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Abstract: <p>Singularities, boundary points of spacetime beyond which no extension is possible, continue to intrigue both mathematicians and
physicists since they are places where our current understanding of physical law breaks down. The question of whether they exist in physical
situations is still an open one. Fifty years ago, Hawking and Penrose developed the first general model independent singularity theorems. These
theorems showed that singularities have to exist in any spacetime that satisfies certain properties. Some of these properties are mild assumptions but
others, called energy conditions, depend on matter content and are more problematic. For both classica and quantum fields, violations of these
conditions can be observed in some of the smplest of cases. Therefore there is a need to develop theorems with weaker restrictions, namely energy
conditions averaged over an entire geodesic and quantum inequalities, weighted local averages of energy densities. In this work we investigate the
strong energy condition in the presence of both classical and quantum non-minimally coupled scalar fields and derive bounds in each case. In the
guantum case these bounds take the form of a set of state-dependent quantum energy inequalities valid for the class of Hadamard states. Finaly, we
show how the quantum inequalities derived can be used as an assumption to a modified Hawking singularity theorem.</p>
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Introduction
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Introduction

Are there singularities in our universe?

What is a singularity?

m Intuitive definition: A “place” where the curvature diverges.

m Problems: Except in highly symmetrical cases (e.g
Schwarzschild ) we cannot represent the singularity as “place”
since the metric is not defined there. The divergence of
curvature scalars doesn't cover all singularity cases.
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Definition

A spacetime is singular if it possesses at least one incomplete
geodesic.
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Introduction
[¢] lele

Definition
A spacetime is singular if it possesses at least one incomplete
geodesic.

m Initial efforts to specify whether our universe has singularities
used particular spacetimes or stress-energy tensors

m T[he first breakthrough was the singularity theorems of
Hawking and Penrose in the late 60's

m They proved that a spacetime is singular if it satisfies certain
general properties

m They don't give any information about the nature of
singularities (e.g. if they are curvature singularities)
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Singularity theorems structure (Senovilla 1998)

1. Causality condition
e.g. There is a Cauchy surface .##: complete spacelike C™
hypersurface that intersects every null and timelike line once only

2. The initial or boundary condition
e.g. There exists a trapped surface: spacelike hypersurface for
which two null normals have negative expansion

. The energy condition
e.g. Null Energy Condition (Penrose)

R.p02¢° > 0 with (7 :null

Strong Energy Condition (Hawking)

R,,U?U® >0  with U? timelike

= Then the spacetime is geodesically incomplete.
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Raychaudhuri equation

m Expansion f*‘\
: 1

0 =

92 — 202 — R,LU2UP

n—1
m Shear scalar

m Curvature
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Raychaudhuri equation

m Expansion f*‘\
: 1

() = 02 — 2 o2

n—1 '
m Shear scalar \Hm___g/

m Curvature —
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Introduction T ht
[e]e]e] ISISIS]

Raychaudhuri equation

m Expansion f*‘\
: 1

0 =

n—1

m Shear scalar —_

m Curvature —

Proof structure:
m Initial condition: Geodesics start focusing
m Energy condition: Focusing continues
m Causality condition: No focal points

= Geodesic incompleteness
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Energy conditions and quantum inequalities

= Pointwise energy conditions are violated!
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Introduction
[ Jelele]

Energy conditions and quantum inequalities

= Pointwise energy conditions are violated!

SEC violation
Minimally coupled real scalar field

T = (Vud)(Vod) + %g,,,,,(mz(/ﬁ — (V)

URUY (V1) (V) — %Uu U,m?? > 0

Violation
m For large field mass m

m For vanishing derivatives of the scalar field

Page 17/63



Introduction
(o] lele]

Average Energy Conditions

Average energy conditions bound the energy along an entire
geodesic

00
e.g. Averaged null energy condition: / T.pl?0Pd)\ >0
J =00
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Average Energy Conditions

Average energy conditions bound the energy along an entire
geodesic

00
e.g. Averaged null energy condition: / T.pl?0Pd)\ >0
J =00

Quantum Inequalities

Quantum Inequalities bound the total energy when averaging over
a time period
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Average Energy Conditions

Average energy conditions bound the energy along an entire
geodesic

e.g. Averaged null energy condition: / T.pl?0Pd)\ >0
J =00

Quantum Inequalities

Quantum Inequalities bound the total energy when averaging over
a time period

= Originally introduced to prevent the violation of second law of
thermodynamics in black holes

e.g. Null Quantum Energy Inequality in flat spacetime (Ford,
Roman, 1995)

YT () ’
o >
,/_OO T2 4 7‘02< 00)dT 2 327?7‘03
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m Efforts to develop singularity theorems with weakened energy
conditions (Tipler 1977, Borde 1986, Roman 1987)

m Singularity theorems with hypotheses inspired from QEI
(Fewster, Galloway 2011)
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Introduction
[Slsls]ele] lo]

m Efforts to develop singularity theorems with weakened energy
conditions (Tipler 1977, Borde 1986, Roman 1987)

m Singularity theorems with hypotheses inspired from QEI
(Fewster, Galloway 2011)

[ (0= n(o)r(e2de > [P
J =00

e r(t): Energy density of some state W

e ro(t): Energy density of a reference state

e |||f|||: Sobolev norm

L
112 = QdIf 2.
(=0
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Proof structure:

m Show that the Raychaudhuri equation and has no solution
(0 — —o0) if
m The previous hypothesis holds
m The geodesic is complete

m But the geodesic cannot have a focal point (causality

condition).
= The geodesic is incomplete.
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Introduction I he lassical strong energy condit
0O000e

Proof structure:

m Show that the Raychaudhuri equation and has no solution
(0 — —o0) if
m The previous hypothesis holds
m The geodesic is complete

m But the geodesic cannot have a focal point (causality

condition).
= The geodesic is incomplete.

There was no SEQI to show if it satisfies the hypothesis of the
theorem
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The classical strong energy condition
00000

The classical strong energy condition

The non-minimally coupled field
Field equation for non-minimally coupled scalar fields is
(Og +m? 4+ &R)p =0

where ¢ is the coupling constant. The Langrangian is

L[(/)] = %[(V(f))2 — (m2 + ER)(/)z]

We can get the stress energy tensor by varying the action of the
Lagrangian with respect to the metric

1
T;.r.u - (V;:.(/))(Vrf(/))+§g;:1/(m2(/)2_(V(/))z)‘l'g(gp.rx[lg_v;:vu_G,u.u)(/)z
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The classical strong energy condition
Oe000

1 - 2¢
n—2

¢2

pe = (1= 26)U"U" (V) (Vo) —

¢
u" U;,,mzr/‘)2 - n2—L’2(Vr/))2 u'u,

- e
—26UM U ¢V Vi — EUMUY Ry ¢® + 28 5 U* U, Rp* — 2—“2(@3£ oYUM U,

p= UMV (T,u0)(V16) = —5 UM Uum? for & =
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The classical strong energy condition
Oe000

Y ¢
pe = (1 =2 U"U"(V,.0) (Vo) — L 25 u" U,”,mzr/)2 — %(Vr/ﬁ)zUll' U,

¢2

. ¢
=26U"U" ¢V NV — EUMU” R;,‘,,r/f)z + n2g > utu, Rr/)2 - %(r/BPE(/B) u"u,

p= U U (V,00) (Vo) — nl—2U” U,m?¢? for € = 0

We can get an alternative expression if we use the field equation to replace the
mass term

N ¥ e
pe = (1= 2)U" U (Vud)(Vo) + == (90g0)U" Uy = —2 (V6 U" U,

=26U"U"pV V0 p — EUMU” R”,,r/")z -+ - L 2£R(/)2 utu, — %2((/)195(/))(/” U,

p= UV (V) (V) + —=(600)U" Uy for € =0
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uction  The classical strong energy condition
[e]e] ls]e)

Averaging the SED over a timelike geodesic v parametrised by proper time 7
and U" = f(r)3"

. . . B
/ d7pe / dr — 22“ m*f2(7) + (1 - 2«‘52_ ;) (V)

Jy Jy n=

«

+ =S W Vu bV + 26[V5 (F(r))g]" — 266°(F(7))°

ni
2
S

n—?2

_{: ””,‘Yﬂ- ;YH f?(,r) + Rf/'52
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The classical strong energy condition
[e]e] ls]e)

Averaging the SED over a timelike geodesic v parametrised by proper time 7
and U" = f(r)3"

' ' «
[\( dT/)£ = [Y dT — 1n _25 mzfz('r) " " ) (V«'{(/))z

5 VA v - =2 (F'(1))?

28

s

—ERw A" (1) | +-

cefont
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uction  The classical strong energy condition
[e]e] ls]e)

Averaging the SED over a timelike geodesic v parametrised by proper time 7
and U" = f(r)3"

' ' . C
L dTpe | _1n _25 mzfz(r)

2 hW'"¥ , oV ¢
OV D
n—2 a /

—ERw A" F(7)

LRt ) + (27 () + R (0
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The classical strong energy condition
[e]e]e] )

Worldvolume

/ dVO/ (U'” U“ _I_’u/ - ﬁ TU“ U’q) 2 _min{qu 82} 3

B, = / dVol{ S 225 m*f?(x) + 5[— %sz(x)

n_

+(V, U + (V. U) (VY U“)] }(/)2

n—2

B, = / dVol{ =122 0 00) - SRy

2(n—2)

+E[(VLU")* + (VL U") (Vs U")]fz(x)}(/)z
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ion  The classical strong energy condition
QO000e

Let ¢max be the maximum amplitude of the field

dmax = sup{|p(p)|: p € M}
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1 The classical strong energy condition Quantization
0000e

Let ¢max be the maximum amplitude of the field

dmax = sup{|p(p)|: p € M}

Rescaling the sampling function

/ dVol plfa] > %/ dVol < ( 2tn2§)Df2(x//\)+£[(v“-[v,,f(x/,\)])2

+(VY [V f(x/AND)(VH[V, f(x//\)])]) P2 ax

Changing variables x — Ax gives

/ dVol plfa] > _% / d\/ol% ( - 2tn_2§)Df2(x) (VI IV ()

+(VY [V f()D(VH [V f(x)])]) ooy
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The classical strong energy condition Quantization
QO000e

Let ¢max be the maximum amplitude of the field

dmax = sup{|p(p)|: p € M}

Rescaling the sampling function

/ dVol plfa] > %/ dVol < ( 2tn 2;)5#‘( %/2) + E[(VP [V (x/N)])

+(VYIV L F(x/A)D)VE[VLF( x//\)])]) Dimax
Changing variables x — Ax gives

[overro 2 =5 [ oviss (= gm0 ) - AV

+(VY [V f()D(VH [V f(x)])]) ooy

So in the limit of large A the bound goes to zero and we have

irn /d\/olp[f,\] > 0.

A—r 00

= Recover ASEC for flat spacetimes
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Quantization

m Introduction of a unital *-algebra .«/(M) on our manifold M

m Generated by the objects ®(f), f € Z(M) where (M) is the space
of complex-valued, compactly-supported, smooth functions on M

m The objects ®(f) must obey the following relations:

1.

2

Linearity
The map f — ®(f) is complex-linear,

. Conjugation

d(f)* = &(F) Vf e Coo (M),

3. Field Equation

O(Pef) =0,

. Canonical Commutation Relations

[P(f), P(h)] = iEc(f, h)1.
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Quantization
*000

Quantization

m Introduction of a unital *-algebra .«/(M) on our manifold M

m Generated by the objects ®(f), f € Z(M) where (M) is the space
of complex-valued, compactly-supported, smooth functions on M

m The objects ®(f) must obey the following relations:

1.

2

3.

4.

Linearity
The map f — ®(f) is complex-linear,

. Conjugation

d(f)* = d(F) Vi e C° (M),
Field Equation

O(P:f) =0,

Canonical Commutation Relations
[P(f), P(h)] = iEc(f, h)1.

We only consider Hadamard states on our algebra
wy (x,y) = (P(x)P(y))y : Z2(M) x 2(M) — C has a prescribed
singularity structure so that the difference between two states is smooth.
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Quantization
(o] lele]

m The smeared local Wick polynomials of the form

(: VIOVEID: (£))y

are part of an extended algebra

m The dependence of these normal-ordered expressions on W is
unsatisfactory, because there is no canonical choice of a
Hadamard state in a general curved spacetime.

m We need a prescription for finding algebra elements that
qualify as local and covariant Wick powers. This might be
done in various ways, expressing finite renormalisation
freedoms. Hollands and Wald (2014) set out a list of axioms
that we follow
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In particular their form of Leibniz’ rule gives e.g.
1
2
where the left-hand side is understood distributionally, i.e.,

(Vi Vo (92))(F) = (®2)(V, V™).

(VuVo(B2))(F) = (V, 0V, 0)(F") + (0T, 7,y ®)(™),
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[e]e] le]

In particular their form of Leibniz’ rule gives e.g.
1
2

where the left-hand side is understood distributionally, i.e.,

(Vi Vi (®2))(F1) = (92)(V, V. ).

= While the quadratic normal ordered expressions obey Leibniz'
rule, but not generally the field equation, the differences in their
expectation values obey both.

(Vu®)PcP)y =

(VuVu(@2)(F) = (V, OV, D) (F") + (V(, V, ) (F™),

v, Q1

2(n+2)

(VOVD) = (VOVD), + ﬁg,,,,,on
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tion Quantization 51
[e]e] le]

In particular their form of Leibniz’ rule gives e.g.
1
2

where the left-hand side is understood distributionally, i.e.,

(Vi Vi (®2))(F1) = (92)(V, V. ).

= While the quadratic normal ordered expressions obey Leibniz'
rule, but not generally the field equation, the differences in their
expectation values obey both.

(Vu®)PcP)y =

(VuVu(@2)(F) = (V, OV, D) (F") + (V(, V, ) (F™),

v, Q1

n
2(n+2)
(VOVD) = (VOVD), + ﬁg,,,,,on

= When taking differences of expectation values, multiples of the
unit cancel

(VI OPD))o — (VI DPD))y = 0.
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Quantization
[e]e]e] ]

Any classical expression constructed from the stress energy tensor
such as the strong energy density for the non-minimally coupled
scalar field

p(x) = [p(¢ ® ¢)]c(x),

has a quantized form in Hadamard state W defined by

(Phw(x) = [p: w3 ]e(x).

Here we used : wy : = wy — w3, the normal ordering of the

two-point function.
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000000000

Strong quantum energy inequality

2§

_ _(V(/))2 — 25(/)(V%.(/))

n—2
2£2 P 26

A AY }()2_|_
Y Rt + o R = -

(PPe).

We introduce the operators

1 (1_2En_2> (VVOQOVVO)—I_ n

A 1—-2¢ | |
p2 - n_2‘” m(1®1) —2¢(1 ®; V2),
¢2 ¢

§ _ 28
1 [+ Rﬂ.
——(1®: R1) +

ps = —{(1®s Ruvgvgl) + n—2
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000000000

Strong quantum energy inequality

Y £
L | L 2 (v | —2es(v20)

‘()2
(1= 26)(V50P| -~ =

&2 P 2¢

—EAHAY R ,()2—|—
S ;u/ n—9 n—2o

((/)P£ (/)) :

We introduce the operators

A

P1

—&(1 ®¢ R Vi v
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Strong quantum energy inequality
OeC0000000

So the classical p can be expressed as

p=[p(6®¢).
where
['3 = /’51 Jrﬁg Jrﬁg :
Then the weighted average of the quantum SED on = is

o) = [ drf ()™ (7)),

<[1ﬂ“m“07>\11(f2) - ( [[’}l : w;’: ]
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Strong quantum energy inequality
0080000000

Point-splitting technique

/. drf(T)p* (Pr: wy ) (7, 7)

/. drd7r's(t — 7)Y () F(T" )" (P : Wy )(7,7")

/ % / d‘rd‘r’e"”(r_r’)f(T)f(Tf)f/’*(ﬁl1 wy')(r,7")
J0O L

e )
/ EL6t (pr: ¥ (e o)

J0

o do . _ " da . -
[ S ma) ) - [ T )R ),

J0 J0

where £, (7) = €' “7f(7). Here ¢" is the distributional pull-back from M x M to
R* by the map (7, 7") = (v(7),v(7")).
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Strong quantum energy inequality
0008000000

Theorem

Let w9 be the two-point function of a reference Hadamard state for the
non-minimally coupled scalar field with coupling constant £ € [O‘ 2(nn_ 21)]
defined on a globally hyperbolic spacetime M with smooth metric g. Let vy be
a timelike geodesic parametrised in proper time T and let f € D(R,R). On the
set of Hadamard states

(pT ™ o)y (F?) > — [DA(f)]l + (2 0% o)w(D5(F)) + (: d*: ov)w(DC(f))}

where

DA(f)=/ % (6 () (Fes ) + 260268, )
J0O

1—2¢

Dalf](r) = =—

m*f3(7) + 26(f"(1))?,

Delfl(r) = F(r)é ((Rur™y” - 225R) (7).
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Strong quantum energy inequality
0000800000

Theorem

Let w3 be the two-point function of a reference Hadamard state for the
non-minimally coupled scalar field with coupling constant

— 3 , : : .
£ € [0, h] defined on a globally hyberbolic spacetime M with

smooth metric g. Let T be a causal world tube, f(x) a smearing

function with compact support in T and x a spacetime point. On the set
of Hadamard states

/ dVol (p?**")y > — min (OY, O3)
JT

OF = 01 +y O +v 08, OF =0y +y 05 +v OF,

' d"« -
Dy =2 —— (7 WI)(fe,
ov=2f S

O, =2 /
JRt xRn—1
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1 Strong quantum energy inequality QEl inspired hypothesi

0000080000

m’ / dVol f2(x){(: wa: Yw + Ay,

_2¢
23— > / LWy D)
wi) 2n_2 dVol([J f( ) (w2 )w + Aw,

Ay — _%a / dVol {: wy: YoV, [(V, UF) U]
JT
(: wat YV, (UMY, U7)

: .
LIJD1B =§ / dVol fz(x)(\/u V¥R, — %R)(: W My,
JT —

wO _‘,/ dVolfz(x)(V“V“R,,,,— cwat h.
T
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Strong quantum energy inequality
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Theorem

Let w3 be the two-point function of a reference Hadamard state for the
non-minimally coupled scalar field with coupling constant

— 3 , : : .
£ € [0, h] defined on a globally hyberbolic spacetime M with

smooth metric g. Let T be a causal world tube, f(x) a smearing

function with compact support in T and x a spacetime point. On the set
of Hadamard states

/ dVol (p?**")y > — min (OY, O3)
JT

OF = 01 +y O +v 08, OF =0y +y 05 +v OF,

' d"« -
Dy =2 —— (7 WI)(fe,
ov=2f S

O, =2 /
JRt xRn—1

Pirsa: 18020062 Page 49/63



Pirsa: 18020062

Strong quantum energy inequality
0000008000

Minkowski space

In Minkowski we can use the vacuum state as the reference state

Ut x.t'.xX) /d,, Yo illt=t (k) ~(x=x)K]

d" k1

duk) = / (27)" 1 2w(k)
the measure, with w(k) = v/ k2 + m2. The operator p; simplifies

n—1

n—1\ . . 2& ‘ ,

i=1
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Strong quantum energy inequality
0000000800

In n-dimensional Minkowski space we have

(p™" 0 )u(F?) 2 = [Da(F)L +(: 9 07)u(Da(F))] ,

" 00 OO n—2 2
ﬁ/ dw/ kX (wz(k)(l —2¢) - 25’"2 +2£rv2)
JO

(2m)" w(k)

X |Fla + w(k))|?,

0

(O,

——m (2) + 26(F"(2))°

Os[f](1) =

2(n—1)

for f € D(R x R) and £ € lo‘ Aol ]
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Strong quantum energy inequality
0000000080

In n-dimensional Minkowski space
/ dVol (p?Uamt)y, > — min (OY, OF)
JT

where
OV = O,(f) +v OF, 0¥ = O5(f) +v O,

and

01N = 2 [ gra [T kK
! N (27T)2n_l ./[}2< w RN—1 (y_/:} W k)

Sn_2 X ¥o's) kn—2
D2(f) = o ’
B 2(f) (27T)2n—1 -/IR* x RN—1 d (Y./O dkw k)
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ition  Strong quantum energy inequality QEl inspired hypoth
000000000e

1-—2¢

O =
- n—?2

m2/ dVol F2(x){: wa: Yy + Ay,
AT

— 2 i
_ ln__i) ./T dVol(OgF2(x))(: wa: Yu + My,
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QEI inspired hypothesis
e0000

QEI inspired hypothesis

Fewster and Galloway hypothesis

'\00 L
/ (r(£) = ro(E))F(£)2dt > — 3 QuI|F|2,
(=0

J =00
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QEI inspired hypothesis
e0000

QEI inspired hypothesis

Fewster and Galloway hypothesis

J =00

'\00 L
/ (r(£) = ro(E))F(£)2dt > — 3 QuI|F|2,
(=0

and
ro(t) = [A(: w3 )]e(v(t)).

where the two-point functions are renormalized.
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QEI inspired hypothesis
e0000

QEI inspired hypothesis

Fewster and Galloway hypothesis

J =00

'\00 L
/ (r(£) = ro(E))F(£)2dt > — 3 QuI|F|2,
(=0

and
ro(t) = [A(: w3 )]e(v(t)).

where the two-point functions are renormalized.
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QEIl inspired hypothesis
OCe000

Does the bound satisfy the hypothesis?

Minkowski space and minimally coupled field

OO

Sp—
quant . 2y > _ n—2 /
ol - (G5 |

Un"‘ 1
du—I|Ff|? — M) D2~ .
V) + () 6% ) )

1
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QEIl inspired hypothesis
OCe000

Does the bound satisfy the hypothesis?

Minkowski space and minimally coupled field

OO

Sp—
quant . 2y > _ n—2 /
ol - (G5 |

Un"‘ 1
du—I|Ff|? — M) D2~ .
V) + () 6% ) )

1

Maximum expectation value in M for set of Hadamard states W
}(: b2 7-)11,} < ¢y,

= The bound satisfies the hypothesis
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What about curved space?
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What about curved space?

m If the support of the sampling function is constrained to be
small relative to local curvature length scales it is reasonable
to assume that the bound would remain close to the
Minkowski bound

m This is for finite curvature but divergent curvature indicates
singular behavior
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Conclusions

m T he classical singularity theorems have in their hypotheses
easily violated energy conditions

m Fewster and Galloway proved singularity theorems with
weaker, QEI inspired hypotheses
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Conclusions

m T he classical singularity theorems have in their hypotheses
easily violated energy conditions

Fewster and Galloway proved singularity theorems with
weaker, QEI inspired hypotheses

We developed a strong quantum energy inequality for the
non-minimally coupled scalar field

The Minkowski bound obeys the Fewster-Galloway hypothesis
for the Hawking singularity theorem and it seems reasonable
that similar bound could be derived for curved spacetime
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Future directions

m Prove an absolute strong QEI for spacetime with curvature
and verify that it satisfies the hypothesis of a singularity
theorem

m Study the effects of backreaction in the bounds of QEI and
determine if a singularity theorem can be developed with that
hypothesis
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