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Abstract: <p><span style="font-size:11.0pt;font-family:& quot;Calibri& quot;,sans-serif;
mso-ascii-theme-font:minor-latin;mso-fareast-font-family:Calibri;mso-fareast-theme-font:

mi nor-1atin;mso-hansi-theme-font: minor-latin;mso-bidi-font-family:& quot; Times New Roman& quot;;

mso-bi di-theme-font:minor-bidi;mso-ansi-language:EN-CA ;mso-fareast-language:

EN-US;mso-bidi-language:AR-SA">Adiabatic quantum computation (AQC) is a method for performing universal quantum computation in the
ground state of a slowly evolving local Hamiltonian, and in an ideal setting AQC is known to capture all of the computational power of the<span
style="mso-spacerun:yes'>& nbsp; </span>quantum circuit model.<span style="mso-spacerun:yes'>& nbsp; </span>However, despite having an
inherent robustness to noise as a result of the adiabatic theorem and the spectral gap of the Hamiltonian, it has been a longstanding theoretical
challenge to show that fault-tolerant AQC can in principle be performed below some fixed noise threshold.<span style="mso-spacerun:yes">& nbsp;
</span>There are many aspects to this challenge, including the difficulty of adapting known ideas from circuit model fault-tolerance as well as the
need to develop an error model that is appropriately tailored for open system AQC.<span style="mso-spacerun:yes'>& nbsp; </span>In this talk |
will introduce a scheme for combining Feynman-Kitaev history state Hamiltonians with topological quantum error correction, in order to show that
universal quantum computation can be encoded not only in the ground state but also in the finite temperature Gibbs state of a local
Hamiltonian.<span style="mso-spacerun:yes'>& nbsp; </span>Using only local interactions with bounded strength and a polynomial overhead in
the number of qubits, the scheme is intended to serve as a proof of principle that universal AQC can be performed at non-zero temperature, and also
to further our understanding of the complexity of highly entangled quantum systemsin thermal equilibrium.</span></p>

Pirsa: 18010085 Page 1/20



Universal Quantum Computation in
Thermal Equilibrium

Elizabeth Crosson

California Institute of Ted%nology

Joint work with Tomas Jochym-QO'Connor and John Preskill

Caltech ‘k\)./\/‘

Pirsa: 18010085 Page 2/20



Pirsa: 18010085

Physics and Computational Complexity

Hamiltonian complexity: finding quantum ground states is as hard
as guessing an accepting input of a quantum circuit.

Key idea is to view local Hamiltonian terms as constraints that
verify the correct operation of a circuit.

Can the intricate complexity of many-body ground states survive at
non-zero temperatures?

Adiabatic preparation of ground states is a universal model of
quantum computation, at least in the ideal noiseless case.

Connecting universal QC to finite-temperature Gibbs states is a path
to understanding the complexity of thermal physics and to making
adiabatic computation fault-tolerant.
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Outline

» Introduction and background
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Classical ground state computing

Classical self-correcting memories

Classical computing in thermal equilibrium

Quantum ground state computing

Universal adiabatic computation

Local clocks: spacetime circuit Hamiltonians
Topological quantum error correction

Error supression in adiabatic computingI(previous work)

» Quantum computation in thermal equilibrium
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Local circuit Hamiltonians = transversal operations
Transversal operations = local clocks

Coherent classical post-processing

Self-correction in spacetime: dressing stabilizers
Analysis: symmetry and the global rotation

The 4D Fault-tolerant quantum computing laboratory
Summary and Outlook
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Classical ground state computing

» The theory of NP-completeness grew from the connection between
Boolean circuits and constraint satisfaction problems.

» The correct input / output combinations of classical gates
correspond to satisfying assignments of Boolean formulas.

X, I X
I
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» Constrain the output of all the gates, ask if there is satisfying input?
Existential quantifier: (Ix)¢(x) , nondeterministic Turing machine.
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Classical self-correcting memories
Ferromagnets and repetition codes: the Ising model

1D Ising model: thermal fluctuations can flip a droplet of spins,
energy cost is independent of the size of the droplet

lololo o3 FATH oo o]

2D Ising model: energy cost of droplet proportional to boundary,

-
i

At temperature T droplets of size L are supressed by e
Ferromagnetic order at T < T., magnetization close to =£n.

—L/T_

Robust storage of classical information: lifetime scales exponentially
in the size of the block. Hard disk drives work at room temperature!
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Classical computation in thermal equilibrium

Encode each bit of the full input/output history of a Boolean circuit
into a 2D Ising model.

Transversal interactions: the physical spins in each logical bit couple
to the corresponding spins in the neighboring logical bits.

Full Hamiltonian: Heireuit + Heode CONsists of transversal interactions
and ferromagnetic Ising terms.

Far below T < T, each logical spin will have magnetization near
+m, = low-temperature Gibbs state encodes the computation.

Related but easier-to-analyze construction in “Making ground state
classical computing fault-tolerant” (Crosson, Bacon, Brown, 2010).
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Quantum ground state computing

» Encoding time steps into distinct qubits doesn’t work: highly
entangled states can be distinguished by local operators.

» Kitaev solved this problem by repurposing an idea from Feynman to
entangle the time steps of the computation with a “clock register”:

1
"(/ﬁr) = UTU1‘0n> — ‘whisi.> :I—Z |t>‘r(/)t>

» These “history states” can be checked by a local Hamiltonian:

Heire = |0)(0] ® (Z |1><1\f-) +5" Hprop(t) , |t) = 11...100...0)
N ¥ t=0

-

t times
input at t =0

Horon () = (r)(r\ D1+t —1)(t—1 @) —|t)t—1|® Uy — |t — 1)(t| @ UJ)

N =
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Analyzing circuit Hamiltonians

» Analysis: propagation Hamiltonian is unitarily equivalent to a
particle hopping on a line! Define a unitary W,

-
W=>"[t)(t| @ Us...Uy
t=0
» W transforms H,,,, into a sum of hopping terms,

—~

W1 Hprop W = Z%(W(f\ + [t =1t =1 = |)(t = 1] = |t = 1)(t])

t=0

K > 7 M
/\/\/\m./\/\mr\
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» Diffusive random walk: mixing time ~ T2, spectral gap ~ T 2.
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Universal adiabatic computation

» Begin in an easily prepared ground state and slowly change H while
remaining in the ground state by the adiabatic principle,

H(S) - (1 - S)Hinil, + s Hiinn.l , 0<s<1

-1

min'

» Run-time estimate: ~ ||H||/A where A = ming gap(H(s)).
» Universal AQC: Henal = Hinig + Hpmp

» Monotonicity argument shows that the minimum spectral gap occurs
at s =1, so A ~ T2 and overall run time is polynomial in n, T.

» Perturbative gadgets enable universal AQC with 2-local H,

H=> hZi+Y AXi+Y JZZi+> KiXiX;
i i iJ iJ
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History states with local clocks

» Instead of propagating every qubit according to a global clock,
assign local clock registers to the individual qubits,

7) = [ttn) 5 [Whise) = D [T (T))

» Proposed to make history state Hamiltonians more realistic (Mizel,
Lidar, Mitchell 2007), culminating in 2D universal AQC with 2 body
interactions (Lloyd and Terhal, 2015).

Instead of a hopping particle, the
Hamiltonian is unitarily equivalent to
the diffusion of a string or membrane.
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Topological quantum error correction

» Quantum codes require local indistinguishability = topological
order (toric code) instead of symmetry-breaking order (Ising model).

Heode = — E Hs , S = { stabilizer generators }

seS

» 2D toric code analogous to 1D Ising model: thermal fluctuations
create pairs of anyons connected by a string. No additional cost to
growing the string == constant energy cost for a logical error.

*—9

» 4D toric code: logical operators are 2D membranes, energy cost
scales like the 1D boundary so errors supressed by e~ t/T

» Open question: can finite temperature topological order exist in 3D?
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Error supression in adiabatic computation (previous work)

Simply replace X, Z with logical X, Z for some quantum error
correcting code? 4-local operators to supress 1-local noise (JFS' 05)

JFS scheme is not scalable. Logical operators for codes with
macroscopic distance are incompatible with local Hamiltonian terms.

How about turning a fault-tolerant quantum circuit Uy, ..., Ut into a
circuit Hamiltonian? Could help with control errors (Lloyd ‘08)

3 > o P
o3 8 o 8 -5 o o o o o o & o o B o o 8 o

L] - - ™ &> [ ]

Lloyd also pointed out that the unitary equivalence to a hopping
particle means that excited states still encode the valid circuit
history. But this breaks down at E = 1 when input term is violated.
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History states with topological quantum codes

Each logical qubit @1, ..., @, in the history state is made of physical
qubits gj 1, ..., gi,m. Each physical qubit g;; has its own clock ¢t; ;.

Just as in the classical case, both the computation and the code
stabilizers are enforced by local Hamiltonian terms.

=5 Hpn() + 5 Ho7)

H,.op needs to consist of local gates, and H,q. needs to
accomodate the propagation of the circuit without frustration.

We consider codes with universal sets of local operations e.g.
transversal gates + gate teleportation.

Gate teleportation uses logical measurement and classical
post-processing, which will all be part of the history state.
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Transversal unitaries in a local Hamiltonian

» Transversal operations are used in fault-tolerance to locally perform
logical operations on codes with a large distance:

U[Ql()j_’,’i(f;’l.l] - ® U[qpll_ysi(';l.l]
q

» Logical operations U[Q;, Q;] can be transversally implemented by
local Hamiltonian terms by using local clocks,

H|)]'()])[tQ;~,tQJ.'1 Q.r'a QJ‘] — Z Hprnp[t B tqj-a qi, qj]
G EQi,qEQ,

» Challenge: advancing all physical clocks in a logical qubit at once
would not be local. Advancing them one at a time would violate
terms in H.4e. Dressed stabilizers are the solution!

Pirsa: 18010085 Page 15/20



Dressing stabilizers to avoid frustration

» We need to tell the stabilizers “what time it is” so that they can
accomodate diffusive propagation without frustration,

[tsyy ooy ts, ) (tsysooes s, | @ Hs(ts,, oo ts,, )

» Stabilizers that act on “staggered” time configurations in which not
all clocks are equal are rotated by local unitaries to advance the
qubits that are lagging behind (or getting ahead),

[t} (ts] @ Hs(t) = | Q1) (tele | Q) | [T U elaid | He | T Us.elan]

kEs

» Dressing for two qubit gates intertwines stabilizers from distinct
logical qubits, but terms remain k-local.

» |t suffices to limit staggering to a constant window, adding rigidity
to the membrane on the scale of the stabilizers.
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Universal sets of local operations

6D color code is self-correcting and admits transversal
{T,CNOT, X, Z}. Teleported Hadamard completes the set.

To teleport H it suffices to (1) prepare logical X,Z , (2) measure
X, Z, (3) apply X, Z conditioned on measurement outcomes.

Replace projective measurement [y + [1; = / of the physical qubits
with coherent unitaries onto the classical ancillas:

[9210) — To[1)[0) + M1 |4)|1)

Each physical qubit is measured by a “classical wire". The classical
wire is a logical ancilla encoded in the repetition code.

Classical post-processing is global takes poly time. The rest of the
computation “waits around” for this to be done.
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Analysis of the Gibbs state

The entire Hamiltonian is unitarily equivalent to a diffusing
membrane and a static code Hamiltonian, the dressing disappears:

W = Z U(O -7 T)|T><T‘ ; W'HW . Hm('lnl)l'n.nvwl+IOOH('.()(l(-.

Tvalid
Thermal stability from the static code Hamiltonian at T < T..

Analyzing Hyembrane 1S challenging, but circular symmetry makes all
valid time configurations equally likely in every eigenstate.

Transversal input term acts on classical logical ancillas, and the
topological code is initialized by coherent measurements.

Diagonal elements of the thermal density matrix of H in the time
register basis have the form

[T)(T| @ W(T)peoae W' (T)

Misspecification errors in local H terms: ||Wictual — Wideal|| is small
because W is a fault-tolerant circuit.
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The 4D spacetime view of active error correction

Consider the history state of a fault-tolerant quantum computer e.g.
surface code qubits connected to a classical PC.

Instead of a code Hamiltonian, such a scheme depends on actively
measuring and correcting stabilizers.

There is no energetic protection of the qubits, but there is energetic
protection from the materials in the classical PC.

Active error correction is possible because we dump entropy from
quantum computers into classical self-correcting memories.

4D self-correcting memory from the history state of 3D FT-QC.
Quest for planar FT-QC architectures relates to self-correction in 3D!
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Summary and Outlook

Universal quantum computation in a finite temperature Gibbs state
of a k-local Hamiltonian (k < 1000) with polynomial overhead.

Can we efficiently prepare these Gibbs states? Lower bound the gap
of Hyembrane! Open system dynamics?

Is it QMA-complete to decide the thermal energy?

Heireuit + Heode 1S like “kinetic + potential”, the missing ingredient
(“potential”) was the spacetime view of interactions.

Is time an illusion? Everything we know is consistent with living in a
history state universe. Wheeler-DeWitt equation, H|¢) = 07

Thank you for your attention!
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