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Abstract: <p>TBA In the framework set by the ADSIMERA conjecture, we investigate a generalisation of the Tensor Network description of bulk
geometry in the language of Group Field Theories, a promising convergence of insights and results from Matrix Models, Loop Quantum Gravity
and smplicial approaches. We establish afirst dictionary between Group Field Theory and Tensor Network states. With such a dictionary at hand,
we target the calculation of the Ryu-Takayanagi formula recently derived for Random Tensor Networks in the quantum gravity formalism.</p>
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inclusive framework

in AdS/CFT, the Ryu and Takayanagi (RT) formula, computing entanglement entropy in the CFT by the
area of a certain minimal surface in the bulk geometry, has provided an intriguing connection between
geometry and vnldrlt_g\t_wrl(‘rm

S. Ryu and T. Takayanagi (2006) V. E. Hubeny, M. Rangamani, and T. Takayanagi, (2007) M. Headrick and T. Takayanagi, (2007) M. V.
Raamsdonk, (2009,2010), P. Hayden, M. Headrick, and A. Maloney, (2013), A. Lewkowycz and J. Maldacena, (2013) 090, J. Maldacena and
L. Susskind, (2013), N. Lashkari, M. McDermott, and M. Van Raamsdonk, (2014) G. Vidal, (2003)

interesting new perspectives toward a structural understanding of such connection recently come from a
convergence of techniques and insights from holographic duality, condensed matter theory, Quantum

Information Theory and discrete approaches to quantum gravity

an important impulse in this sense has been played by an improved understanding of quantum
entanglement in the condensed matter physics community and by the use of tensor networks
techniques developed to efficiently represent quantum many-body states

G. Vidal, (2007), G. Vidal, (2008) G. Evenbly and G. Vidal, (2009)

in the AdS/CFT correspondence, the emergent radial direction can be regarded as a renormalization scale,
and spatial slices have a hyperbolic geometry resembling the exponentially growing tensor networks of
MERA. This similarity between AdS/CFT and MERA suggests that some physics of the AdS/CFT
correspondence can be modeled by a MERA-like tensor network where quantum entanglement in the
boundary theory is regarded as a building block for the emergent bulk geometry

B. Swingle, (2012)

2730
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inclusive fra_m.ework_
beyond the AAS/MERA, a new paradigm for studying holographic systems

recent works have introduced toy models of gauge/gravity duality based on quantum error correcting
codes, which have been shown to exhibit key properties of the AdS/CFT correspondence such as bulk
reconstruction and the Ryu-Takayanagi (RT) relation.

A. Almheiri, (2015) F. Pastawski, B. Yoshida, D. Harlow, and J. Preskill, (2015)
P. Hayden, S, Nezami, X-L. Qi, N. Thomas, M. Walter, and Z.Yang, (2016), D. Harlow, (2016) W. Donnelly, B. Michel, D, Marolf and J. Wien (2017)

such generalised framework for the geometry/entanglement correspondence has raised a lot of
interest in the context of non-perturbative quantum gravity where entanglement is supposed to be
responsible for the very architecture of space-time at the quantum scale.

Bianchi Myers (2012), Girelli Livine, Terno (2005-08), Donnelly (2010), GC Rovelli Haggard Riello Ruggiero (2014-15) GC Anza (2016),
Han et al. (2016), Yokomizo (2016)

recent new efforts to provide an understanding of holographic dualities from a non

=2 porturbgm\.w quantum gravity perspective

B.Dittrich,C. Goeller, E. R. Livine, and A. Riello, (2017), Delcamp Dittrich Riello, Geiller (2016-17)

in general, the type of mathematical structures identified by quantum gravity approaches and used in the
theory of tensor networks are very similar. consequently, it is very natural to try to put the two frameworks
in more direct contact. This is the main goal of this talk

3/30
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motivations

why trying to include tensor network formalism in the non-pert quantum gravity formal framework?

> from the quantum gravity point of view,

tensor networks are very effective in controlling the entanglement properties of quantum states in many-
body systems. This is exactly the language in which GFT deals with quantum gravity states, the very
connectivity of spin network states being associated with entanglement between the fundamental
quanta constituting them (associated to nodes).

tensor networks may become central tools in the renormalization analysis of QG models. such
renormalization analyses are the main avenue for solving the crucial problem of the continuum limit in
such formalism.

S. Carrozza, D. Orili, and V. Rivasseau, (2014), D. Benedetti, J. Ben Geloun, and D. Oriti, (2015),S. Carrozza and V. Lahoche, (2016), V.
Lahoche and D. Oriti, (2017), B. Bahr, B. Dittrich, F. Hellmann, and W. Kaminski, (2013), B. Bahr and S. Steinhaus, (2016).

further, the identification of the true (interacting) vacuum state of a quantum gravity theory, in absence
of any space-time background is an open issue: one possible criterion is to look for states which
maximise some measure of entanglement.

> from the perspective of the theory of tensor network

exporting a number of key results obtained via tensor network techniques, holographic mappings and
possibly indications of new topological phases in many-body systems in the NPQG framework

GFT “dynamic” dressing of tensor network maybe useful for controlling sum over topologies,
symmetry restoration(?)

4/30
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definitions

fensor Networks Singh, Robert N, C. Pfeifer, and Guifre Vidal (2010)

a tensor network N is a set of tensors whose indices are connected according to a network pattern.

given a tensor network N, a single tensor T can be obtained by contracting all the indices that connect
the tensors in N. The indices of T correspond then to the open indices of the tensor network N.

auxiliary
. . bond
the network N is a tensor network decomposition of T N
from a tensor network decomposition N for a tensor T, ( T )
another tensor network decomposition for the same /\ A
tensor T can be obtained in many ways by a sequence | \
of primitive operations 1 13

indices

™

N,

(D)

&

tensor networks are used as a means to represent the wave-function of certain quantum many-body
systems on a lattice. consider a lattice made of L sites, each described by a complex vector space V
of dimension d. A generic pure state |I/) ¢ V¥ can always be expanded as

d

‘\I}) — Z (-1/.’)-;;.,-i.-g,-..,-:,N|’f’-|,"'2;---,"JN)

i1,82,...,in=1

where "ﬁ.ﬁ>donotes a basis of V for site s in the lattice
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definitions

tensor (), with components j1io---i; , contains dlcomplex coefficients: the number that grows exponentiall
( P 1020l P 9 P y

with the size L of the lattice. Thus, the representation of a generic pure state in V®tis inefficient. an efficient
representation of certain pure states can be obtained by expressing tensor in terms of a O(L) tensor network.

auxiliary bond indices

if pis the rank of the tensors in one of these tensor
networks, and N is the size of their indices, then the
tensor network depends on O(LNP) complex

] | ] coefficients. for a fixed value of N this number grows
linearly in L (more efficient).

indices iy, i., - + +, i,of the tensor

such tensor network states are used as variational ansatze to approximately describe the ground states of
lo- cal Hamiltonians H of lattice models, with the O(LNF) complex coefficients as the variational parameters
(e.g. for optimisation so as to minimise the expectation value of the energy of some system, etc...)

,/Ck (disentanglers Multiscale Entanglement Renormalisation Ansatz (MERA) states
~ provide an efficient approximation of wave functions with long-

range entanglement of the type exhibited by ground states of
local scale-invariant Hamiltonians.

=> contact with critical systems and conformal field theories
diagram geometry and gravity?

7/30
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definitions

(generalisation of tensor models, higher order matrix model,

Group Field Theories ) o _
endowed with extra geometric info, diff, Lorentz sym)

L.Freidel, R.Gurau,D.Oriti (2009) A, Baratin and D. Oriti (2012), D. Oriti, (2015), R, Gurau
and J. P. Ryan, (2012), V. Rivasseau, (2016), S.Carrozza, (2016).....

a Group Field Theory is a quantum field theory for a (complex) oGl C
field ¢ defined on d copies of a (compact) Lie group manifold
G, with combinatorially non local interaction gi — (i)

Z = / 'D'lff'DtPl*XI)( HL?}C @ Z )\L’(‘P"\P).’”v) polynomially perturbed Gaussian prob

measure for the random tensor field
{V}

the GFT field can be seen as an infinite-dimensional tensor, transforming under the action of
some (unitary) group U

e(g1, .y ga) — /[d.f/,:J Ulgyyg1) - U ga) (g1 s Ga)

(d arguments of the GFT field to be labeled and ordered.

OFTs over a group manifold providing a 2nd quantised description for spin foam models with quanta
corresponding to tensor maps associated to nodes of spin network graphs. the andom combinatorial
structures, corresponding both to the elementary building blocks of quantum spacetime and to their
interaction processes are defined by an action, at the classical level, and a partition function at the quantum
level.
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definitions

we focus on a class of GFT models based on the requirement that the Feynman diagrams of the

theory are simplicial complexes, which in turn requires the interaction kernels to have the
combinatorial structure of d-simplices.

in this simplicial case, the GFT action has the general form

1 .
5 / dgidg; o(g:) Klgigl 1) wlgi) +

=

.\ . d41
d+1 / IT dgi Vigiigii D elon) - elgarn)

i#i=1

a specific theory, with a specific related Feynman cellular complex, is completely defined by the
choice of the kernels. Lets consider the simplest case, consisting in the choice

K(gi, gi) = / dh [T otg:g " 1.
JG o() is the delta

' function on G
V(g.,- -.(}’Tl ) e / (1/!.,'_ (S(/J i i -_(]",—_] s h ! )
143 ‘ “];[ H J93 J

i<j
= Boulatov model => Ponzano regge
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definitions

Z / DLPD@ (?X]){_@Kj kfj _i,_ Z AL’(;&P}IH‘] Z H(”\\"}-’ )”-\,"-,‘ v4g
: V) G i

restrict to the case
of dimensiond = 3

¢ has three arguments, so each edge of a Feynman diagram comprises three strands running parallel to it.

the three strands running along the edges can be understood to be dual to a triangle and the propagator K

gives a prescription for the gluing of two triangles.

four edges meet at each vertex and the form of the interaction kernel forces the strands to recombine. At the
vertex, four triangles meet and their gluing via V form a tetrahedron.

GFT's Feynman diagrams define cellular complexes ( weighted by amplitudes assigned to the faces,
edges and vertices of the dual two-skeleton of a chosen triangulation of a d dimensional topological

spacetime Mg
... 1/N expansion from TM, universal properties of the statistical model for large |-dim, sum over topologies

10/30
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definitions

GFT guantum states

the quantum states of the theory can be given a similar combinatorial characterization in terms of graphs
and dual cellular complexes.

(Peter Weyl the field ¢ can be decomposed in terms of unitary irreps. (e.g. SU(2), V), labeled by the spin j € N/2)

) . . i d =3, withG = SU(2)
'“:E(.‘:“* .(.]3'.(]3) - Z I'r "Y‘?'r{r‘ff‘nu.m.n H \/dh] s ) "{J}

N T,y
{d}

REJ - {7} R i . o
Pimy = 2 Pkt 1) H Vi D’ (g) € End(Y)
{k} i

. ) A7t ~ - . W P
Fourier transformed GFT field tensors binans € Homeg (VW @ V2 6 Wi, C)

spin network basis
group matrix element

intertwiner operator

In particular, functions ¢(g) can also be understood as single particle wave functions for quanta corresponding
to single open vertices of a spin network graph. Let us define these ‘single-particle’quantum states in Hed

@3) = / dg, ‘f’(ﬁi)‘.‘h‘.) e H®  for ‘y.,-) € H ~ LB[G’]
J G

dg = dg,dg,. . . dgyis the invariant Haar measure on the group manifold G, the vectors |g;’

...lgy provide a
basis on the respective infinite dimensional spaces H = L7G].

11/30
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definitions

Many-body  from the one-particle Hilbert space IH = L?(G = G?) one define a Fock space

F = @ H®" and field operators (choose bosonic statistics)

n=>0 - ~ ‘ ~ -~
&(g:) = o1, -+ . ga), o' (9:) = oM (g1, + 9a)

[f)(g, g/) (qf)J = /(lh. 5 (_r],/r,(;j.f)_l) , [(/J (9:) <,u q,)] [ (gi), ui(q )| =

introduce the n-particle state in the group representation of the Fock space

n

1 H f#?;' (g.)|0) basis in the Fock space defining a

|glag23'“1gn Y
; \/’n!”

set of disconnected tensor states

GFT coherent states are eigenstates of the field operator and provide an over
complete basis for the Fock space

b)) = }\1_ exXp {/ dg m(g)m ] 0) = g

T

u 7 H l/ (lb” (/{) Brr)“ 5;.! ‘U)

n=>0

o0
1=

1 1 '
- V Z \/m H |:/ ‘lgu f/) (8a, ] |g|* !gu}

n=—>0 a

12/30
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definitions

define observables (ﬁ[(f; (j;i] in Fock space are expanded as series of n-body operators:

action (Jp(:raTor

—~ o~

S[é, ¢! = / dgdg’ ¢! (2)K(g. &) o(g) + Ao, o'

graph state operator with n nodes and L links

Tt

\III‘[(:)] . / II dger. (-{gl)(gr'l_)\IJV(gl T gn)

a=1

.on L
- / H (.]gff H dhy (/-;(grr) H My (hﬂ{f'}ht"h;;’)) \[";’( e hey e
Ya= (el (er !

acts on the Fock space and creates a network with a certain combinatorial structure

13730
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tensor network wave-function

in terms of the coherent states basis we then recover the one-particle and many-particle wave
functions,by taking the expectation values of the field operators in the Fock space

<(/)|;ff\>('g)|qﬁ> = o(g) tensor wave function

T

o~

((;;-fi‘(l‘;?‘ [(-f)”cf)) - H (lg” c;f.'}(g,,_)l]!]~(g| S _,g‘,,) = tensor network wave

a=1 function

.on L
- / H dgu H (]h-f" "p(.gra) H A'IA"‘ (hs[(’)hfh!_{;l)) llj‘;{( T h,;‘-‘, e } = lI”l'(gl"_)
N tel el

a=1

If I'is a closed graph, W (g¢)gives the geometry of a closed spacial slice of the space-time. In
loop quantum gravity, this is a cylindrical function, which can be understood as a state in the
kinematical Hilbert space of the theory.

L .
e.g. special choice of N body ‘l-‘;{ _ H 8(heg, l) M, =6 (hx[(’}h-f’h-_] )

. L t(f)
wave function and connectivity 26T _
tel factorised state delta convolution link function

=> — / H (Ign (ﬂ](g(r) H (5 (/"s(l”]q(h”;lj) = ll"]‘ ¥ (g’} = “I”l' p (gf*gf'))

a=1 rer '

14/30
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tensor network wave-function

in more familiar TN terms, we can define a link state

(A[{‘ / (U.’.-,,-(,",(UH((-)fg (h'.-.{f")h‘fh'f_(;-')) (h-_.i”-}| 0 U"”‘!JJ'

and write the TN state as a contraction

W) = ®(Mf| ® |®) = /‘l{-‘,”n‘l’r(gua{-‘Ersl‘)mn)

fel’ nel’

extra ingredient: dynamics now we can use the partition function of our field theory to
calculate averages

E (‘ITI[:;}) - %Tl ( ‘I;T[f;] ¢~ S[0.0] :lur)
0

] ' - -~ ! )
= - /D(/J'D(,-J) (5:(7[(.‘/) — f/’(.‘l"] -\1111[(/)] e~ " [¢h,cb]
A() .

encodes the dynamics of the tensorial d.o.f. bounded by the spacial slice. If we perturbatively
expand this amplitude in terms of the small coupling constant A in the action, we obtain a series of
Feynman graphs corresponding to spin-foam amplitudes

15/30
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dictionary

Table A

group basis

one particle

state

eluing

funectional

multiparticle

state

product state

convolution

randomness

Group Fields
lgi) € H~ L?|C]

) = [udai v(g:) |gi)

(M,,| =

iy

[ dgidgs M(gigeg2) (1] (g2

€ H*#2

[Py € Hy ~ LGV /GY

v
|‘I);{'> — ®fr; I" <“ml {.‘H ®“ "r::'ri>

= [ dga ©rge, 90) |90)

%(hl(g)

ficld theory probability measure

20}

MY = Mya, [AD) @ [A2) € Hy =

W) = @F (M| @ |T,,) € Han

Al
!ﬁ

A, A =1,....DinHp

Ty,

\, € Hy, U € U(dim(Hy))

T ,
ensors
index basis

Tyl Ai) € H, = H?

tensor state

link state

tensor

network state

tensor

network
decomposition
I;‘: = (UT"), random

tensor state
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Group Field Random Tensor Networks

Because of the field theoretic description, we can see our group field network states as a random

tensor networks

N
¥) = & My Q) 12)

<ij>
1 _
1 - maximally entangled link states |AI> = 75{\”\2 )\1> b3y I/\3>

VD

2 - tensors chosen independently at random from their respective Hilbert spaces.

(for arbitrary reference state |0.) define |Tr'> = U|“~> with U unitary )

3 - Inthe large bond dimension limit, RTS saturate the TN
entropy bound, reproducing the holographic Ryu Takayanagi
entropy formula

S(A) ~ log(D)min|y 4|

Hayden et al.arXiv:1601.01694v1
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Group Field Random Tensor Networks

| use the established dictionary to investigate the holographic entanglement
JOc
: properties of the GFT network along the lines used for Random Tensor Networks

given the boundary state |Wp) € [Dy associated to the open network graph [

Wr) = ®<M"’| ® |P) = / dgo¥r(ga. geer)|ga)
tel’ nel ‘
consider a Hilbert space factorisation Dy = D4 @ Dp

associated to the definition of two, a priori non adjacent,
subregions A and B of the boundary

- assuming

= ] = Q@]

/ | I >< I | £ P Pn factorised state
¢ T

measure of the entanglement between A or B, defined

by first partial tracing over the full system Hilbert space:

S(A) = =Trpalnpa where  pa = trp[p|/tr(p]

18/30
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Group Field Random Tensor Networks

first trick to compute the entropy is so-called Rényi entropy

1 Trp?Y L Tr(p®NPy)
I1—=N " (Trp)N I1-N Tr(p®N)

SN(.-‘” -

[— N In Tt'ﬁji.\;

where P4 is the 1-cycle permutation operator in SN acting on [ 4

given the random character of the network we look for the typical value of the entropy. In particular,
the variables Z_N and Z_0 are easier to average than the entropy, since they are quadratic functions
of the network density matrix.

Expand e~ SN(A) — tl‘[pi}"]/(tl‘[f}])'{v = Z‘-l/zl] in powers of fluctuations:

N Za+ 07, 7. s e I Y A
Sn(A) = ~log oA + 024 = —log ZA (T ( 5 3 )
Zy+ 02 Zo

4 P ral - 7Tl
L n Z Zh

n /
Hayden et al.arXiv:1601.01694v1

very general: random states in high-dimensional bipartite systems: “concentration of measure”
phenomenon applies, meaning that on a large-probability set macroscopic parameters are close
to their expectation values (bond dimension, => continuum limit)

19/30
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Group Field Random Tensor Networks

first trick to compute the entropy is so-called Rényi entropy

1 Trp?Y L Tr(p®NPy)
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Group Field Random Tensor Networks

first trick to compute the entropy is so-called Rényi entropy

1 Trp?Y 1 | Tr(p=NPy)
1 - = 1N -
(Trp)N I1-N Tr(p®N)

L 1 -~
Sn(A) = In Tt'j‘)ji.\; =

= 1
1-N 1-N

where P4 is the 1-cycle permutation operator in SN acting on [ 4

given the random character of the network we look for the typical value of the entropy. In particular,
the variables Z_N and Z_0 are easier to average than the entropy, since they are quadratic functions
of the network density matrix.

Expand e~ SN(A) — tl‘[pi}"]/(tl‘[f}])'{v = Z‘-l/zl] in powers of fluctuations:

Sy (A) = —log _|'+—(_‘ = —log A~ Sy (A)

fluctuations are suppressed in the limit of large bond dimension

Hayden et al.arXiv:1601.01694v1
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Group Field Random Tensor Networks

permutation operator acting

/-_ on the states in A

) _ Bl VP . d)
N tl'p)N
tr (@, rr @, E mp LN
tr l®{ P(’ n ]P:(Pn }J

Fassuming tac torised state

we get SN (A) by computing the expectation values on the single tensor node states

linear function of

J‘E(f y E‘[ lfz-n > <(TH / H (lg,,(lg a (/)H (g”.)(;f{)ﬂ- (_g’u)“ gu) <g’(,,\

in the standard field theory formalism we define the averaging via the path integral of some
GFT model

Ewwﬂﬂ/m@m@ﬂ¢mpqu

because ZA, Z0 are polynomial of the fields, the average over the N-replica of the wave functions
associated to each network vertex eventually reduces to calculate the N-point correlation functions

of the GFT field

21/30
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Group Field Random Tensor Networks

we take the case S, Tp] = / dgdg’ ¢(g)K(g. g )e(g") + ASiut[@, (m + ce

with K(g.g') = d(g'g))

A <<1and consider a perturbative expansion of the path integral in powers of \

N N
£ Hf/)(g.:)cf)(g’u)] - [H d(8a)o(g',) | + O

(2 L

Wick theorem

, . where SNV is the permutation group of NV[ objects,
k. C ZP(TF) . NVI P group [ obj

oy which corresponding to the permutations of NV[ nodes
L1 <C

~—_

—

I

h

N
with ]P)h(ﬂ’) = H(S (h-;i.gug;(”)) h

' 1
| |
I \

,.4.
> L g?r(r.')

the free theory N points correlation function traduces into a sum over all permutations among the
group elements attached at each node

22/30
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Group Field Random Tensor Networks

we take the case S, Tp] = / dgdg’ ¢(g)K(g. g )e(g") + ASiut[@, (m + ce

with K(g.g') = d(g'g))

A <<1and consider a perturbative expansion of the path integral in powers of \

N N
£ Hf/)(g.:)cf)(g’u)] - [H d(8a)o(g',) | + O

(2 L

Wick theorem

, . where SNV is the permutation group of NV[ objects,
k. C ZP(TF) . NVI P group [ obj

oy which corresponding to the permutations of NV[ nodes
L1 <C

~—_

—

I

h

N
with ]P)h(ﬂ’) = H(S (h-;i.gug;(”)) h

' 1
| |
I \

,.4.
> L g?r(r.')

the free theory N points correlation function traduces into a sum over all permutations among the
group elements attached at each node
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Path integral averaging for the free theory

ZA and Z( correspond to summations of the combinatorial networks NA(hn, 1tr) and NOthn, 1)

A y
Zy ="y / Hah,, Tr | pl @ P, () P(nh: N, d)
f n

Tn Lh\ ‘

S - \ at each node n we have a contribution Phn(mn)
= Clr H dh,, Ny(hy, my,) hnifn

T C H\ ' . -
s RN
N 'l‘-’|' 1. }'\"’ ) foe . < il <~ -‘51\ :\“\_
Zy =C / H dh, Tr [X) o’ @) P, () VIS 0 NERRN
N g b v
T n—b N ¢ i L -.P/ 2 oL
T H e 0 B
= 'l dh,, _f\/”(hn_ﬂ'?.'} links contribution A . o !
: ‘ ' ! z 7 l\ o )I .“ -“Th "'l rJ ‘J
TRESN n N . b y '
. . ) 3 . N \‘\ 7 2 i ’ s
the full (Feynman) networks get divided into several regions, with same AN, o
n and hp. The links which connect different regions identify boundaries T oL
between each pair of different regions or domain walls.
a1 — f d—
. . N (o) VGG ) ' x(me) Py
J Lo it [T 1T\ T (T )| 0| T (1000 12 (T
' n ' 1 fel’ feA i k=1 fe A i k=1

ZA and Z( are the amplitudes of a topological BF field theory, with given boundary condition, discretized
on a specific 2-complex among the N replica of networks, with each different pattern P corresponding to
a different 2-complex
23/30
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Group Field Random Tensor Networks

for large bond dimension, we then seek for the most divergent terms of the BF amplitudes

p=[Wr) (Vr|
LY L
.
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assumptions and result
truncation: contributions coming from permutations involving couples of conjugate nodes, as if nodes
were distinguishable

evaluation

Z0 : leading contribution for 7 = 1

El][TI'(./)NN)] ~ C Tlp(ﬂ) = (?D(‘f\)”'l.il"”)[\f BF-like Jml'ﬂ\[lld(_'zx

where LT is the number of the branches of the minimal spanning tree of I', which is V[ — 1

Cayl's

ac *¢h

ZA : T is split into two parts ['A and 'B by cutting some links inside of T, \DL{; =WV
which forms a new boundary C such that 9l A = A u C and ol =BuC

ﬂ‘;“[fl‘l.(pu\’:s\’.—]p:ﬁi)] o~ CU(A)(L" Lp)N+(1-N)min(L¢)

if dimDc¢ is smaller than dimDaA and dimDp, the leading term in the large bond
dimension D(A) limit. where LC is the number of links through boundary C

N L Eo[Tr(p"YPa)] -
Sy (A)] ~ i N c)InD
Eo[Sn(A)] = In Eo[Tr(po") min(L¢) In D(A)
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assumptions and result

Stk = min(#eco, ;) Ino(1)

understood as the Ryu-Takayanagi formula in a GFT context,
with the same interpretation for the area of the minimal surface

box normalization on |h) (quantum group) 5(]1.) - D{'A)'
gl = 1forall link | € I'. This assumption makes our state ¥ lying in the flat vacuum of loop
quantum gravity. The cosmological constant A in the bond dimension makes our state a dS vacuum

if A > 0 and AdS vacuum if A < 0.

Only consider 3-valent nodes. We consider Ooguri GFT for 3D gravity for simpliticity. So there are

3-valent nodes in the network. The kinetic kernel K(h,h ') becomes S(Fw*‘|h’)
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assumptions and result

the interaction kernel will generally lead to non-trivial bulk corrections to the RT formula

.6
Sint [, g:f]:/ H(”i‘”(,i-‘-(h-[./.’-;3.1?-:;)‘,5-‘(}.‘.-1.]?.-1.hﬂ)gi’-(hﬁ.hr-‘g‘h_",)g‘-‘-(h-(;./.’-,-1\1?-:;)

a=1

kernel action generates extra connectivity

|Wr)

GFT correction to
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comments and conclusions

remark

we are interested in is the leading term of 74 and 7¢), while taking the dimension D of the bond
Hilbert space much larger than 1. This leads us to seek for the most divergent term of the amplitudes
(bubble divergences) characteristic of BF-like amplitudes

this simple form of the various functions entering the calculation of the entropy, with the emergence

of BF-like amplitudes, is not generic: it follows from the choice of GFT kinetic term, from the

approximation used in the calculation of expectation values (neglecting GFT interactions) and from
the special type of GFT tensor network chosen: bulk flatness g| = 1

the divergence degree of BF amplitudes discretised on a lattice has been the subject
of a number of works, both in the spin foam an GFT literature

Freidel, Gurau, Oriti (2009), Bonzom and Smerlak (2010-12)
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comments and conclusions

established a precise dictionary between GFT states and (generalized) random tensor networks.
Such a dictionary also implies, under different restrictions on the GFT states, a correspondence
between LQG spin network states and tensor networks, and a correspondence between random
tensors models and tensor networks.

compute the Rényi entropy and derived the RT entropy formula: using directly GFT and spin
network techniques, first using a simple approximation to a complete definition of a random
tensor network evaluation seen as a GFT correlation function, but still using a truly generalized

tensor network seen as a GFT state

AdS/MERA/CFT may be extended, beyond AdS/CFT, to a more general space/TNR/QFT
correspondence? GFTs may play a role as auxiliary tensor field theories both fixing the entanglement
structure of the boundary physical theory and providing a dual simplicial characterisation of the tensor

network diagrams as discretised space

dynamics induces entanglement: can we reproduce multi scale renormalisation techniques within the
field theory framework of GFTs: coarse graining and disentangler from interaction vertices at each order
in the perturbative expansion?

the structural similarity had been noted before, and also exploited, in the context of renormalization of
spin foam models treated as lattice gauge theories

M. Han and L.-Y, Hung, (2016) B. Dittrich, S, Mizera, and S. Steinhaus, C. Delcamp and B, Dittrich, B. Dittrich, F. C. Eckert, and M. Martin

lenito, B. Dittrich, E. Schnetter, C. J. Seth, and S. Steinhaus.

29/30

Page 32/33



Thank You

(office 461)
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