 Page 14/53

What is needed to witness the failure of local causality

Pirsa: 18020072 Page 15/53

What we want in a notion of nonclassicality

Subject to direct experimental test

Constitutes a resource

Applicable to a broad range of physical scenarios

Failure to admit a locally causal model

/

Failure to admit a noncontextual model

Pirsa: 18020072 Page 16/53

What is needed to witness the failure of local causality

What is needed to witness the failure of noncontextuality

Pirsa: 18020072 Page 17/53

What we want in a notion of nonclassicality

Subject to direct experimental test

Constitutes a resource

Applicable to a broad range of physical scenarios

Failure to admit a locally causal model

Failure to admit a noncontextual model

Pirsa: 18020072 Page 18/53

What we want in a notion of nonclassicality

Subject to direct experimental test

Constitutes a resource

Applicable to a broad range of physical scenarios

Failure to admit a locally causal model

Failure to admit a noncontextual model

Pirsa: 18020072 Page 19/53

The traditional notion of noncontextuality in quantum theory

Pirsa: 18020072 Page 20/53

Outcome-deterministic hidden variable model for pure states and projective measurements

Note: the outcomes are deterministic given λ

$$|\langle \psi | \psi_k \rangle|^2 = \int d\lambda \mu(\lambda) \chi_k(\lambda)$$

Pirsa: 18020072

Traditional notion of noncontextuality

A given vector may appear in many different measurements

Pirsa: 18020072 Page 22/53

Traditional notion of noncontextuality

A given vector may appear in many different measurements

Pirsa: 18020072 Page 23/53

Traditional notion of noncontextuality

A given vector may appear in many different measurements

The traditional notion of noncontextuality:

Every vector is associated with the same $\chi(\lambda)$ regardless of how it is measured (i.e. the context)

Pirsa: 18020072 Page 24/53

The traditional notion of noncontextuality (take 2):

For every λ , every basis of vectors receives a 0-1 valuation, wherein exactly one element is assigned the value 1 (corresponding to the outcome that would occur for λ), and every vector is assigned the same value regardless of which basis it is considered a part (i.e. the context).

Pirsa: 18020072 Page 25/53

John S. Bell

Ernst Specker (with son) and Simon Kochen

Bell-Kochen-Specker theorem: A traditional noncontextual hidden variable model of quantum theory for Hilbert spaces of dimension 3 or greater is impossible.

Pirsa: 18020072 Page 26/53

Example: Kochen and Specker's original 117 ray proof in 3d

Pirsa: 18020072 Page 27/53

18 ray proof in 4d

Cabello, Estebaranz, Garcia-Alcaine, Phys. Lett. A 212, 183 (1996)

Pirsa: 18020072 Page 28/53

No traditional noncontextual assignments

○ : value 0

• : value 1

Pirsa: 18020072 Page 29/53

If we list all 9 orthogonal quadruples, each ray appears twice in the list

0,0,0,1	0,0,0,1	1,-1,1,-1	1,-1,1,-1	0,0,1,0	1,-1,-1,1	1,1,-1,1	1,1,-1,1	1,1,1,-1
0,0,1,0	0,1,0,0	1,-1,-1,1	1,1,1,1	0,1,0,0	1,1,1,1	1,1,1,-1	-1,1,1,1	-1,1,1,1
1,1,0,0	1,0,1,0	1,1,0,0	1,0,-1,0	1,0,0,1	1,0,0,-1	1,-1,0,0	1,0,1,0	1,0,0,1
11.0.0	1.01.0	0.0.1.1	0.1.01	1.0.01	0.11.0	0.0.1.1	0.1.01	0.11.0

Pirsa: 18020072 Page 30/53

If we list all 9 orthogonal quadruples, each ray appears twice in the list

0,0,0,1	0,0,0,1	1,-1,1,-1	1,-1,1,-1	0,0,1,0	1,-1,-1,1	1,1,-1,1	1,1,-1,1	1,1,1,-1
0,0,1,0	0,1,0,0	1,-1,-1,1	1,1,1,1	0,1,0,0	1,1,1,1	1,1,1,-1	-1,1,1,1	-1,1,1,1
1,1,0,0	1,0,1,0	1,1,0,0	1,0,-1,0	1,0,0,1	1,0,0,-1	1,-1,0,0	1,0,1,0	1,0,0,1
1,-1,0,0	1,0,-1,0	0,0,1,1	0,1,0,-1	1,0,0,-1	0,1,-1,0	0,0,1,1	0,1,0,-1	0,1,-1,0

In each of the 9 quadruples, one ray is assigned 1, the other three 0 Therefore, 9 rays must be assigned 1

Pirsa: 18020072 Page 31/53

If we list all 9 orthogonal quadruples, each ray appears twice in the list

0,0,0,1	0,0,0,1	1,-1,1,-1	1,-1,1,-1	0,0,1,0	1,-1,-1,1	1,1,-1,1	1,1,-1,1	1,1,1,-1
0,0,1,0	0,1,0,0	1,-1,-1,1	1,1,1,1	0,1,0,0	1,1,1,1	1,1,1,-1	-1,1,1,1	-1,1,1,1
1,1,0,0	1,0,1,0	1,1,0,0	1,0,-1,0	1,0,0,1	1,0,0,-1	1,-1,0,0	1,0,1,0	1,0,0,1
1,-1,0,0	1,0,-1,0	0,0,1,1	0,1,0,-1	1,0,0,-1	0,1,-1,0	0,0,1,1	0,1,0,-1	0,1,-1,0

In each of the 9 quadruples, one ray is assigned 1, the other three 0 Therefore, 9 rays must be assigned 1

But each ray appears twice and so there must be an even number of rays assigned 1

CONTRADICTION!

Pirsa: 18020072 Page 32/53

Pirsa: 18020072 Page 33/53

The traditional notion of noncontextuality (take 3):

For every λ , every projector Π is assigned a value 0 or 1 regardless of which basis it is a coarse-graining of (i.e. the context)

$$v(\Pi) = 0 \text{ or } 1 \text{ for all } \Pi$$

Coarse-graining of a measurement implies a coarse-graining of the value (because it is just post-processing)

$$v(\sum_k \Pi_k) = \sum_k v(\Pi_k)$$

Every measurement has some outcome

$$v(I) = 1$$

The traditional notion of noncontextuality (take 2):

For every λ , every basis of vectors receives a 0-1 valuation, wherein exactly one element is assigned the value 1 (corresponding to the outcome that would occur for λ), and every vector is assigned the same value regardless of which basis it is considered a part (i.e. the context).

Pirsa: 18020072 Page 35/53

The traditional notion of noncontextuality (take 3):

For every λ , every projector Π is assigned a value 0 or 1 regardless of which basis it is a coarse-graining of (i.e. the context)

$$v(\Pi) = 0 \text{ or } 1 \text{ for all } \Pi$$

Coarse-graining of a measurement implies a coarse-graining of the value (because it is just post-processing)

$$v(\sum_k \Pi_k) = \sum_k v(\Pi_k)$$

Every measurement has some outcome

$$v(I) = 1$$

Pirsa: 18020072

For Hermitian operators A, B, C satisfying

$$[A, B] = 0$$
 $[A, C] = 0$ $[B, C] \neq 0$

the value assigned to A should be independent of whether it is measured together with B or together with C (i.e. the context)

Measure A = measure projectors onto eigenspaces of A, $\{ \Pi_a \}$

$$A = \sum_a a \, \Pi_a \quad \rightarrow \quad v(A) = \sum_a a \, v(\Pi_a)$$

Pirsa: 18020072 Page 37/53

For Hermitian operators A, B, C satisfying

$$[A, B] = 0$$
 $[A, C] = 0$ $[B, C] \neq 0$

the value assigned to A should be independent of whether it is measured together with B or together with C (i.e. the context)

Measure A = measure projectors onto eigenspaces of A, $\{ \Pi_a \}$

$$A = \sum_a a \, \Pi_a \quad \rightarrow \quad v(A) = \sum_a a \, v(\Pi_a)$$

Measure A in context of B

= measure projectors onto joint eigenspaces of A and B, $\{\Pi_{ab}\}$ then coarse-grain over B outcome $\Pi_a = \sum_b \Pi_{ab}$

Pirsa: 18020072

For Hermitian operators A, B, C satisfying

$$[A, B] = 0$$
 $[A, C] = 0$ $[B, C] \neq 0$

the value assigned to A should be independent of whether it is measured together with B or together with C (i.e. the context)

Measure A = measure projectors onto eigenspaces of A, $\{ \Pi_a \}$

$$A = \sum_a a \, \Pi_a \quad \rightarrow \quad v(A) = \sum_a a \, v(\Pi_a)$$

Measure A in context of B

= measure projectors onto joint eigenspaces of A and B, $\{\Pi_{ab}\}$ then coarse-grain over B outcome $\Pi_a = \sum_b \Pi_{ab}$

Measure A in context of C

= measure projectors onto joint eigenspaces of A and C, $\{\Pi_{ac}\}$

Then coarse-grain over C outcome $\Pi_a = \sum_c \Pi_{ac}$

For Hermitian operators A, B, C satisfying

$$[A, B] = 0$$
 $[A, C] = 0$ $[B, C] \neq 0$

the value assigned to A should be independent of whether it is measured together with B or together with C (i.e. the context)

Measure A = measure projectors onto eigenspaces of A, $\{ \Pi_a \}$

$$A = \sum_a a \, \Pi_a \quad \rightarrow \quad v(A) = \sum_a a \, v(\Pi_a)$$

Measure A in context of B

= measure projectors onto joint eigenspaces of A and B, $\{\Pi_{ab}\}$ then coarse-grain over B outcome $\Pi_a = \sum_b \Pi_{ab}$

Measure A in context of C

= measure projectors onto joint eigenspaces of A and C, $\{\Pi_{ac}\}$ Then coarse-grain over C outcome $\Pi_a = \sum_c \Pi_{ac}$

 $v(\Pi_a)$ is independent of context $\rightarrow v(A)$ is independent of context

Pirsa: 18020072

Functional relationships among commuting Hermitian operators must be respected by their values

$$\begin{aligned} &\text{If}\quad f(L,M,N,\ldots)=0\\ \text{then}\quad f(v(L),v(M),v(N),\ldots)=0 \end{aligned}$$

Pirsa: 18020072

Page 41/53

Example: Mermin's magic square proof in 4d

X_1	X_2	$egin{array}{c c} X_1X_2 \end{array}$	I	$X_1 X_2 (X_1 X_2) = I$ $Y_1 Y_2 (Y_1 Y_2) = I$
Y_2	Y_1	Y_1Y_2	I	$(X_1Y_2) (Y_1X_2) (Z_1Z_2) = I$ $X_1 Y_2 (X_1Y_2) = I$
X_1Y_2	Y_1X_2	$X_2 \mid Z_1 Z_2$	I	$Y_1 X_2 (Y_1 X_2) = I$
I	ī			$(X_1X_2)(Y_1Y_2)(Z_1Z_2) = -I$

Example: Mermin's magic square proof in 4d

X_1	X_2	X_1X_2	I	$X_1 X_2 (X_1 X_2) = I$ $Y_1 Y_2 (Y_1 Y_2) = I$					
Y_2	Y_1	Y_1Y_2	I	$(X_1Y_2) (Y_1X_2) (Z_1Z_2) = I$					
X_1Y_2	Y_1X_2	Z_1Z_2	I	$X_1 Y_2 (X_1 Y_2) = I$ $Y_1 X_2 (Y_1 X_2) = I$					
I	I	-I	•	$(X_1X_2)(Y_1Y_2)(Z_1Z_2) = -I$					
$v(X_1) \ v(X_2) \ v(X_1 X_2) = 1$									
$v(Y_1) \ v(Y_2) \ v(Y_1 Y_2) = 1$ $v(X_1 Y_2) \ v(Y_1 X_2) \ v(Z_1 Z_2) = 1$									
$v(X_1) \ v(Y_2) \ v(X_1 Y_2) = 1$									
$v(Y_1) \ v(X_2) \ v(Y_1 X_2) = 1$ $v(X_1 X_2) \ v(Y_1 Y_2) \ v(Z_1 Z_2) = -1$									

Pirsa: 18020072 Page 43/53

Example: Mermin's magic square proof in 4d

	X_1	X_2	X_1X_2	I	$X_1 X_2 (X_1 X_2) = I$ $Y_1 Y_2 (Y_1 Y_2) = I$				
Î	Y_2	Y_1	Y_1Y_2	I	$(X_1Y_2) (Y_1X_2) (Z_1Z_2) = I$				
	X_1Y_2	Y_1X_2	Z_1Z_2	I	$X_1 Y_2 (X_1 Y_2) = I$ $Y_1 X_2 (Y_1 X_2) = I$				
•	I	I	-I		$(X_1X_2) (Y_1Y_2) (Z_1Z_2) = -I$				
	$v(X_1) \ v(X_2) \ v(X_1 X_2) = 1$								
	$v(Y_1) \ v(Y_2) \ v(Y_1Y_2) = 1$ Product of LHSs = +1								
v	$v(X_1Y_2)$ $v(Y_1X_2)$ $v(Z_1Z_2) = 1$ Product of RHSs = -1								
	$v(X_1) \ v(Y_2) \ v(X_1Y_2) = 1$ CONTRADICTION								
	$v(Y_1) \ v(X_2) \ v(Y_1 X_2) = 1$								
v	$v(X_1X_2) \ v(Y_1Y_2) \ v(Z_1Z_2) = -1$								

Pirsa: 18020072 Page 44/53

Ernst Specker, "The logic of propositions which are not simultaneously decidable", Dialectica 14, 239 (1960).

Pirsa: 18020072 Page 45/53

Specker's example

Pirsa: 18020072 Page 46/53

Specker's example

If the outcomes are fixed deterministically by the ontic state and are independent of the context in which the measurement is performed, then

$$p(\text{success}) \le \frac{2}{3}$$

Frustrated Networks

Nodes are binary variables Edges imply joint measurability

Outcomes agreeOutcomes disagree

Frustration = no valuation satisfying all correlations

Pirsa: 18020072 Page 48/53

Frustrated Networks

Nodes are binary variables Edges imply joint measurability

∘——∘ Outcomes agree

Frustration = no valuation satisfying all correlations

Pirsa: 18020072 Page 49/53

Pirsa: 18020072 Page 50/53

Pirsa: 18020072 Page 51/53

Klyachko, Can, Biniciolu, Shumovsky, PRL 101, 020403 (2008)

In a traditional noncontextual model

$$p(\text{success}) \le \frac{4}{5}$$

Pirsa: 18020072 Page 52/53

Klyachko, Can, Biniciolu, Shumovsky, PRL 101, 020403 (2008)

In a traditional noncontextual model

$$p(\text{success}) \leq \frac{4}{5}$$

Quantum probability of success

$$p(\text{success}) = \frac{2}{\sqrt{5}} \simeq 0.89 > \frac{4}{5}$$