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Abstract: <p>In thistalk | will present new insights on a microscopic holographic theory for de Sitter space. | will focus on the static patch of dS,
which describes our universe to a good approximation at late times. We use a conformal map between dS and the BTZ black hole times a sphere to
relate the general microscopic properties of dS to those of symmetric product CFTs. In 2d CFT language, de Sitter space corresponds to a thermal
bath of long string. The long string phenomenon exhibited by these CFTs implies that the excitation energy decreases at large distances in dS
(contrary to the UV/IR relation in AAS/CFT). It also explains the smallness of the vacuum energy of dS. Similar results apply to Minkowski space
and AdS below its curvature radius.</p>
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Motivation (1)

* Atearly and late times our universe is well described by dS space.
Past: Inflationary patch of de Sitter.

» Future: Static patch of de Sitter.
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» Cosmological horizon at: R = L.

* Entropy and temperature associated to horizon
h A(L)

L 5= 4G h

Gibbons & Hawking

T —

2

=

* Q: What is the microscopic interpretation of the entropy?
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Motivation (2)

* Cosmological constant in de Sitter space is equivalent to
iIntroducing a vacuum energy

B A h 1
8t (f'p)‘f‘_z L<

E\';l(‘ = Pvac ‘ Pvac

* Thus the vacuum energy is determined by the IR scale!
In QFT it is only set by the UV scale:

QFT 2
QFT h /)\%u' L 10120
Pvac ™ - > — 10
( )r,’ (-,-_,
(:". Pvac P

 Q: Why is the observed dark energy so small?
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Motivation (3)

Baryonic TUHy—FiSher relation: DISTRIBUTION OF DARK MATTER IN NGO 3198

200 rrrr

1 Tully, Fisher, McGaugh, [ NGC 3108 1

"(.’f- = ap Gf\[“ Schombert, Lelli, Famaey, [ s - ﬁ‘j

' Milgrom, et al ,ﬁ\ ' —

- ~10 2 . 3 " "]

with arr = 107 " m/s* = cHy/6 £ e ]

Cosmological acceleration scale N
appears in galactic physics!

20 1
Radius (kpe)

Dark matter effects start to dominate in galaxies if

. xl(/]’) R
gB 3 anM or IrMiR < o
B~ TG T

Q: Is there a connection between dark energy and “dark matter”?
— We need to understand the nature of dark energy better
In order to understand the flattening of rotation curves.

4

Page 5/32



Pirsa: 18010074

Plan of the talk

|, Thermodynamics of Causal Diamonds in dS

based on - arXiv:1612.04373 with Pablo Bueno, Antony Speranza, Vincent Min
- work with Ted Jacobson (to appear)

Il. Towards a holographic description of dS

based on arXiv:1801.02589 with Erik Verlinde and Sam van Leuven

on
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Thermodynamics of dS

Black hole thermodynamics has taught us a lot about
guantum gravity.

Other causal horizons also have thermodynamic properties:
Rindler horizon, cosmological horizon.

First law of de Sitter spacetime: Gibbons & Hawking

—SH" = TS

9 i ,f__, )
fw/Fumﬁ 7= g AL
S o 4Gh

Q: Can this law be generalized to finite causal diamonds
in de Sitter space?
A: Yes! And it also holds in flat space & AdS.

/
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Causal Diamonds in dS

» Consider a spacelike, ball-shaped region X in the static patch of
de Sitter space.

* A causal diamond is the intersection of the future of P P’
with the past of P’.

» Useful coordinate system for dS:

ds® = sech®(r./L) [~dudv + L*sinh?(r,/L)dQ3_,]

where 7. IS a tortoise coordinate and

v=~_+T7T.
u==t—r,
are light-cone coordinates. R = Ltanh(R./L)
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Conformal isometry

First law of de Sitter space follows from timelike Killing symmetry.

Causal diamonds do not have a true Killing symmetry, but rather
a conformal Killing symmetry

1 .
-C(ga.b = 2()’..(](15 X = dv(:C"

De Sitter space is conformally flat, so its
conformal group is: SO(2,d).

Unique conformal Killing vector ¢ which
generates a flow within the diamond

L
sinh(R, /L)

¢ = [(cosh(R*/L) —cosh(u/L)) 0, + (cosh(R./L) — cosh(v/L)) 0,

9
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First Law of Causal Diamonds

* Diffeomorphism Noether identity:
(holds for any vector field!)

: p
ST 8 _ Sprmo . Sy Y
OH: =9 !/“E Q¢ or oH " 4 (5HQ. = C.'TFG()A

* First law of causal diamonds for (A)dS and flat space:

]

Jacobson & MV

‘conformal Killing energy’

-

\ ' K - ~y r mo__ ~ar __ah
_(5 H(E” — 7\f (()4'1 — L.A I ) II& o /\‘ S 1”[;(/-\._4
8’7T(1 ' 2.

trace of extrinsic curvature of Y.

—- 2
- H‘\/l —(R/L)?
» Zeroth law: surface gravity K is constant on H .
conformally invariant definition of K: V, (C}’Cb) = —2kK(,
Jacobson & Kang De Lorenzo & Perez
Dyer, Honig, Sultana

10
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First Law of Causal Diamonds

Two ways of rewriting the first law
~

Reformulations of the (linearized)
Einstein equations

1. If volume is kept fixed, then matter decreases the area:
K assuming HZ” > ()

_ (
77

—SH" = ——§A

V

2. If area is kept fixed, then matter increases the volume:
Kk
8l

SH" = —6V| ,

11
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Interpretations

Interpretations of the first law of causal diamonds:
4Gh

Bianchi & Myers

Entanglement entropy of the vacuum is maximal. Ryu & Takayanag

1. Assuming area is related to entanglement entropy: 0SSy =

)
4T S }111) . L
( ¢ entanglement equilibrium

l Jacobson

(SSmat + (SSBH =0 with 65,40 =

hr
2T
Free energy of the causal diamond is minimal.

2. Assuming temperature is negative: T = —

Klemm & Vanzo

0F =0 where F = H:—TSpy
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Conclusion (l)

* Causal diamonds in empty de Sitter space are equilibrium states.
OH: = TSk

* Adding matter decreases the gravitational entropy, and hence
puts the microscopic system out of equilibrium.

T +0 >0 +00 ] <0 =0

- ) —e0 0 +00

»

ntropy

E
c

Enmin Energy Emax
Braun, et al.
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Plan of the talk

|. Thermodynamics of Causal Diamonds in dS

ll. Towards a holographic description of dS
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Holography for dS

* Holographic principle: maximal number of degrees of freedom
associated to a holographic surface & is given by oot & sussking

. A(R)
167Gy

* This has been realized in anti-de Sitter space
through the AdS/CFT correspondence. Susskind & Witter

* We assume there exists a microscopic
holographic dual to de Sitter space.

* Q: What is the nature of the microscopic holographic
degrees of freedom of dS?
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Holography for dS

* Holographic principle: maximal number of degrees of freedom
associated to a holographic surface & is given by Hoort & Sussking

. A(R)
- 167Gy

* This has been realized in anti-de Sitter space
through the AdS/CFT correspondence. Susskind & Witen

* We assume there exists a microscopic
holographic dual to de Sitter space.

* Q: What is the nature of the microscopic holographic
degrees of freedom of dS?
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Conformal map

Anninos, Hartnoll, Hofman

« Conformal map between: dS; x S' =~ BTZ x S4?

2 ‘ 2 2 ”{3 2 2 2 45,9
ds? = — (1 — R?/L?) df* { 1(/{2 T A+ L2
o 0 40 , R L
Is? = Q2d3° Q====
(s Q s L -
X Banados, Teitelboim, Zanelli
‘ a 2 2 Ir* 9 2 2 1
ds?® = — ('I")/L'“ - l) dt® + _,'2/([12 3 + redop® + L“(‘lﬂ?i‘ig

» |dea: use conformal mapping to relate general features of the
microscopic theories on holographic screens in both spacetimes,
e.g. the number of d.o.f. C and the excitation energy per d.of. € .
The holographic dual of BTZ is well understood through AdS/CFT.

16
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Conjecture

* Conjecture: The holographic theories for two spacetimes that are
conformally related have identical microscopic properties when
the Weyl factor equals one on the corresponding holographic
screens.

e Example:notethat Q =1 if r= R = L.
BTZ central charge coincides with total number of d.o.f. in dS

12 160G3 167Gy

=C(L)

where we used:
1 A(L) 1 27L
Gz  Ggp Gag  Gasa

17
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Gluing of dS and BTZ

r =1
BTZ
X
Sd-'Z
) deE‘;RU Bo dSgl =
I N 2 I
g st |=
18
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Rescaled BTZ metric

* Master formula for family of Weyl rescaled BTZ metrics:

9 ) A 2 —1
9 R~ r- A — f"/ [2 o - A — t"/l'_) a " Py 5 o
ds* = —|—| — — ———— | dt* + = — —————— | dr® +r°d¢® + L°dSY;_,
L (L-’ /12 ) ' (I /12 ) . T2
A=0 anti-de Sitter space ,
A = f— ; Minkowski space | R _ L
(l'; I .
A= 5 : de Sitter space.
)

* Rescaling of the metric changes the curvature radius. Take R = Ry.
The central charge now depends on the radius 7

("(1?(]) 2'7['11).() :1([1)()) [1).()
12 167G3 167Gy L

19
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Reversal of UV/IR relation

* What do we learn from the conformal map?

- Typical energy required to excite UV d.o.f. € =1/
2

L
In AdS/CFT: UV-IR correspondence o = — €= 72
, 2

» After the conformal map UV cut-off energy becomes
| ' r R
€~ — et
R S L L
* Thus, UV-IR relation is reversed for dS! (and for sub-AdS)
Large distances (=IR) in the bulk correspond to low energies (=IR)
in the microscopic theory. The holographic principle then implies
that the number of d.o.f. increases from UV to the IR.

20
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Long string interpretation

« Reduce the size of the transverse S': Kaluza-Klein circle.
This introduces a conical defect in the BTZ geometry.

O =+ 2 / N N =L / V> 1
« BTZ x S% 2 metric
Is2 = — (r?/L% — 1) di® + I 2007 4 1202
s = — (r — 't redo” “aldly
( ! ( 202 — 1 rdg 3eq—2

~0)
dr=

L P2de? 402402,
Sy R T

= N? | = (#2/62 = 1/N?) dt* +

* This BTZ geometry is dual to the twisted sector of a r=r/N*
symmetric product 2d CFT \ »=No¢
\ ’ Y . Cy )
C FTJ\ /,SN /—\é’ — E (l - l/"!\f’)
21
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Long string interpretation

* Long string length: L
Short string length: ¢ S

1. fractionated spectrum: AV L N (A,. — i)

12 12
: 1
2. reduction of central charge: CL = N

» Cardy formula is invariant under the long string transformation

S =4r (— (A— (—)
12 12

* Thermal entropy is dominated by the long string sector.

Maldacena & Susskind
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string transformation

g string sector.
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Volume law for entropy

* The entropy of the BTZ black hole matches the entropy of dS.
Both are computed by the Cardy formula. Take R = L.

(L) [ (L A(L .
S];T\/(L(‘ ) (A/ (L(‘ )) — (,* ] Since A/ i(”;l(L)/(i
12 12 1Gry

-

* Thus, in 2d CFT language, dS space corresponds
to a thermal gas of long strings at temperature 1/L.

* At afinite radius R the entropy satisfies a volume law Verinde

(R . ? ) > > V [
S — dor cL(R) A, cL(R) : AR) R (Pi’)
12 12 -l(;‘,r L- ‘-'()

— dS entropy is divided over the volume!

23
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Vacuum energy of dS

In dS each long string typically only carries its lowest energy
excitation mode 1/L .

Vacuum (dark) energy of dS can be interpreted as the energy
associated to these excitations

cL(R :
E = (3!. -2 ])) er With  Ap =¢(R)/6

12
(R d—1)(d -2
B =+ ¢ = L D2y )
12 167Gy L=
. . L2 i
Vacuum energy associated to short strings T = 10"
5
: (R [—1)(d—-2)_,,
L—T\l__lt_ : ce(R) =4 (¢ | )(( _ )1__;(1]))
‘ 12 167C -

The long string phenomenon explains why observed E..cis L*/¢*

times lower than £.Y . y
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Conclusion (ll)

De Sitter space is dual to a thermal bath of long strings, and its
entropy is counted by the Cardy formula.

The number of degrees of freedom in the dual system increases
towards the IR, opposite the Wilsonian intuition. This is due to the
long string phenomenon.

The long string phenomenon also explains the smallness of the
value of dark energy (although not the value itself).

The non-equilibrium dynamics of the microscopic d.o.f. of dS
might lead to an additional gravitational force at long distances
and large time scales.

28
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Apparent dark matter formula

* By computing the elastic energy associated to this stress,
Verlinde finds the following formula that relates apparent dark
matter to baryonic matter

_]? ~y 2 s /
(J' M < H ‘
/ DE )d]?’ =ayMp(R)R
Jo R’

* For point masses, i.e. My # Mg(R), this is equivalent to the
Baryonic Tully-Fisher relation

(‘;f = ap GM B
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Effect of matter on dark energy ...

* Positive dark energy leads to a thermal volume law for entropy

A({?) RV (_{?) with v, — 4G L
4(1”! L ‘-"() d—1

J —

L DE

« By adding matter to dS, the volume increases and the energy
density decreases. Total energy and entropy stay the same.
Volume of space which does not contain dark energy: V(L)

2o M [ =

* We conjecture that matter removes the following amount of entropy
from the microscopic system in a finite region of radius Rt

Var(R)

0

Sy = 2rMR =
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Dark matter and dark energy

 Dark matter effect start to dominate if

AR) R . A
) & or Sn S SpE

I MpR < =
B S TG T ~

* Verlinde's proposal: the entropy density turns the dark energy into a
dynamical medium. If the elastic medium is at equilibrium, then it is
stress free, and everything is well described by GR. This is the
case in empty dS.

« |f part of the dark energy is turned into actual matter, a residual
stress is created in the system. The medium is out of equilibrium
and it takes a long (Hubble) time for the system to equilibrate.
This stress leads to modifications of GR, precisely when the dark
energy starts to dominate.

26
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Apparent dark matter formula

* By computing the elastic energy associated to this stress,
Verlinde finds the following formula that relates apparent dark
matter to baryonic matter

RO /
(J" M4 R '

/ DE )dR’ =ayMp(R)R

Jo R'#

* For point masses, i.e. Mg # Mg(R), this is equivalent to the
Baryonic Tully-Fisher relation

(‘}1 — A\ GM B
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