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Consider a circuit

5
a\/ d

A a

B

How do we calculate the probability for this circuit in standard framework

of QT?
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Consider again the circuit

e
//C/E
aA% \d

B

aib2 pasds ~as be Ec7
A B c as Dal Easd4 Fb5C7

In the operator tensor formulation

Prob(A® B34 €2 DYEY, Fue,) = A2 B¥4C, DXES, Fic,

We will explain what the RHS means later.
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Introducing probabilities

Assump 1 We can associate a probability with any given circuit
(the probability that the circuit “happens”), and this probability
depends only on the specification of the given circuit (the knob
settings and outcome sets at the operations, and the wiring).

D
%
B d
Prob R is well conditioned
C
a
A
a
A /

k
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The p(+) function

We define the function p(-) as follows
p(aA+ 3B+ ...) = aProb(A) + 3Prob(B) + ...

N
for circuits A, B, .... and real numbers v, 3, ... (these can be negative).

Will use this to define a notion of equivalence.

Pirsa: 18020068 Page 6/46



Example of equivalence

Have
aA® + BB = 4C*' + 5D
if =
p([aA® + BB |E;,,) = p([yC™ + 6D™ |E,,)  for all Ej,
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General definition of equivalence

We consider expressions like
expression = a + A +vB + ...

where A, B, ...are fragments.

Equivalence: We write
expression; = expression.,
if
p(expression, E) = p(expression,E)

for any fragment E that makes the contents of the argument on
both sides of this equation into a linear sum of circuits.

Equivalence is a weaker notion than equality.
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Another example of equivalence

In general, we have
A = Prob(A) for any circuit A
Proof: For any circuit E
p(AE) = p(A)p(E) = p(Prob(A)E)

This example illustrates how equivalence is a weaker notion than equality.
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Fiducial preparations

Fiducial preparations

a
a._ﬁ = , X" where a; =1 to K,

For any preparation A% (summation over a; implicit below)

a a

At =44 X3 = L = M & %
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Fiducial results

Fiducial results

a
ZF‘_. — X;‘ll where a; =1 to K,

a

For any result for a system of type a

a
Ba; = Balxgll p—— B = %‘O— B
|
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The hopping metric

We define the hopping metric

JAS L JAN L
a

ae\/ ae\/
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Black and white dots

We define
Are = | AOCe—e o[ —ee0{p
Hence
AJceeo{B] = [a}ce{B] = [a}eo{B] = [A}*{B
We have

O® = — o0
Hence, we can insert and delete pairs of black and white dots as we like.
Consistency requires
» O—O to be the inverse of e—e
» O—® to be equal to the identity
» O to be equal to the identity
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The steps for a simple circuit

B /Neo{B
af = a - [a}oeteo | - [A}YB
Al [y
Hence
B a
Prob| a = |A B
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The steps for a simple circuit

B /Neo{B
sl = . - [a}oeteo | - [A}YB
Al [
Hence
B a
Prob| a = |A B
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Assumption 2

Assumption 2: Operations are fully decomposable. We assume that
any operation can be written as

l|...| :
.
. . .
- -
R . .
. . .
||...| U

In words we will say that any operation is equivalent to a linear
combination of operations each of which consists of an result for each
input and a preparation for each output.

This is equivalent to tomographic locality.
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Duotensor with all white dots

Inserting black and white dots (with black next to the fiducial elements)

RS S A

/ \

Therefore

o 4o
o Ao

(with all white dots) provides the weights in the sum over fiducial
elements.
This is an example of a duotensor.
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What are duotensors?

v

Like tensors except that each index is associated with two bases.

They transform like tensors but with respect to two bases.

bk | o

p-u ALOb  corresponds to @249
bg “.d p byes* “hgor
cC

» Have map
A

v

Can change colours of dots using @@ and 0—0

b b

L a L. a
cod 9, _ co—oe]d ,°
peod AP pe—eo| A [S®—®b
g d Reg d

Pirsa: 18020068 Page 18/46



All white dots gives coefficients in sum over fiducials

\A/ = lf*jf.o; A i’o’i@y

/\

All black dots gives fiducial probabilities

8.’2 A 33 = Prob A
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All white dots gives coefficients in sum over fiducials

\A/ : lﬁjf.oa A i’o’iﬂy

/\

All black dots gives fiducial probabilities
N

8-’2 A 351 = Prob A
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General circuits

D
PN
:

o/
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Hilbert space notation

» We define H,,, Hb,, -- - having dimensions N,, Ny, ...
» We define H*', H®, ... having dimensions N,, Ny, . ...
» We define

Hd4€5.--f6 - ’Hal ® Hbz ®R--- R HCE ® ?{dq o3¢} HEs R---R Hfﬁ

albg...C:a, :

These are all taken to be complex Hilbert spaces.
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Space of operators

We define
d4€5
v31b2 €3
o . d4€5...f5
as the space of Hermitian operators acting on Halbz...cs
We write
de f
Ad.q&s...fe <>
a1b2...C3
ab C
d4e5 fs
for elements of V5> >.
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Notation

» We write A% B instead of A% ® B> (in V1% = Y31 @ VP2,

» We write flaléb? instead of /ial ® Cb2,

» We write A, D* instead of A, ® D*.

» Order not important (information in the integers). A, C® =" A,
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When we have a repeated integer:
» We write A% B, for trace( A B, ), denoted graphically by

A wire or a repeated integer means we take the trace of the product
of the given operators.

» When have a more complicated example like

Ab3C4 AdsC‘{
albz 35b3
we take product in appropriate (b3) subspace and then take partial

trace in that subspace. This is accomplished very naturally using full
decomposability of operators.
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Fiducial operators

We introduce a fiducial (spanning) set of operators for V?

a

al)?a‘ <~ ao% where a1 =1 to K,

Similarly, we introduce a fiducial (spanning) set of operators for the space

Va,
. a
Xy = 4_' where a; =1 to K,
a

&
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The hopping metric

In the context of operator tensors the hopping metric is given by

a

and its inverse is represented by 0—O.
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Fiducial operators

We introduce a fiducial (spanning) set of operators for V?

a

al)i'a‘ > ao% where a; =1 to K,

Similarly, we introduce a fiducial (spanning) set of operators for the space

Vi,
. a
X;‘ll = 4_' where a; =1 to K,
a

&
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When we have a repeated integer:
» We write A% B, for trace( A% B, ), denoted graphically by

A wire or a repeated integer means we take the trace of the product
of the given operators.

» When have a more complicated example like

Ab3C4 6d6C7
albz 35b3
we take product in appropriate (b3) subspace and then take partial

trace in that subspace. This is accomplished very naturally using full
decomposability of operators.
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Fiducial operators

We introduce a fiducial (spanning) set of operators for V?

a

alffa‘ <~ ao% where a1 =1 to K,

Similarly, we introduce a fiducial (spanning) set of operators for the space

Vi,
S ay a _
X31 = where a; =1 to K,
a

&
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The steps for a simple operator circuit
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The hopping metric

In the context of operator tensors the hopping metric is given by

a

and its inverse is represented by 0—oO.
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Compare with a simple (operation) circuit
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Since Hilbert spaces are complex ....

Viek -y, oW, 00V, 0V eV e 0 V"

a;bz...c;g -

we have ...
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Full decomposability of operators

We can write any operator as a linear sum over fiducial operators for the
inputs and outputs.

“d4e5...f5 _ d4€!5...fﬁ O aiy % bz - . d4 C €5 O fs
A - Aa1ba.-.63 Xa1 sz"'Xc: d4X 85X ”'fo)( (1)

albz...C3

in symbolic notation, or

in diagrammatic notation.
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Using full decomposability

Abscs pdscr _ pgbscs yvar vb2  wvbs v pdecr yas vby  vds  yor
ABHB =A Xal sz b3X -4 B Xas Xb;.; dGX e X

G5b3f

arby “asbs aybs
or, in diagrammatic notation,

This operator is in the space

Yedser — P @V, ® Vi, ® V4 @ V% @ VI

31b235
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General operator circuit
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Operation-operator correspondence.

We will say that operations correspond to operators if there is a
mapping from operations, Ag‘l‘gz:: :‘::53, to operators, Ag;‘g;::fcﬁs, such
that the probability for any circuit comprised of operations is
equal to the trace of the circuit operator obtained under this

mapping.

If operations correspond to operators then, for example
b R R .
PrOb(Aal 28;3:4(:31&:334) = Aalszli:a4031C334

Same example in diagrammatic notation

. (<] )

\k
Prob =
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Condition for correspondence - KEY IDEA!

Have correspondence if can find fiducial sets such that have equal
hopping metrics

/\ea a
ae\/ a

p

since, for example,

ol

N A
Prob| 3 =|A C?c/- =
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Condition for correspondence - KEY IDEA!

Have correspondence if can find fiducial sets such that have equal
hopping metrics

/\ea a
ae\/ a

p

since, for example,

ol

N oo _HC
Prob a\\ = A/O N ? =
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Determining operator corresponding to operation

Do local process tomography to get duotensor with all black dots:

g: A 33 = Prob A

Convert to duotensor with all white dots (using ©—0) and then operator
given by s

ﬁé’.oc:Afoﬂ
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Physicality theorem

Assume operator circuits must take values between 0 and 1 and we allow
at least

1. all rank one projectors, A% (for all systems a),

2. all rank one projectors, C, (for all systems b),

3. the identity effect, I, (for all systems b),
then all operators, Bg; we must have
Positive input transpose A

B:f
Output trace less than identity
ég;fd4 < fc3

We call operators satisfying these two conditions physical.
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Complete sets

A complete set of operations, {B2[I]:1=1 to L} is a set of
operations corresponding to the same apparatus use with
disjoint outcome sets whose union is the set of all possible
outcomes for this apparatus.

A complete set of physical operators, {Bff[l] :1=1to L},
is a set for which every operator positive input transpose and

L
> B (U, = I, (5)
I=1
Elements of a complete set of physical operators satisfy

B:f [l]jbz RS jal

so are physical.
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Mathematical axioms

Axiom 1 Operations correspond to operators.

Axiom 2 All complete sets of physical operators correspond to
complete sets of operations.

Or, more glibly,

All complete sets of operations correspond to complete sets of

physical operators and vice versa.
N

Equivalent to usual formulation of quantum theory.
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End comments

» unification of all objects - states, effects, transformations, fragments
in general all described by positive operators.

» simple way to combine them.

» Don’t need to foliate.

» Curious time asymmetry in the physicality condition.
» formalism locality.

» played a crucial role in my recent reconstruction.

» relation with g-combs, multi-time, general boundary, and Leifer
Spekkens work.

» embraces the quantum picturalism revolution!

» quantum field theory, quantum gravity, ....
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Physicality theorem

Assume operator circuits must take values between 0 and 1 and we allow
at least

1. all rank one projectors, A% (for all systems a),
2. all rank one projectors, Ct, (for all systems b),
3. the identity effect, I, (for all systems b),
then all operators, Bg; we must have
Positive input transpose
- d,
Bc}
b - -
Output trace less than identity

e
BY Iy, < I,

We call operators satisfying these two conditions physical.
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