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Abstract: <p>A great deal of progress has been made toward a classification of bosonic topological orders whose microscopic constituents are
bosons. Much less is known about the classification of their fermionic counterparts. In this talk | will describe a systematic way of producing
fermionic topological orders using the technique of fermion condensation. Roughly, this can be understood as binding a physical fermion to an
emergent fermion and condensing the pair.&nbsp;l will discuss the “super pivotal categories that describe universal properties of these phases and
use them to construct exactly solvable string-net models.& nbsp; These string-net models feature conventional anyons and two flavours of vortices. |
will show that one of the vortex typesis similar to avortex in a p+ip superconductor binding a Majorana zero mode, and will mention some possible

applications.</p>
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Outline:

/é// introduce gapped (2+1)d topological C
phases and (braided) fusion categories '

/ fermion condensation, Ising example _—
/ ﬂ/@ % g p C /:(,«"‘-?

and 1D ‘string-net’/Majorana chain
fermion condensation in string-net Tube(C /4
, , ube(C /)
/' )\ models and quasiparticle content
WS

Talk is based on DA, Lake Walker arXiv:1709.01941
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Gapped phases in (2+1)d \:»\

H = H, H = Z H,

|

microscopic constituents are either bosons or fermions

— 1

e.qg., Toric code, Kitaev e.q., Fractional Quantum Hall
Honeycomb model, Levin-Wen effect, p+ip superconductor,
string-nets, ... fermionic toric code,...
: . Stormer, Tsui, Gossard 1982;
Egai"vsgg% O%?_OS’ Read, Green 2000:
' > Gu, Wang, Wen 2014
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Gapped bosonic phases are well understood

Universal low energy degrees of freedom are captured
by a TQFT

Quasiparticles are anyons (= local excitation/
local operators)

Mathematical description is given by a braided fusion category
simple objects {a,b,c,---} fusionrules a®@b= EBNL.}.(‘

Moore, Read 1991; Kitaev 2006;
Review: Nayak, Simon, Stern,Freedman, Sarma RMP 2008
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Operators such as fusion of anyons are
represented diagrammatically

p=1,---,N¢ operator which fuses ‘a’
and ‘b’ into ‘c’
a b
m . .
Labeled diagrams with open legs

" ab

represent vector spaces

There are several physical constraints such as requiring
vacuum/anti-particles:

identity/duals Il®a=a aRa* =1d---
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Using fusion or splitting operators, the same wave function can
be created in multiple ways

___,.’(Ih PV VALLS ~ 7ay o ___y{_,(. ~ T rabc
Prravic = @urevr =y,
Y

I

Ny, v

a b c a b e
F-symbols are highly
F””“)J_u d constrained by pentagon
eqguation

d
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There is also
braiding:

a b

\ a b
We keep track of braids using the .
R-symbols which are subject to the = R
hexagon equation

disclaimer: will drop draw arrows and multiplicities on diagrams
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Physical quantities you might look at:

d, = O x quantum dimension of x dim(V* ) ~ (d,)"

D= [Y d2 total dimension
al 1 y - H,’J_‘
LS”b — = (2} b
D QO 1) T
S-matrix encodes data Topological spin is the eigenvalue
about exchange statistics under a Dehn twist/full rotation

We would like to understand gapped fermionic phases
on the same footing as their bosonic counterparts
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Recently a lot of progress has been made in this direction

Commuting projector models

Gu, Wang, Wen 2014, 2015; Tarantino, Fidkowski 2016;
Ware, Son, Cheng, Mishmash, Alicea, Bauer 2016;
Bhardwaj, Gaiotto, Kapustin 2017,...

Algebraic theory

Walker 2014; Gaiotto, Kapustin 2016; Lan, Kong, Wen 2016;
Bruillard, Galnido, Hagge, Ng, Plavnik, Rowell, Wang 2017, ...

Tensor networks

Fidkowski Kitaev 2011; Kapustin, Turzillo, You 2016;
Bultinck, Williamson, Haegeman, Verstraete 2016;
Wille, Buerschaper, Eisert 2016, ...

conclusion is that we need to update/modify our formalism
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Need to update bosonic formalism:

bosons fermions
H, = C" H, = CPla
>
tensor product graded tensor product
surface spin surface
> N
anyons and
anyons > .
vortices

Fermion condensation provides a starting point to study fermionic
theories in the same formalism as bosonic ones
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Bose condensation:

Pick a boson in the spectrum

identify it with the vacuum a=1

Physically we think of the vacuum as a condensate of ‘a’

old vacuum new vacuum
We have added morphismsto C mor(l — a) =C

Bais, Slingerland 0808.0627; Eliens, Romers, Bais 1310.6001; Kong 1307.8244
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a

Bose condensation: C ' > Cla
I
1
we denote the morphism ' 1
by a dot: T — = a
(l
L 1
Creating ‘a’ out of the vacuum can be done al =) !
locally in C/a: : |
1 i

Particles that braid non-trivially with ‘a’ are confined in
the condensed theory

Bais, Slingerland 0808.0627; Eliens, Romers, Bais 1310.6001; Kong 1307.8244

Page 13/45



cannot condense arbitrary ‘a’, must satisfy some constraints

The vacuum has trivial topological 10 =i
spin T
. o 1 : ! : 1
combining this with the . : : '
fact that ‘a’ is identified L= o ’\ ~ C ~ d
with vacuum T T - \ \ \
a a
hence ‘a’ is required to have . d I
trivial topological spin \
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vacuum also has trivial braiding R

\
|

The particle we're condensing must N
also have trivial braiding T T T T

\

(assume a @ a =

- db Xl

naive attempt to condense d o \ |
fermions is problematic \ (=1) \ (—1)
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Fermion condensation compensates for these
minus signs with physical fermions:

take bosonic phase with an emergent ——»/ﬂ {l

fermion

177 -
stack a gapped phase of physical fermions,/'/ 7/ .
e.g., a topological superconductor

Add local interaction that binds the / b
emergent fermion to the physical fermion A7

The composite particle is bosonic in its spin
and statistics

‘)

diagrammatically ]t} ------ 0 __ =A
odd isomorphism i

Walker 2014 Princeton; Gaiotto, Kapustin 2016;
DA, Lake, Walker 2017; Wan, Wang 2017
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topological spin
?
,. ...... _ _:~:'__ J

/ l We denote the local
A spin framing by an
‘,~.@ arrow
physical fermion l
does a full rotation
(e f

(e (o

pick up one minus sign from the emergent fermion d = (~1)
and one from the physical fermion \

Y Y
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statistics:

fo IE fi fo
) 1] ------ —{t, .- ~_ - ) w{}------
—= =, —> =
) el - ~f - B
i i I2 I8

We again get two minus signs, one from the emergent fermion

and one from the Koszul ordering
L7 - L7
i fﬁ =D /S fﬁ
Jfal J 2

We can now apply standard techniques of Bose
condensation
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Example: Ising

Simple objects Fusion rules emergent fermion
{L,0,} cRQo=1DY YooY y P
‘("‘.-"r X (/' =1 \/\ = (-1) I |

YRo=o0 | -
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Example: Ising

Simple objects Fusion rules emergent fermion
{L,0,9} ocRo=1dOY R yoy
‘(J.-’r X (/' =1 \/\ =(-1) l l

’i/’fXP(T:(T (8 U ! Y’

To condense ¢’ we add:

. P p{— = AeC

Any net configuration can be reduced /

using these two relations to one that |
only has o strands \/
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Example:

1

= —
nat corficuration pull pairs of fermions
1 |
et contigdratio out of vacuum
- B / fuse emergent
~ fermions
1 P,
.l

convenient notation translate fermions
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parent {1,0,v} C

A

condensed {1l =¢,B8} C/¢

Fidkowski, Kitaev 1008.4138; Kapustin, Turzillo, You 1610.10075;
Bultinck et al. 1610.07849
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parent {1,0,v} C

L/

condensed {1l =¢,B8} C/v¢

\ A has an odd

r B endomorphism

5] )
End(3) = C ‘ , + = C/ .
( ' T Clifford algebra
3 B

Objects of this type are intimately related to
Kitaev chains and sometimes are referred to
as Majorana objects

Fidkowski, Kitaev 1008.4138; Kapustin, Turzillo, You 1610.10075;
Bultinck et al. 1610.07849
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Can see this with a 1D “string-net”

Need a Hamiltonian which implements local relations such as:

Cut the strand into many pieces and associate a vector space
to possible labelings of each piece

H=C K’\J/"\vj ! K’,kk/)/!”\vj A

"

}k)‘/ \.\\/“/

KJ = J — ) . e
" T N UV R v

Each interval corresponds to a “site” and is labeled
by its fermion parity
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Local relations correspond to ‘dot \J e .
sliding’ and ‘cancellations’ \\)/H\

______

hopping \k)f i* QVN \)f
pairing \)/H i QV ~ ]\\JW

The Hamiltonian acts on the H— _1_ ‘ ‘ N 'H
junctions by ‘stacking’ =75 2

This is just the 1D zero correlation length Kitaev wire

see DA, Lake, Walker for details
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ground state wavefunctions are even(odd) parity super
positions of fermions

( ( l

w(i — \'1\ /IL//_J\, T |'\) \ + |'\ )\/ \‘\ P

/

— \ — Ty = | s
W, = M AN T B W i N I WSVERE

can explicitly find Majorana zero mode operators

ve=efl N I s =000 I e
Satisfying the ioakxid P} = (P} =0
usual relations (v, 7r} =0 ve, H] = [yr, H] =

The same analysis carries through for any C/¢; type object

Will shortly see similar results in (2+1)d
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What about braiding in the condensed theory?
Consider the following isotopies:

iyl

Ld

YiE?;

4 £

Could differ by a /

minus sign if ‘X" isn’t \ o \/
transparent \ (=1” 7
Three options:

1. ¥ is transparent/particles with non-trivial braiding are confined

2. Require emergent vortices to bind physical vortices

3. Do ‘back wall’ condensation, only maintain a front braiding.
This is equivalent to (2) on the Drinfeld center
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‘back wall’ condensation: Technical tool for keeping track of
fermion signs and spin structure data

We forget about all braiding data except for the emergent fermion

fml’ IS a defect to vacuum

where emergent fermions can
f, terminate on physical fermions
f

2
J2

EEONV
J X7 The physical fermions can only braid

.\ behind particles from C

front contains net configurations of a fusion category

Can relax assumption of UBFC to UFC but require
that Z(C) contains an emergent fermion
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Composition is given by stacking, F-symbols are inherited
from parent theory

\2 P } b T2 /¢ b ) c
r - | 5 1| | = E \-.U +-
| s : 1
) ) d d
Remark:

* necessary to quotient by endomorphisms,

* i.e., allow dots to slide on C¢; type objects

* resulting fusion category is subject to various
coherence conditions e.g., pivoting, F-symbols,...
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Outline:

/ introduce gapped (2+1)d topological ,
o C
phases and (braided) fusion categories

/ fermion condensation, Ising example 0
/ A7 % S P C / (%

and 1D ‘string-net’
fermion condensation in string-net Tube(C /1))

\ models and quasiparticle content
e
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String-nets Levin, Wen 0404617
input: fusion category and

surface \
\ output: local gapped
\\ // Hamiltonian; excitations

labeled by simple objects in
Z(C)

Hilbert space is given by net Hamiltonian implements
configurations/local relations local relations on nets

require Z(C) to have an emergent fermion
input is C /4 and spin surface

Gu, Wang, Wen 1309.7032; Gu, Wang, Wen 1010.1517;
Bhardwaj, Gaiotto, Kapustin 1605.01640
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@<

Lattice = trivalent graph, \
dual to a triangulation .
spin surface

Hilbert space = collection of - [ /Q\/L /2\ l
coloured graphs, string-nets ‘(‘\ - / -

\

Each vertex is coloured

Al e rabe «— by a basis vector of the
H=®uH, v @I fusion space
T abe T
graded tensor super vector space
product
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The Hamiltonianisa ~ H =-J1 ) B,—~J:Y D.—Js» A,

sum of three projectors p \ / v R

local relations Fusion rules

Vertex term projects onto net /%\ /%\
configurations satisfying the 1

fusion rules

ground space of

vertex term excitation
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= —.J; Z B, — Z e — J3 Z A,

\

local relations Fusion rules
edge term enforces the extra f2 0 fa
linear relation coming from Sy K — !
condensation 1 /,

only non-trivial on edges with C/;-type objects,
provides dynamics to the fermions

XX XX

pairing hopping
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ground states of the vertex and edge term have equal weight
superpositions of fermions along C/¢, type edges

Coefficients are phases that depend on sign ordering and
spin structure

The edge terms can be written with dressed Majorana operators
and describe a zero correlation length Kitaev/Majorana chain

Related models: Ware, Son, Cheng, Mishmash, Alicea, Bauer 2016
Tarantino, Fidkowski 2016
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The plaguette term is an omega loop written in the basis of nets

O Z d, O 1 if End(z) = C
(1 ) )
w Moy i ' 2 if End(x) = C#,

Je( P -

action of plaquette /E\‘l N /%\ | N/é\/l

term B, on the nets < \ O\

coefficients depend on F-symbols
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String-net Hilbert space/Hamiltonian can be written as

( \
/} O/ [0/ [OxS
; 7 "o 7 r C : 3
BaS|S < ( Lj ? Q § L__) bl Q—'-’; C:)— . . s . >
Q r _"_ 7\-“- ﬁ ( : Q‘) - (HV o ':i.
__, R4 O -
/

i-y .\ simplify using F-symbols

OO

Hamiltonian is the trivial -O
idempotent of the tube O

category \ O
Q
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Excitations can be analyzed with a fermionic version of the tube
category Tube(C /1)) Lan, Wen 1311.1784; Kirillov 1106.6033

objects are spin circles with
marked points labeled by @ @
objectsin C /1) “@p c “poc

B = bounding = anti-periodic b.c.'s = non-vortex
N = non-bounding = periodic b.c.'s = vortex

morphisms are nets on tubes with fixed
boundary conditions

‘///«Q:‘h‘“‘“ﬁt

composition is CB D o CB D _
kg /541 7l

Ocneanu 1994
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Isomorphism classes of excitations are in 1-1 correspondence with
isomorphism classes of minimal idempotents of Tube(C /1))

In particular, the Hamiltonian projects onto the trivial idempotent

Ca ) spin

in general minimal idempotents . _ Z L be structure

can be written as: » c
'] /

a

€; - €; = 0j;€;

o - 1€ty if e; has an odd endomorphism
e; - Ann(C /) - e; = _
C otherwise

Provides a very convenient way to understand the excitations
(fusion rules, F-symbols, braiding, S-matrix, etc..)
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Analyze bounding spin structure first:

Natural question:
can the bounding idempotents be C/¢; type?

Dehn twist with bounding spin structure ’Q
T '

anti-commutes with all odd operators,
but commutes with minimal idempotents

i« B
Implies that oddly isomorphic bounding Te. — f.e.
idempotents will have twist eigenvalues I
that differing by a minus sign T(Te,I') = —0,(Te;IN)

In particular, they can never have an odd endomorphism

Bounding idempotents are anyons
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Now lets consider the non-bounding idempotents

These correspond to vortices (non-bounding spin stucture in
the string-net)

pairs can be created from the vacuum by violating an
edge term

24

Energy to separate them grows linearly with distance (assuming
there is atleast one C/¢, -type object in C/v)

The vortices are confined
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The vortices can be either C or C/¢; type

C, type vortices are similar to vortices in a p+ip SC in that they
harbour Majorana zero modes

G REL
\C .._.“‘O

As usual, pairs of vortices always fuse to non-vortices

consequently two C¢; type objects always fuse to a non C#; type
object. This is not necessarily true in the fusion categories
(exampleis (Eg/2)/v )
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Example:  Input: [sing/v) two simple objects: 1, 3

ground state is superposition of 5 loops
O>.0 ~ OXO

A aH® Ao H®)
\If:"'_+‘ L)\C/" + O CD.A
. © s @

Can show that if C is modular then Tube(C /1)) = C x C /4

OXQ %@ OMNO .~
Q=570 O >=-1 0510
)

o) * (W,O \ _
,f:...+O“~—?/7\+ O N~ + | O X« + e
! SONMECEES

<

i'\ Q? '\‘ i)
< O < O\
(a, D)

a,b) (a,b)

o, 1) (1)

(
vortices:  (1,3) (o,8) (¢,3)

See also: Ware, Son, Cheng, Mishmash, Alicea, Bauer 2016

anyons: (1, 1)
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Summary of excitations:
(Two types of objects) x (two spin structures)

Quasiparticles non-vortices vortices
C-type deconfined confined
Ct - type does not exist confined

The non-vortices are deconfined anyonic excitations
Vortices are defects/confined

Ct, type objects are intimately related to Majorana zero modes

Can show that if C is modular then Tube(C/v) = C x C /4
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Outline:

)y introduce gapped (2+1)d topological ,
w/ C
phases and (braided) fusion categories

/ fermion condensation, Ising example o
/,./’é‘? % g p (//_.q_?

and 1D ‘string-net’
fermion condensation in string-net Tube(C /1))

\ models and quasiparticle content
e
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