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Introduction Consistency of a quantum cosmological bounce

Introduction

Cosmological bounce models provide an alternative to the initial Big Bang
singularity of classical general relativity with standard (NEC-preserving) matter.

An attractive alternative to modifying either general relativity or introducing
additional non-standard matter in order to obtain a bounce is to explore the
possibility of a quantum bounce, within “standard physics”.

For models with radiation and minimally or conformally coupled scalar fields,
there is the possibility of a perfect bounce: a quantum transition from a
collapsing to an expanding universe which remains regular and unambiguous
across the classical singularity.

Demanding consistency of this quantum picture can impose surprising constraints
on cosmology, as | will show for the case of spatial curvature. Such constraints
go beyond what can be understood within classical or semiclassical cosmology.
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Dirac Gravity with Conformal Matter Consistency of a quantum cosmological bounce

“Dirac Gravity” — Weyl invariant General Relativity

Certain cosmological singularities in classical general relativity can be resolved by
a adding a “fake Weyl invariance” to GR: rewrite the Einstein-Hilbert action
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Seulg] = /(ll:_lf v — g R[g]

167G
in terms of new fields g and ¢ by setting g, := (%TFG)(,-D? Juv; then [Dirac 1973]
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is invariant under g — Q%¢g, ¢ — Q '¢, for any nowhere vanishing Q(x). All
solutions with ¢(x) # 0 everywhere are solutions of GR (and vice versa).

Any conformally regular (e.g., conformally flat) metric can hence be made
regular (flat) by using Weyl invariance to move all singularities into the field ¢.
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Cosmology in Dirac gravity
A (homogeneous, isotropic) FLRW metric can be written as

ds? = a®(t)(—NZ2(t)dt? + h,; dx*dx’)

where N. is a conformal lapse and /,; is a metric of constant three-curvature
R = 6k.

We can exploit the symmetry under a — Qa, ¢ — Q2 '¢ to set a(t) = constant
with time-dependent ¢. In this gauge, instead of an expanding universe, we have
a static universe with time-dependent units as given by ¢. ¢ can now cross zero,
allowing the extension of solutions beyond the GR singularity a = 0.

This is the opposite of Einstein gauge in which

- 3
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reducing Dirac gravity to GR, where the units set by G are time-independent.
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Minisuperspace action with conformal matter

In the gauge in which the scale factor is constant, the minisuperspace action for
Dirac gravity becomes (V, = [ d’x V'h)

1 -, e 4
Sl = Vo /dt[“z?\".@z - I\"'(._%(,bz] ;

We now couple conformally invariant matter: a radiation fluid, characterised by
an energy density p, and M conformally coupled scalar fields x*, « = 1,..., M.
The total action is then

Z—:?(X?)z - (552
2N,

S, x% p, ] = Vo / dt + Ne g(c-f)2 - E (x)*)—p ) —@p

In our gauge in which space does not expand, p is constrained to be constant
in time. This is the action for a massive relativistic particle moving in (M + 1)-
dimensional Minkowski spacetime, subject to a quadratic potential.
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Cosmological evolution

The relative contribution of the three components (scalars, radiation, curvature)
changes with cosmological evoution as usual,

e Near the would-be GR singularity ¢ = 0, the kinetic energy in the scalar
fields dominates. At very high energies, this growing kinetic energy drives the
scalars to super-Planckian field values; thus the effective Newton’s constant
(the coefficient of IR in the action) becomes negative ( “antigravity’ ).

e Radiation is the dominant matter component away from the singularity.

e If spatial curvature is present, it dominates at early/late times. Negative
will contribute to faster expansion of the Universe, or growing ¢ in our gauge.
Because of the nonminimal coupling of x to the scalars, x < 0 can also drive
the scalars to super-Planckian values and hence into the antigravity regime.

We will see the last point becomes problematic in the quantum theory.
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Universe as a massive relativistic particle
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If we write the M + 1 scalars and the radiation energy density as

_ 1 g
% = ——(P, x"), m:= 2Vyp,

V2p
¥

x* are now Minkowski space coordinates, and rm is the “mass’” of the universe.
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Quantum Transitions: Feynman Propagator

We are now interested in describing the quantum transition of a universe from a
¢ < 0 initial state to a ¢ > 0 final state.

The Feynman propagator implements a direction of time corresponding to the
variable ¢. Explicitly it is given by
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Feynman propagator for FLRW Universes

For x = 0, we recover the Feynman propagator for a massive particle in (M + 1)-
dimensional Minkowski spacetime,

o 1 _ . ) 1 — M -
2=z, m|z’,m’) = 5()(1:: —m)(—im)M(2ns) 2 Hf\f)  (s),
11

where H'? (x) is a Hankel function and s := m+/—(z — 2/)2 — ie.

The propagator falls off for spacelike separations; this is consistent with the
fact that classical solutions are always timelike for m > 0.

For flat FLRW universes, any classical solution starts and ends in a region
in which ¢? > Z-;(X")z’ i.e. the effective Newton’'s constant remains positive;
quantum mechanically excursions into “antigravity’” are exponentially suppressed.
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Quantum Transitions: Feynman Propagator Consistency of a quantum cosmological bounce

Excursions into “antigravity” 7

Choosing an open universe with x~ < 0 means adding a repulsive quadratic
potential, i.e., studying an “upside-down” relativistic harmonic oscillator.

Even for m > 0O, there are then classical solutions that asymptotically remain in
the “antigravity’” region: the general solution is

oy & yre CX

' t

_ € Tt

() = —2—exp —K / it’ N .(t’ + —2 _exp | —V—~ / it’ N_.(t' ,

() = Azexp | V=R [ar N(t) ) + Fexp [ —v=r [ar New) )
) 0

(

with =, - o = & which can be satisfied for one or both of ¢ and x5 chosen

to be spacelike. For such solutions, repulsion dominates over the radiation mass .

One would focus on solutions with timelike ={" and x5, which start in the
region ¢ > > (x")? for ¢ < 0, eventually return for ¢» > 0, and remain there.
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Quantum consistent open FLRW?

As one might expect, the antigravity solutions for « << 0 do contribute to
quantum transitions as described by the propagator.

The Feynman propagator can no longer be computed analytically, but a saddle
approximation for the proper time 7 integral, for x? — +oc at fixed z/, gives

iri
>

Gz, m|x’,m’) ~ || /2% = Ra?

The propagator becomes oscillatory at spacelike separations with a slowly decaying
prefactor, so that, e.g., a wave packet centred around an initial state in the gravity
region ¢» < 0, is propagated to large spacelike distances into the antigravity region.

There is then no quantum consistent bounce from a contracting to an expanding
universe that could be interpreted in semiclassical terms, in contrast to the
well-behaved ~ = 0 case.
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Summary

e An alternative to the Big Bang singularity is a bounce, a transition from a
collapsing to an expanding Universe. A quantum bounce can be described by
the Feynman propagator in quantum cosmology.

e With conformally coupled scalar fields and radiation as matter, there is the
possibility of an “antigravity” phase in which the scalars become super-
Planckian, making gravity effectively repulsive.

e For a flat FLRW universe, while antigravity can exist for a finite amount of
time, an inititally well-behaved collapsing Universe will make a transition to a
well-behaved expanding Universe. This is also true quantum-mechanically.

e Adding negative curvature introduces a repulsive potential that can drive the
Universe out into antigravity. This is avoidable classically for suitable initial
conditions, but not in the quantum theory as the Feynman propagator only
falls off slowly in spacelike directions.
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