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Abstract: <p>Many researchers have been studying the time evolution of entanglement entropy in the sudden quenches where a characteristic mass
scale suddenly changes. It is well-know that in these quenches, the change of entanglement entropy become thermal entropy which is proportional to
a subsystem size in the late time. However, we do not know which guenches thermalize a subsystem. In our works, we have been studied the time
evolution of quantum entanglement in the global quenches with finite quench rate (smooth quenches). Thus, we found that diabaticity plays an
important role, so that quenches thermalize the subsystem.</p>
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INntroduction:

* EE is a candidate of an entropy in Non-equilibrium physics.

* In AdS/CFT correspondences, in CFT living on
the boundary is expected to be significantly related to
Gravity in the bulk.
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INntroduction:

* EE is a candidate of an entropy in Non-equilibrium physics.

It is important to study the dynamical properties of Entanglement.

The dynamics of entanglement The dynamics of gravity

Thermalization ” Black Hole Physics
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Motivation

Pirsa: 17120022



Our Motivation

m(t
In the sudden global qguenches i)
where Hamiltonian suddenly
change, in the late time, the
change of entanglement entropy
(ASA(t) = Sa(t) — Sa(tinitiar) )is:
> 7
ly, 06] [Hartman-Maldacena, 13] [Liu-Suh, 13]

Calabrese-Card
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Our Motivation

m(t)

In the sudden global guenches
where Hamiltonian suddenly
change, in the late time, the
change of entanglement entropy
(ASA(t) = Sa(t) — Sa(tinitiar) )is:
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Our Motivation

()
Sudden Quenches

Thermalized -
A LS’A ~ Volume of Subsystem
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Our Motivation

rm(t)
Sudden Quenches

Thermalized -
A\ LSYA ~ Volume of Subsystem

-

Is this unigue behavior for sudden quenches?
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Our Motivation

What creates
entangled particles (thermalizition) ?
or

What is important
when a subsystem is thermalized ?
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Our Motivation

What
when a subsystem is thermalized ?
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Protocol
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Our protocol (Smooth Quenches) o camnemyers 1

2d —Time-dependent Hamiltonian

| ) . . - o
H (1) e / dr [117(x) + dp. " () + n.v“(l)(.')"(.r)J
o , 1 L [t
.ECP rnﬂ!)f—t(l—l.nnh()f—/)) .CCP: m=(t) = ?“”'I]H (H)
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> | o t
“ECP: () - & (1—wmn (%)) = CCP: () = g ()
:‘_. ¢ o «
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> 1 2 t
“ECP: () - & (1—wan (%)) < CCP: w) = g ()
:.- C o (
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Results
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Resultl

2, 1 > t
.ECP: ”,'"’[/']_ (,]., (l — tanh (I)) .CCP: ,H*I‘f)_fﬁ'l“l“}l (cil)

ot

-~

At late time,

—~
AbA is proportional to a subsystem size /.
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Resultl
« ECP: « CCP:

ASANCXZ
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Resultl
« ECP: 1

/
— (l—tzulll(.—))
€2 5t

AS&CXZ

is set by 2
. ¢ .
- an initial correlation length in a fast limit «* =%t -m= <1
. . . . ) ot
-an effective correlation length in a slow limit w =46t-m = — > 1.
<

A length scale when adiabaticity breaks down.
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Resultl
« CCP:

m=(t) = L} tanh= (f)
£- ot
ASA ~ Cc X [

Depends on (L in both limits.
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Resultl

1

Assumptions: ~ - -1, a: 1s a lattice spacing.

-ECP: | | 1
ot ot | -

Fast limit: w = &t -m = — < 1 slow limit: w = st -m = = =1 Eir: = = <1

ASa~Cig | | ASA ~ CoFEL. -1
-CCP:

Fast limit: w — &t - m —

, /ot —
< 1 slow limit: w = 6t -m = — > 1 ,& Vs VESE =

}

z
AS s ~ Cy(w)=
<
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I Assump
-ECP:

. ) ot s 1 «
Fast limit: w = 6t -m = — slow limit :w — ot \g T :
AS A AS [
TR s ~/ - .
| é‘ A k=z
- CCP: (’l Yt (}{
Fast limit: « = 6t -m = — < | slow limit: w = ot-m = "2 > 1 &= = \[ 0 = V&St = |
& ~

z
AS s ~ Cy(w)=
<
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Cg (CU)
In fast limit, keeping £ constant and, () decreases

Cg (Cd) decreases.

In slow |limit, keeping& constantand, ({J increases

> C's (w) decreases.
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In fast limit, keeping £ constant and, () decreases

Consistent with a number operator in late time

N 1ast IIMIt, keeping & constant and, (L Increases

> ('3 (w) decreases.
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Interpretation in slow ECP

* How is the subsystem thermalized?
( Entangled particles are created?)
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Interpretation in slow ECP

Entangled particles are created
when the adiabaticity breaks down!

(Subsystems are thermalized!)
Entangled particles are
i (the) = :;ul,.. ) created at t=7,.. and carry
d>/" quantum entanglement.
. /
Adiabatic *= Diabatic ) Thermalized around 1 = 4. + 5
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Interpretation In fast ECP and CCP

* Time Evolution of ASA (t)

Propagation of Entangled particles created @t=0.
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Result?2

Entanglement Oscillation

AS 4 ASa

2y
=

(£.6t) = (5, 100) £re — 100 t/E-

A
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Result2

Entanglement Oscillation

/ Y
AS 4 AS A
-
.'} /“‘ - - -
AL L, TN 4 —0
‘ / VL, i HERORD sy
V‘ ! T
£% -
z N
¢ . . .
g r

(£.6t) = (5.100) ) €. — 100 /&
The period of oscillation @ late time. )

The periodicity of zero mode ~ &

Pirsa: 17120022 Page 31/111



Result3

Time evolution is characterized by

AS 4 N

I o+

(&, 0t) — (5, 100)
A 25#?:
After t = 2&, 28, AS 4 oscillates.

Page 32/111
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Smooth Quenches

* These quenches are more realistic.

* Hamiltonian is not changed suddenly but is changed smoothly.

* We can excite the state slowly or fast.

* This is a kind of generalization of sudden quenches.
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Our protocol (Smooth Quenches) e caenemyers 14

2d —Time-dependent Hamiltonian

| ) o, . . 5
H (1) S / dr |117(r) + d. 0" () + .fn“(/)(.')"(.r)J
o " 1 o [t
“=ECP: w2 = & (1-wnn (£)) = CCP: mi() = g wam? ()
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Our protocol (Smooth Quenches)

rers, 14]

ua tl'lT-—'—‘k“,
3 l ) f
’ECP: Hl:[f)— i, (l —l;lllll(L)) .CCP: m=(t) = P tanh” (5’.>
£< ot S &
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We have . States are excited
two tunable parameters. slowly and rapidly.
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Our setup

* Theory 2d Free scalar with time dependent mass m(t).
* Put it on the lattice but take the thermodynamic limit.

> i t\ "
Mass profile: m~(t) = m~ tanh (51‘) m=(t)
¢

At t =0, the theory is
at critical point.
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Our setup

* Theory 2d Free scalar with time dependent mass m(t).

* Put it on the lattice but take the thermodynamic limit.

i . t\° 2
Mass profile: m~(t) — m~ tanh ()1‘) e (f)
¢

Initial state: The Ground state o

for massive free scalar with mass 11!
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Slow Quenches

Mass profile: m”(t) = .~ tanh (5{)

Very Early time:
Observables can

be computed adiabatically .

m=(t)
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Slow Quenches

Mass profile: 1m.°(t) = m” tanh ()‘f)

Very Early time:
Observables can
be computed adiabatically .

Around critical point:

Observables can not
be computed adiabatically .
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Slow Quenches

Mass profile: m°(t) = m” tanh (51‘)

Very Early time:
Observables can

be computed adiabatically .

Around critical point:

We assume thatat ¢+ —= —7,. ,
adiabaticity breaks down.

(Around { = {;.. , time process becomes adiabatic again.))

Pirsa: 17120022
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Adiabatic Expansion - |
(Pipj) = Xij

Xy = XO + XP 4 »
l(n) (1) <C’),~<p,~> — Pi;‘

=5 + ;" + - 1

D;; = D;;’ + D;;) + - - - 2 <{ Dis P _}> = Dy

Higher orders has higher derivative with respect to t.
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Adiabatic Expansion

0 | (D Q),> = X,
X,]—X() )(,(1)4_-..
(0) (1) <C) (D > 1){1
H_,‘ — PI-_}- —+ H} ..
D;; = D’ + D;;” + - - - 2 <{<?f5-;.. G‘f5.f}> = D;;

Higher orders has higher derivative with respect to t.

1 dm(t)

Landau Criteria 5 < 1 » Adiabaticity holds
m=(t) clt
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If t;

is so small, the most of whole time evolution is adiabatic.

e < 2(1)
More precisely, —; < | m
P
1
I
'
'
m= .
1
! 20t
| <
A
2t
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If t,. issosmall, the most of whole time evolution is adiabatic.

25 2

More precisely, (;',[ < 1 m=(t)
4 |
1
|
|
) I
2 I

w:m(5t>>1| S 20t

v : - I I

A—-

2ty
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If t,. issosmall, the most of whole time evolution is adiabatic.

More precisely, —5; <] m=(1)

4 |
'
|
|
|

2 1

l w — mot > 1 S 26t

| <

v 1

Pirsa: 17120022

Page 47/111



More precisely,

If t,. issosmall, the most of whole time evolution is adiabatic.

In slow quenches, Kibble-Zurek time is
small.

ti- = m(—ty.)

Pirsa: 17120022

m=(t)




o o t
.ECP :!”2{,) (_l_).(]_“”lh(%)) .CCP: m=(t) (_—)l;-lllll‘.(m)

A '\

*ECP :

tr.. = ot log w
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Method
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Discretize

* We put our theory on the lattice so that we compute AS 4 by
the correlator method.

Correlator method

» This is a method to compute A.S 4 by using the correlation functions.

Conditions: 1. State is a Gaussian state.

2. Local observables can be computed by Wick theorem.
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Correlator Method

- If an initial state |WV) is given by a gaussian state:
For example, |\IJ> (ap, W) = 0)
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Correlator Method

- If an initial state |WV) is given by a gaussian state:
For example, |\IJ> (ap W) = 0)

We assume that a reduced density matrix is given by

— E : . T
pA - tr,‘Bp ~ € /Afz)]\gl)}.t
I ap — b + 3 "'bT—k I

If @;, @, are included in A,

(Pitj) = tr (ppit;) = tra (padip;) = (Pidj) 4

Page 53/111
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Correlator Method

(Pipj) = tr (ppid;) = tra (padid;) = {(Pidj) 4
t

Determined by f(ve)
E.O.M and so on.
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Correlator Method

(Pipj) = tr (ppid;) = tra (padip;) = {(Pidj) 4
?

Determined by ,/'(“/A:)
E.O.M and so on.

Two point

functions — Tk
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Correlator Method

(Pipj) = tr (ppid;) = tra (padid;) = {(Pidj) 4
t

Determined by f(ve)
E.O.M and so on.

Two point

> ) . Z Yk b-i-_ bk'
functions €% Yk |mPplo. e :
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Correlator Method

(Pipj) = tr (ppid;) = tra (padip;) = (Pidj) 4
f-,::::z,goo:’r;t “ 7;{; »I LA ~o (3_ Z Yk bif [)L‘ |
b

\ SA is determined by two point functions. |
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Correlator method

EntangLement Entropy:

-gx Z -““,1("71.)

h=—1

I | I |
sa(vk) = (E + “.-A-) log; (z + “-A-) — (_E + "::,-) log; (_E + “-A-)
r— (X 5D\ 5 “, 1

%[‘)‘}_{_ P; —1 0

Xij (Didj) P,’_;’ — <3Tf7_;> /-)i,j — <{" 7'“)}>
. A — ;.J1 has eigenvalues =7« .
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Correlator method
Entanglfement Entropy: I The subsystem size =/ \

Sh E sa(yr) 2l x2] matrix
k=1

Xij = (PiPj) P; = (mim;) Dij = {di,7;})

. A =— ;. J1 has eigenvalues =7« .
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Correlator method
Entanglement Entropy: I The subsystem size =/ I
Sa Z sa(v) 21l x21 matrix

By evaluating )/, we can compute S .

. AN — ;.J1 has eigenvalues =7 .
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EE Iin ECP
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Plot of EE in Fast ECP

AS 4 AS 4 AS 4

——smatEme LT =T esaeeeee
——amem o

- e msemmeseme e
et S E————— mnese e pasman e
I P

-

A“',:—--’-: --------------- SmAseammabee ’ ﬁ--“‘" - [ é" semsumiie l
a) ¢ 100. dt — 5 b) £ = 200. dt =5 c) & = 200, dt 1o
, , Pink Curve: |= 500,

Blue Curve: |I=100, Purple Curve: |I=10, Red Curve: I=5
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’ , Pink Curve: |= 500,
Blue Curve: |1=100, Purple Curve: |[=10, Red Curve: |=5

AS 4 AS 4 AS 4

sesmssasems pp——— L 24
. JENRNSPRR S macmeesm Tt
S - S —essnaee e

e P g

a) ¢ 100. dt 5 b) & 2000).
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’ , Pink Curve: |= 500,
Blue Curve: |1=100, Purple Curve: |I=10, Red Curve: |=5

AS 4 .ALS\ .ALS\

Slowly increase
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Entangled Particle Interpretation

* As in sudden quenches, around
t=0, entangled quasi-particle are
created everywhere.

—

- S
..........
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* Entangled pair is constructed two particles.

They propagate in the opposite directions with U :

— > —

If one of them is included in A and the other is out of A,

Entangled pair can contribute to entanglement entropy.

S—— 7 —  —T

- - —— — —

A \ v A A

Not Contribute Contribute
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Atl/2 >t >1/m, the distance between entangled particles is given 2vt:

€ e
2vt

I )
Y
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Atl/2 >t >1/m, the distance between entangled particles is given 2vt:

- P
- >

2vt

The particle created at the boundary att=0isat «* = vt or *t = —[ — vt .
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Atl/2 >t >1/m, the distance between entangled particles is given 2vt:

2vt

The entangled pairs in the blue region can contribute to 5, .

= —] 0
# of entangled pair ~~ t
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Atl/2 >t >1/m, the distance between entangled particles is given 2vt:

- P
4 >

2vt

The entangled pairs in the blue region can contribute to 5, .

vt vt

—p -+

—

I
# of entangled pair ~~ t » 1| S linearly grows with t
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At t=1/2v, the distance between entangled particles is the subsystem
size.

2ut =1 2t =1

[
y

4

1

()
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Entangled Particle Interpretation

* As in sudden quenches, around
t=0, entangled particle are

created everywhere. ASsHmption AS,

* Their speed is given by the
group velocity around t=0
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Entangled Particle Interpretation

* As in sudden quenches, around
t=0, entangled particle are

created everywhere. ASsHImpSion AS,
* Their speed is given by the
group velocity around t=0 o
(/.‘.d;..(f) / _ P e /
Uk = ——5——  wi(t) = /4sin” () -2 (t)
dk ’ \ 2 . '@
"U_”’ ax | ~ I - Around t =1/2, the time evolution of
. AS 4 changes.
Jordan-Mark-Mark-Mark, 16] [Andrea-Erik-Pasquale, 16] O
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Entangled Particle Interpretation

* As in sudden quenches, around
t=0, entangled particle are

created everywhere. Assumpiion AS,
* Their speed is given by the
group velocity around t=0
oo L ( 4 ) ‘ _ ;__-«;;;;:::::::::.';::::::..:.::;:. ’

(.‘A. —

/ o [ A :
— wi(t) = ¢/ 4sin? ( - ) o2 (t)
dk ™ \ ? -

Slow mode ( —~ zero mode and large k mode)

Lattice effect —

- Slowly increases in the late time

Jordan-Mark-Mark-Mark, 16] [Andrea-Erik-Pasquale, 16]
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EE in slow ECP
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Plot of EE in Slow ECP

’ ’

Brown Curve: |[= 800,

, Pink Curve: |I=500, Blue Curve: |I=100, Purple Curve: |=10

(£.0t) = (1.100)
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Plot of EE in Slow ECP

’

, Brown Curve: |= 800,

, Pink Curve: =500, Blue Curve: |I=100, Purple Curve: |=10

[ X [ |
f;:+§ :()fl();,_;u;+§ >t > Ern _...—-—-"""""——f‘_
z S
’ —/—;"/M
AS 4, does not depend on /. T

(£.6t) = (1.100)
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Plot of EE in Slow ECP

’ ’

, Pink Curve: |1=500, Blue Curve: |1=100, Purple Curve: |I=10

Adiabaticity breaks down.

£ (£.5t) = (1.100)
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Entangled Particle Interpretation

[ : [ | . 1
- + 5 ot logw + 5 > > >N AS , ~ q Ey.. -t
J’ -
[ , 1
> 1. + > AS 4 ~ (E;.._: -1
<, )
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Proportionality Coefficient

The proportionality coefficient of / or tis set by

an initial correlation length E in the fast limit,

a scale when adiabaticity breaks down, EA:/, )
in the slow limit.
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EE in fast CCP
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Plot of EE in fast CCP

, , Pink Curve: |= 500,
Blue Curve: =100, Purple Curve: |I=10, Red Curve: |I=5
AS 4

M| o
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Plot of EE in fast CCP

, , Pink Curve: |= 500,
Blue Curve: =100, Purple Curve: |I=10, Red Curve: |I=5
AS A
Ift > 1/2, :

ASy, ~ —w?log (w) x

f‘."‘,| ~

(£,6t) = (5,100)
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Plot of EE in fast CCP
, , Pink Curve: |= 500,
Blue Curve: |=100, Purple Curve: |I=10, Red Curve: |I=5
AS 4
ft > 1/2,
l
ASa~ :
i
f

(£, 6t) = (5, 100)

If () decreases ( 5 is fixed), ;
—w?log (w) decreases.

Page 85/111
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Plot of EE in fast CCP

Orange Curve: 1=2000, , Pink Curve: |= 500,
Blue Curve: =100, Purple Curve: =10, Red Curve: I=5

ASa
» AS is oscillating :

W AVA
n :ﬂ\j"\v"\lf\i.\“ W -
AN

:
A
-

CAF

G
c.10
9

t
;
[
!:.
S
°+ N2 aannn
FAGERAUAVAVAVAVAVAVAVL
L

AN
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Plot of EE in fast CCP

; , Pink Curve: |= 500,
Blue Curve: =100, Purple Curve: |I=10, Red Curve: |I=5
AS 4
« AS 4 is oscillating ‘
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Plot of EE in fast CCP

, , Pink Curve: |= 500,
Blue Curve: =100, Purple Curve: |I=10, Red Curve: |I=5
AS 4
« AS 4 is oscillating -

0.15 -

0.10 ¢

- Frequency is determined by g

final mass.

perrodicity ~ w& | (&,0t) = (5,100) |
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Plot of EE in fast CCP

, , Pink Curve: |= 500,
Blue Curve: |=100, Purple Curve: |I=10, Red Curve: |I=5
AS A

is oscillating
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Oscillation

* In the late time, the mass profile slowly changes.

‘ Slowly Changes

* Physical quantities can be computed %
adiabatically.
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Oscillation

* In the late time, the mass profile slowly changes.

‘ Slowly Changes

* Physical quantities can be computed %
adiabatically.

((-)I\T — a!\wl\ Wi \._'.Ilhill-: (i) } INi_;

-As in ECP, in the late time, slow mode
(zero mode) contribute to AS 4.

—rwp t —2m  t

zero mode: €
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Minimum Value

e Minimum value of AS 4 isat t = 2&.
AS 4

(€,6t) = (5,100)
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Minimum Value

e Minimum value of AS 4

- Around ] — 5 , . _ li
AS 4 is minimized. T T T A
—CDO{‘:E—
- Around [ = 4&, :
A*S_'\ IS constant. -0.010 |
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Minimum Value

- . The plot for I-dependence of AS yat [ — 2&
« Around [ = 4&, AS 4is constant. & S
Initially, the blue region of e 1 Il = 4¢€
the subsystem A is entangled with [ 0 20 300 s00 600
the complemental region. ooosk
—C.QTO’

Page 94/111
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Minimum Value

« Around [ = 4&, AS 4is constant.

Entangled particle picture

Attt = 2&, the blue region of

Pirsa: 17120022

the subsystem A is entangled with
the complemental region. I

-

In

The plot for I-dependence of AS yat [ — 2

l’ [ = 4¢€

100 200 300 0 500 600
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Minimum Value

« Around [ = 4&, AS 4is constant. the plotforkdependenceaf S 4 ax &= 20
Entangled particle picture 1

Attt = 2&, the blue region of e I = 4€

the subsystem A is entangled with [ e 200 T 00 |¢ s Te00 !

the complemental region.

Akgfl et
l\' 1(_)(9) ({()‘ f'(’(‘f(-(‘(’.) _ l\’ ]0((2) (5)

ey g

1& / 4£ ' related with a distance between entangled pair.
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Minimum Value

« Around [ = 4&, AS 4is constant. Theplotiockdependenceaf SO q ot & = <G
Entangled particle picture 1

Attt = 2&, the blue region of e I = 4¢€

the subsystem A is entangled with [T 200 T 00 |¢ I

the complemental region.

Akgfl i
K IOg (fcg)" f’(’('iic'(_t) — K ]()g (6)
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EE in slow CCP
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Plot of EE in Slow CCP

; , Black Curve: |= 1000,
Blue Curve: |=500,Purple Curve: I=100, Red Curve: [=10
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Plot of EE in Slow CCP

, , Black Curve: |= 1000,
Blue Curve: |=500,Purple Curve: I=100, Red Curve: |=10

AS 4

After t — 2&,..,

AS 4 starts to oscillate.
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Plot of EE in Slow CCP

, Orange Curve: 1=2500, Black Curve: |= 1000,
Blue Curve: |=500,Purple Curve: |=100, Red Curve: I=10
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Periodicity of AS , at late time QPP &

~ Periodicity of zero mode =2 775 / ;."""3‘::.\-_ <
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Plot of EE in Slow CCP

, , Black Curve: |= 1000,
Blue Curve: |=500,Purple Curve: I=100, Red Curve: |=10

Periodicity of AS 4, at late time : :_t eTm——

~ Periodicity of zero mode ~ WE
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Red: (w, &r-) = (100, 100)

ASA(t = 282) (w. Ex2) = (100, 200)
1> 6&- (w.Er) = (400, 200)

ASA is a constant (>0).
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Red: (w, &r-) = (100, 100)

ASA(t = 28k (. £42) = (100, 200)
1> 6&- (w. Erz) = (400, 200)

ASA is a constant (>0).

Entangled particle interpretation (
Adiabaticity breaks down.
@ t ~ _f‘!.':’
Entangled particles are created.
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Red: (w,&r-) = (100, 100)

ASA(t = 282) (w, =) = (100, 200)
-l > 6&;. (w. &) = (400, 200)

ASA is a constant (>0).

Entangled particle interpretation
Adiabaticity breaks down.
@ t ~ —1-
Entangled particles are created.

Aq_\r\) |£(//((fu( >£|
K 1()5—)(&( !((f!(() K 10?,(5)
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Late time in CCP (e 4y — (10, 1000000)
As| ot Ca(w)

C3 (UJ) ]

S
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AS 4 s fitted by AS 4 ~




Late time Iin CCP (f t) = (10, 1000000)
as, ZL C« (w)

If ({J increases ( E is fixed),
C’'3(w) decreases.

.
ASA Is fitted by AS A, N@Z - B

S
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Volume law in Fast and slow Iimits

) ‘ [
- |n the fast limit, Fitting function: AS4 ~ —w” log (w) x —
.. L ) ~ (. &
-In the slow limit, Fitting function: AS 4 ~ M/ B
; ps
N is the number operator/ Volume at late time. (5 — l()() N S

If () decreases ( g is fixed),

w”log (w) decreases.

N

If () increases ( & is fixed),

'y (u.,) decreases.
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Volume law in Fast and slow Iimits

_— e . . o [
* In the fast limit, Fitting function: AS4 ~ —w” log (w) x <
.. s . o (o <
*In the slow limit, Fitting function: ASa ~ ¢ "(W), Ny
; N
N is the number operator/ Volume at late time. & — l()() 5

If () decreases ( £ is fixed),
The behavior of entanglement entropy at late time
is consistent with the behavior of number operator at late time.

iV

If () increases ( & is fixed),

'y (u../) decreases.
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Summary

* We study what makes entangled particles.
Diadiabaticity plays an important role.

* Scaling of EE depend on scales
when adiabaticity breaks down.

* Late time behavior depends on slow mode (zero mode).
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Future directions

Why does change of EE oscillate after ¢t — 2&,.

* Interacting theories

Holographic Dual

Floquet type potential
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