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astonishing simplicity: just 5 numbers

e

Expansion rate:
foday = (temperature)
(Age)

[ Baryon-entropy ratio
energy 4 Dark matter-baryon ratio
! Dark energy density

[ Scalar amplitude

eometry =
5 4 Scalar spectralindex 1

_ (scale invariant = 0)

) "o
+m's;  butQ ,1+w .,
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Measurement Error
67.840.9 km s7! Mpc™! 1%
2.728 £+ 0.004 K 1%
13.799 +0.038 bn yrs 3%
6+.1x10-10 1%
5.4+ 0.1 2%
0.69+0.006 x critical 2%
4.6+0.006 x 10> 1%

-.033+0.004 12%

dink ?

dn_ 3 4 A, consistent
e (B)5)r

A with zero
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Behind it all is surely an idea so simple, so beautiful, that
when we grasp it - in a decade, a century or a millenium -
we will all say to each other, how could it have been
otherwise¢ How could we have been so stupid?

John A. Wheeler, How Come the Quantume Ann. N.Y.A.S., 480, 304-316 (1986).
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Nature has found a way to create an enormous hierarchy
of scales, more economically than in any current theory

A fascinating situation, demanding new ideas

One of the most minimal is to revisit guantum cosmology

The simplest cosmological model is de Sitter, relevant
iInteresting both for today’s dark energy and for inflation
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Perhaps the most impressive fact which emerges
from a study of the quantum theory of gravity is that
it is an extraordinarily economical theory. It gives one
just exactly what is needed in order to analyze a par-
ticular physical situation, but not a bit more. Thus it
will say nothing about time unless a clock to measure
time is provided, and it will say nothing about geometry
unless a device (either a material object, gravitational

waves, or some other form of radiation) is introduced to
tell when and where the geometry is to be measured.®
In view of the strongly operational foundations of
both the quantum theory and general relativity this
is to be expected. When the two theories are united the
result is an operational theory par excellence.®

B.S. DeWitt, Phys. Rev. 160, 1967 (p 1140)
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Quantum geometrodynamics

N

[
initial \

/

fundamental object:
Feynman propagator

sum over

\ 4-geometries

(4)
gu\;

(Z|%)

Wheeler, Feynman,
De Witt, Teitelboim ...

i[gle]
3-geometry

(1j0)




phase space Lorentzian path integral

ADM :ds*=(-N*+ N N*‘)dﬂ +2N drdx’ + 1V dx'd’

j DN j DN’ j Dh. j DrVe”

S = jdrjdx(n(”h(” N H'— NH)

Basic references:
C. Teitelboim (now Bunster), “Causality and Gauge Invariance in Quantum Gravity and Supergravity,”
Phys. Rev. Lett. 50, 705 (1983); see also Phys. Rev. D25, 3159 (1983); D28, 297 (1983).
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Some basic points: Feynman propagator, defined by integrating
only over positive lapse N allows you to distinguish an expanding
from a contracting universe.

Final: 1

Initial; O

Teitelboim, ...
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theories of initial conditions for inflation

Wave function of the Universe

J. B. Hartle
Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637
and Institute for Theoretical Physics, University of California, Santa Barbara, California 93106

S. W. Hawking
Department of Applied Mathematics and Theoretical Physics, Silver Street, Cambridge, England
and Institute for Theoretical Physics, University of California, Santa Barbara, California 93106
. (Received 29 July 1983)

The quantum state of a spatially closed universe can be described by a wave function which is a
functional on the geometries of compact three-manifolds and on the values of the matter fields on
these manifolds. The wave function obeys the Wheeler-DeWitt second-order functional differential
equation. We put forward a proposal for the wave function of the “ground state” or state of
minimum excitation: the ground-state amplitude for a three-geometry is given by a path integral
over all compact positive-definite four-geometries which have the three-geometry as a boundary.

Physical Review D28 (12) (1983) 2960
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One can interpret the functional in-
tegral over all compact four-geometries bounded by a
given three-geometry as giving the amplitude for that
three-geometry to arise from a zero three-geometry, i.e., a
single point. In other words, the ground state is the am-
plitude for the Universe to appear from nothing.® In the
following we shall elaborate on this construction and show
in simple models that it indeed supplies reasonable wave
functions for a state of minimum excitation.

4For related ideas, see A. Vilenkin, Phys. Lett. 117B, 25 (1982)
Phys. Rev. D 27, 2848 (1983).

Revised Vilenkin proposal (framed in terms of Lorentzian path integral):
Phys Rev. D30, 509 (1984); Phys Rev D50, 2581 (1994), gr-qc/9403010

Earlier versions: Lemaitre, Fomin, Tryon, Brout-Englert-Gunzig ...
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no boundary proposal (path integral version)

3-geometry of

|, e

Zero size

A very beautiful idea: the laws of physics determine their own initial conditions

irsa: 17110120 Page 13/60




simplest model: Einstein gravity plus cosmological constant

linearized

S = J.(%R — A)+ surface terms  (8mG =1) perturbation
p) / Jh-,-,_—_,- (g-wave)

/

Usual claim:

F222 (1 (14 1)(142) D) =

Yoce '’

QOur claim:;

Yoce !

1’” 12 (1- [(IH1)(14+2) k2
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simplest model: Einstein gravity plus cosmological constant

, , linearized
S = J.(% R—A)+ surfaceterms (G =1) perturbation
p) / (J_hm (g-wave)

/

Usual claim:
+‘~’T (1= (I+1)(1+2) hz)

Yoce '’

_ Perturbations out
Our claim:; , of control: there is

]"71; (1 l([+1)(1+2)/2 ) no meaningful

one-point amplitude
for a 3-geometry
“persistence of nothing”

Some overlap with previous work: Vilenkin (bg), Rubakov (perts), Ambjorn/Loll (bg), Sorkin (bg)...
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We evaluate the Lorentzian gravitational path integral using cosmological
perturbation theory and P-L/Cauchy to determine relevant saddles

Integrate out background (zero mode) first, then fluctuations (if nonzero), then N
Background:

ds> = —N*di* + a*dQ’; S=2n’[ df| -N"'3aa’ + N(3a— Aa®) |

o)

redefine* N = Na™', g=a = S= 2| dt| -N"! ‘}qz + N(3- Aq)} quadratic in g

LS, L
(Halliwell)

ds’ =—N’q 'dt’ +¢ in . workin gauge N = const

“no boundary" classical solution: qd,(t) = %ANQIQ +(_T]€AN2 +q)t: qd(O) =0, qd(l) =q,

Classical action: Sc/(ql:’N) = 27’[2 [%0 A2N3 + (3_ %A(]] )N_ %qizN_l :|

*FPI may be defined to be invariant under such redefinitions: this requires O(E!.z) quantum corrections to the
Hamiltonian | LfR ) which can be important at small g: for simplicity we neglect it here. (see Gielen+NT)

supcrspace
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redefine

Classical aq

*FPl may be d
Hamiltonian (
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redefine

ds” =

“no bounda

ssical ac

may be d
Jmilfonian (
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Classical aq

Hamiltonian (
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redefine

2

ds —

ne boundail

may be d
Tilfonian |
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redefine

2

ds™ =

no bounda

Classical aq

*FPl may be d
Hamilfonian (
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redefine

2

ds —

“no boundai

Classical aq

*FPl may be d
Hamiltonian (
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redefine

2

adse —

“no boundai

Classical ac

*FPl may be d
Hamiltonian (
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redefine

2

ads —

“no boundai

Pirsa: 17110120 Page 25/60




I=[ e¥d
e.g. — € X isa conditionally convergent integral

X

p.d -
. 4 ¢ iR"e”
! C

2

R2p2
but | [ dge™ | <

R.’a

-
>

+R
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3mi ';,'Sc-z (‘1] N) 4 saddles, related by
1N € N —-N ond

2hN complex conjugation

P-L theory:

every saddle O defines a “Lefshetz thimble" J
(complete steepest descent contour) upon which
integral is absolutely convergent. Generically,
each JO intersects a steepest ascent c:on’rourf&(r

S K)=4,
intersection o O oo

number
One can deform the defining contour C into one

passing along a number of thimbles,

C=>nJ en =(CK,)
g O (o) [e2
o)
i.e., asaddle contributes iff its steepest ascent

contour intersects C
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3ri ';,'Sc-z (‘11 N) 4 saddles, related by
12N € N —-N ond

2hN complex conjugation

P-L theory:

every saddle O defines a “Lefshetz thimble" J
(complete steepest descent contour) upon which
integral is absolutely convergent. Generically,
each Jo intersects a steepest ascent con’rourKU

o S(LK )=6
intersection o O oo

number
One can deform the defining contour C into one

passing along a number of thimbles,

C=YnJ, en =(CK,)
o O (o) [e2
(o)
i.e., asaddle contributes iff its steepest ascent

contour intersects C

Pirsa: 17110120 Page 28/60




Above gives the Feynman propagator. one can also integrate over C' = (—OO, OO) passing above 0
which just gives the real part of the Feynman propagator

From H(] O>F — —lh(S(Zl - ZO _), it follows that [:IRe[<1‘O>F] = (). so the contour

integral over C' gives a solution of the homogeneous WdW equation

e

/
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Pi

basic issues with the Euclidean path integral

Usual Wick rotation N =—iN . renders exponent £ § = —#SE real
but it is an odd function of N, so, semiclassically, the intfegral over

—oo < N <o diverges (in any dlmen3|on) Conversely, m‘regrohng
over d holf ine does not provide a “wavefunction of the universe”
satisfying the homogeneous WdW equation.

Furthermore, in D=4, divergences at N, — 0" and N, — te have
opposite signs so that (forg, >0) the half-line integral diverges.
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Perturbations (to quadratic order in action with no backreaction):

ds’ =—N’q 'dt’ + q(g:" 1 h; Ydx'dx’;

S = S(O) +S(2); S(;’) — n.;’ (: dl-‘[N_lqzhfl —N/(/+2)hf[]

Can show Re[y]>0 everywhere in complex N—plcme (ensures finite action)
except on two branch cuts (arise only because of infinite dimensionality)

-N <N<-N_, N <N<N_, where
N =

+

%\/21(1+ 2)+q, 4+ 2\/1(1 +2)(I(1+2)+4q,%

N.=NN_ =3,
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Pi

basic issues with the Euclidean path integral

Usual Wick rofation N =—iN . renders exponent £ § = —#SE real
but it is an odd function of N, so, semiclassically, the integral over

—oco < N <eo diverges (in any dlmen3|on) Conversely, m‘regrohng
over d holf ine does not provide a “wavefunction of the universe”
satisfying the homogeneous WdW equation.

Furthermore, in D=4, divergences at N, — 0" and N, — te have
opposite signs so that (forg, >0) the half-line integral diverges.
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safistyi

Further!
OPPOSI
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Perturbations (to quadratic order in action with no backreaction):

ds’ =—N°q 'dt’ + q(g:" + h; Ydx'dx’;

S = S(O) +S(2); S(E) — n.;’ (: dl-‘[N_lqzhfl —N/(/+2)hf[]

Can show Re[y]>0 everywhere in complex N—plcme (ensures finite action)
except on two branch cuts (arise only because of infinite dimensionality)

-N <N<-N_, N <N<N, where
N =

+

2200 +2)+ g3 2,0+ 211+ 2) +¢, 2

N.=NN_=3q,
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Can sho
except o

=AY < IV -
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Perturbations (to quadratic order in action with no backreaction):

ds’ =—N°q 'dt’ + q(g:" + h; Ydx'dx’;

S = S(O) +S(2); S(;’) — n.;’ (: dl-‘[N_lqzhfl —N/(/+2)hf[]

Can show Re[y]>0 everywhere in complex N—plcme (ensures finite action)
except on two branch cuts (arise only because of infinite dimensionality)

-N <N<-N_, N <N<N_, where
N =

+

%\/21(z+ 2)+q, 4+ 2\/1(1 +2)(I(1+2)+4q,%

N.=NN_ =3,
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INnCcreqasing
real N
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Can sho
except o

s <V -
N, =
71-\/2[(!4— )

N.=./N.
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Can sho
except o

=e < IV -
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Non-analyticity arises in the exponent, from integrating out perturbations:

cannot then apply Picard-Lefschetz flow for the remaining integral over N

However, Cauchy’s theorem still applies: we just distort the contour in advance to
avoid any branch cut which arises from integrating out fluctuations (to quadratic order)
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Conclusion:

There is no meaningful one-point function
"Hartle-Hawking state” for a 3-geometry

(for 4d gravity with positive A)




Persistence of nothing

If we consider the lmit 4, = ¢, = 0, then the
small N, divergence disappears and the
Euclidean path integral over the background
becomes well defined

24 1°
A> ME hA

(B There is a saddle with NV L= oL § =—

The Euclidean action for the tensor fluctuations is
positive definite so that the nothing-nothing “self-
energy’” amplitude is reql

We take this to mean that “nothing” is stable
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gquantum de Sitter

Lorentzian in-out amplitudes may be constructed semi-classically

For classically allowed g, and ¢,, both larger than the de Sitter throat,
there are always just two, real saddle point solutions

These interfere in interesting (and calculable) ways
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We have been able to find the linearized mode solutions analytically for
general N, as well as fo compute the corresponding classical action

We also have developed numerical techniques to include nonlinear
backreaction by iteratively improving the complex linear solutions

This provides a laboratory in which to study real-time quantum

phenomena using semiclassical methods, for example the growth of
perturbations in the contracting phase, leading to the creation of black holes
which then evaporate in the expanding phase

By systematically enumerating relevant semiclassical saddles, we may
explore whether de Sitter has a finite number of quantum states

Pirsa: 17110120 Page 47/60




Implications for inflation: well-known that flat slicing is
geodesically incomplete

Pirsa: 17110120

—di* + &My, oo <t < o0

Global geometry is obtained by
analytic continuation

¢ = constant

X = constant

New result: the semiclassical guantum
description is similarly incomplete.

Quantising the background (via the

semiclassical path integral) potentially
ruins the “"Bunch-Davies” vacuum.
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implications for inflation

4 physical size

[am—y

e
N
\
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there is a second classical solution!

physical size
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Quantum incompleteness of inflation

For inflation to be a complete theory, there should be a natural way of taking the the limit qO — O
€

—1
The usual way to specify the "“in" vacuum is to take TIO —) —Oo0L

Ht), ] e.g. S. Weinberg, arXiv: 0805.3781
where gq=¢ "' =—— '
( a=e Hn

However, we have TIO — \/— so in quantum geometrodynamics this amounts to

H4/q,
performing a small rephasing of qo in the opposite sense

Carrying this through, one finds that the relevant Lorentzian saddle (for the N-integral)
is always the one in the upper-half N-plane, giving unbounded perturbations

So there is a tension between quantum geometrodynamics and inflation, meaning that the
“Bunch-Davies" vacuum is potentially susceptible to large quantum gravitational effects

This quantum incompleteness is closely related to the classical, geodesic incompleteness of inflation
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de Sitter flat slicing with ¢, = 0 from uhp

L

—\ [/~




summary

» Picard-Lefschetz-Cauchy deformation allows us to obtain unambiguous predictions
from the Lorentzian path integral for gravity in the semiclassical limit.

The (path integral formulation) of the no boundary proposal is an attractive idea but
seems to be mathematically problematic. The Lorentzian semiclassical path integral
version yields perturbations which are out of control. The Euclidean path integral does
not exist.

Inflation and the “Bunch-Davies” vacuum are subject to similar nonperturbative
corrections, emphasizing that (without further definition) they are quantum
mechanically incomplete

Quantizing the background is important! Infriguing connection between the zero
modes (IR) and the QFT vacuum for inhomogeneous perturbations (UV)

Techniques potentially of wide applicability, e.g., to black holes & holography
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