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OUTLINE

* How dependent are “classic” results on symmetry?

» Use standard semi-classical Euclidean approach for
tunneling

» Breaking symmetry with black holes
= Keeping it analytic (for as long as possible!)

» Problems with primordial black holes
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Calculating the running of the
Higgs coupling tells us that we
seem to be in a sweet spot
between stability and instability —
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HIGGS POTENTIAL

At high energies, the Higgs
self-coupling becomes
negative, opening the
possibility that our universe
may be....

.
/8

....not entirely stable!
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Higgs
potential

Coleman de Luccia say that the half-life of the
universe is hundreds of billions of years.

Pirsa: 17110129 Page 6/32



Pirsa: 17110129

EUCLIDEAN TRICK

Using the idea that the probability of a tunelling process is
roughly T~ G—SE/;}'
Where S¢ is the action of a classical process moving in an

inverted potential. The particle rolls from the (now) unstable
point to the “exit” and back again —a “bounce”.
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This gives a nice way of computing tunneling probability that
generalises to field theory.
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LORENTZIAN PICTURE
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COLEMAN

Original work of Coleman

considered a field theory with

false vacuum, showed that in

limit of small energy difference (P/\@T

(relative to barrier) transition .
NSV E

modelled by a “thin wall” bubble.

@r

—

Pirsa: 17110129 Page 9/32



Pirsa: 17110129

COLEMAN

Solving the Euclidean field equations should give the saddle
point approximation for the tunneling solution.
d*¢ oV

D V%= — 2 = 22(¢% — %) + O(e)
dr= 180

Original work of Coleman took a field theory with a “false”
vacuum: in limit of small energy difference (relative to
barrier) transition modeled by a “thin wall” bubble.
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§ +=f =20 ~7) [P =7+

¢ ~ ntanh[v'An(p — po)]
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EUCLIDEAN ACTION

Amplitude determined by action of Euclidean tunneling
solution: “The Bounce”
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COLEMAN

Since the bounce is a solution to egns of motion, it should
be stationary under variation of R:

g 2e3

Tunneling amplitude:
D G_B/h

(Notice, R is big, so justifies use of the “thin wall” approximation.)
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ADD GRAVITY

Vacuum energy gravitates, so we must add gravity to our
picture.
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Our instanton must
cut the sphere and
replace it with flat
space (true vacuum).
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COLEMAN DE LuccliAa (CDL)

Coleman and de Luccia showed how to do this with a
bubble wall.

o The instanton is a solution of the Euclidean Einstein
equations with a bubble of flat space separated from dS
space by a thin wall.

o The wall radius is determined by the Israel junction
conditions

o The action of the bounce is the difference of the action
of this wall configuration and a pure de Sitter geometry.

Coleman and de Luccia, PRD21 3305 (1980)
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CDL INSTANTON

Euclidean de Sitter space is a sphere,
of radius ¢ related to the cosmological
constant. The true vacuum has zero
cosmological constant, so must be flat.

The bounce looks like a
truncated sphere.
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The universe is complex — so how dependent are our
results on the assumptions of homogeneity and isotropy?

Phase transitions in nature are more “dirty” — how does
that affect modelling?
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TWEAKING CDL

The bubble of true vacuum has a spherical symmetry, so we
can add a black hole at “minimal expense”!

e O

RG, Moss & Withers, 1401.0017
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A MORE GENERAL THIN WALL BUBBLE

Straightforward to find solutions. Israel junction conditions
determine the equation of motion of bubble wall with the

black hole.

In each case we have to calculate the difference between
the background black hole action and the effect of the
bubble.

Need to deal with conical singularities (sometimes).

The general action with a black hole on each side is (details
vary with Lambda):

rr(r_‘i —r?) o

B=——t | \_(_/ DR / b2ttt
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Geometry Bubble
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GENERAL BOUNCE

The general solution has a black hole inside the
bubble (remnant) and a mass term outside
(seed).

The solution in general depends on time, but for
each seed mass there is a unique bubble with
lowest action.

For small seed masses this is time dependent —
a perturbed CDL — with no remnant black hole.
For larger seed masses this is static and has a
remnant black hole.

For a special Mcrit, there is a static bubble with
no remnant.

Large range of solutions with B<Bgp,
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GENERIC THIN WALL TUNNELING

Main change is the value of lambda on each side, this changes
the action ratio surprisingly little.
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THE FATE OF THE BLACK HOLE?

But that is not all that can happen! Black holes can also
evaporate — so we must check which process wins. Compare
the evaporation rate:

D~ 3.6x 104G M)t rage.rro7o

to our calculated tunneling rate

PD g e—AS
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THE FATE OF THE BLACK HOLE?

The Euclidean action is the difference in horizon areas, related
to difference in mass (which varies very slowly with M).
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TUNNELING V EVAPORATION:

The actual factors calculated from thin walls shows that
evaporation (perturbative) is much stronger than decay
(nonperturbative) until the black holes are very small.

Decay NOT an issue for astrophysical black holes.
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PRIMORDIAL BLACK HOLES

Primordial Black Holes are tiny black holes with masses of
order a ton, so have a temperature above the CMB, so these
do evaporate over time. Eventually, they become light
enough that they hit the “danger range” for vacuum decay
and WILL catalyse it.

For thin wall, parameter
values push credulity —
however — provide proof
of principle.
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THIN TO THICK WALL
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First pass indicates a problem, so
tackle in detail for a realistic Higgs
" potential. Idea is to scan through
parameter space (beyond standard
model) to see how robust result it.
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FITTING THE POTENTIAL
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NUMERICAL INVESTIGATION
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First check thin wall, by increasing A. Thickening the wall
increases the effectiveness of the instanton — the primordial
black hole will hit the danger zone much sooner, and the
decay will proceed rapidly.
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Scanning through parameter space for pure SM potential
shows main dependence on A,:
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And because we are at such extreme scales, the lifetime of
the universe drops to around 10-17s!
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Primordial black holes start out with small enough mass to
evaporate and will eventually hit these curves.

Can view as a constraint on PBH’ s or (weak) on
corrections to the Higgs potential.
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S SUMMA(Y

= Depending on r@er energy physics, the Higgs
..vacuum may be unsta

* We can construct an msta%ton to describe the
decay procesg —Moludln gre

» Tunneling amplitude sigh antly enhanced in the
presence of a black hole = bubb e forms around black
hole and can remove it altogether.

= \ery efficient for small black holes, so primorgial
black holes act as a trigger to change the state of the
universe!
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THE FINAL BANG?

BUT - it’s fair to say that we
expect there is more to our
standard model than we have
currently seen...

...primordial black holes are
not universally accepted....

...and the new phase would
have to percolate.
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