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Abstract: <p>Motivated by the close relations of the renormalization group with both the holography duality and the deep learning, we propose that
the holographic geometry can emerge from deep learning the entanglement feature of a quantum many-body state. We devel op a concrete algorithm,
call the entanglement feature learning (EFL), based on the random tensor network (RTN) model for the tensor network holography. We show that
each RTN can be mapped to a Boltzmann machine, trained by the entanglement entropies over all subregions of a given quantum many-body state.
The goal is to construct the optimal RTN that best reproduce the entanglement feature. The RTN geometry can then be interpreted as the emergent
holographic geometry. We demonstrate the EFL agorithm on 1D free fermion system and observe the emergence of the hyperbolic geometry
(AdS_3 spatial geometry) as we tune the fermion system towards the gapless critical point (CFT_2 point).</p>
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Outline

e Review of two kinds of networks:
e Tensor Network - Holographic Duality (AdS/CFT)
e Neural Network - Deep Learning

e |s there any connection between tensor network and neural
network? What about holography and deep learning?

e Entanglement Feature Learning (EFL)

e Holographic spacial geometry emerges from deep learning
the entanglement features in a quantum many-body state.

e Demonstration on 1D free fermion CFT.
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Tensor Network

e Efficient representation of quantum many-body state
e Quantum states represented by wave functions:

¥) = Z‘I’(Sl, 2, ---) Is1 52 ...) «—basis states of Hilbert space
[si] \wave function for qubits:s; =0, 1

e \Wave function is also a tensor:

S1 S2 S3 S4 S5
P PSS PO TEE :
C ha ) =¥(s1, 52, ...)eC 2N entries!

e How can we store/represent these data efficiently?

e Tensor networks are more structural and efficient way to
represent a quantum many-body wave function than a
single tensor.
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Quantum Entanglement

e Example: Einstein-Podolsky-Rosen (EPH) pair
S1 So

|EPR)—f(IOO)+|“>) “ L_Jz

e Quantify entanglement by Entanglement Entropy
e Reduced Density Matrix p1 = Trs, [EPR) (EPR]
e (Renyi) Entanglement Entropy

SE'=

e For EPR pair, entanglement entropy S =1n 2 = 1 bit
e Mutual Information

ln 1y p1+—Renyiindex n

™@1,2)=SP1) +5P2)- 5™ U 2) =2 bit

e Measures the 2xlog of the effective bond dimension (rank).
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Tensor Network

e Building entangled many-body state from EPR pairs
e Starting from |EPRag) ® |EPRac) ® [EPRAp) C

e A measures the qubits pa = [Ya) (Y4l A
e Now B, C, D are entangled

e Distribute EPR pairs + measurement — 2 .
Entanglement formed among unmeasured qubits

e Tensor Network State (PEPS)
e Given agraph G=(V, &)
e Pure states |¢,) (VveV)
e Entangled pairs |[l.) (Vee&)

W) = @ Wy L)

v.eeG

Verstraete, Cirac, Murg (2009)
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Tensor Network Holography
e Why are tensor networks interesting?
e Useful in condensed matter physics: DMRG, MERA, PEPS
e Entanglement structure visualized as Network geometry
e Each link carries some amount of entanglement
rank(pg)<D oOr Sg<InD D
e Upper-bound of entropy in tensor network

Se(A) < |ya| In D «—bond dimension
“Sminimal area (minimal cut)

e Holographic Duality (AdS/CFT)
e Entanglement = Area

Sg(A) =

lyal Ryu, Takayanagi (2006)
4 Gy

e Microscopic: network tiling the space
Swingle (2009)
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Tensor Network Holography

e |f we want to be more serious with the idea of tensor network
holography, the tensor network would better saturate the
Ryu-Takayanaki (RT) bound:

Sg(A)=|yalln D
e So what kind of tensor network can saturate the RT bound?

e Early breakthrough: Perfect Tensor Network

- holographic quantum error correction codes
Pastawski, Yoshida, Harlow, Perskill (2015)

e |t turns out that the Random Tensor Network automatically
satisfies the perfect conditions in the large bond dimension
limit, and therefore saturates the RT bound.

D—-oo

Se(A) > lyallnD
Hayden, Nezami, Qi, Thomas, Walter, Yang (2016)
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Random Tensor Network
D—co

e The Ryu-Takayanaki bound can be saturated Sg(4) = |yalIn D
if we consider Random Tensor Network.

e Each tensor is drawn randomly
(Each site projects to random state)

Prrn) = &) Wy ) (¢y) random)
veeG
e Entanglement entropy on RTN states

can be mapped to Ising models.
Hayden, Nezami, Qi, Thomas, Walter, Yang (2016)

e Why Ising model? If entanglement = minimal cut ...
e Finding the minimal cut is a graph partition problem

e Network science: minimize network modularity
Physics: minimize Ising domain wall energy
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Ising Model and Minimal Cut
e Given a graph with boundary

e Introduce Ising spinso, =+1 (YveV)
e Consider a ferromagnetic Ising model

E:—]Z no'.,—h ZTV(TV

eeEvede veVy

e Set up opposite boundary pinning field
in regions A and A respectively

e In the large J limit, Ising domain wall through the bulk
automatically finds the minimal cut.

e Cut length lval ~ energy cost E4 — Eq = 2 ] |yl
e Compare to the entanglement entropy Se(4) = |yalIn D

Conjecture: | = -;- InD?
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Random Tensor Network

e Entanglement Entropy of Random Tensor Network
e Reduced density matrix pa = Trg [¥rTn) (YrrN|

e Ensemble average over random tensors:

Hayden, Nezami, Qi,
2 _E ’ — =
ETrp; = Zm el — ¢ mT'] Thomas, Walter, Yang (2016)

+1 ved

e Entanglement regions specified by 7, = { i gy

the boundary field configuration
e Entanglement entropy = Free energy

S¥)(A) = Flt] - FlT = +1]

e Coupling « bound mutual information Je =l /4 (Ye€ &)
BEELEEEL TERRETRRRsa et BRLls FERORE DAL ERERTLELLE SEETINT 4L

'\V)""‘"S.'JP *'b'k‘ﬁb't'tﬁ't'ﬂ)'dr 2 Vﬂﬂb"‘,‘ L DR QVA'A‘L" 15‘\'1' 'ﬂ"‘?'dt" s

RN R PSP IR
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Entanglement Scaling

e For a single (connected) region, how does entanglement
scales with the region length?

Area-law Logarithmic Volume-law
Se(A) ~ cosnt. SE(A) ~In Ly

"4&\":&:‘

e In principle, all graph geometries can be realized on a
complete graph by changing J. = I, /4 (the edge effectively
disconnected when /. - 0)
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Tensor Network Holography
e Holographic Duality
e Entanglement structure < Holographic geometry

e Given bulk geometry — tensor network tiling — tensor
network sate produces entanglement features

e The inverse problem: given entanglement features, can we
determine the optimal holographic geometry?

e Random Tensor Network Holography

e J. are the only tunable parameters: focus on network
connectivity (graph geometry), ignore tensor contents

e Quantum geometry

e Je label a set of coherent state basis [¥rrn[/e])

e Bidirectional isometry, quasi-orthogonality Qi, Yang, You (2017)
e Classical geometry: treat as Je classical parameters
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A Machine Learning Problem?

e So we need to tune the set of couplings Je in an Ising model
in search of an optimal network connectivity ...

e This sounds so familiar as optimizing a neural network
— a Machine Learning problem?

e Supervised Learning
e Learn from labeled training data: (input x, label y) pairs
e To establish a map from input to label j(x)
e Minimize the loss L[y, y(x)]
e Unsupervised Learning
e | earn from unlabeled data with empirical Pga(x)
e To train model that generates data with Pmdi(x)
e Minimize the cross entropy £ = —ZPdat(x) In Ppqi(x)
X
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Deep Boltzmann Machine

A deep neural network, each neuron is an Ising spin

Visible units T: boundary of the network Salakhutdinov, Hinton (2009)
Hidden units o: bulk of the network SR

Generative model

g 1 -E[o,r] trace out hidden
Plrl=— ) e

neurons
(o]

E[z] = - Z I H z, (neglect bias terms,

assume Z2 symmetry)

eeb& vede

Z=lo=e, t=0)
Goal: tune network weights Je, to optimize objective function
® For example, the cross entropy £ = — >}, Pdat[7] In P[7]

e Or more general, some function(al) of the free energy
ngji]n LFi=: )
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Entanglement Feature Learning

Each sample in the training set is a partition of the quantum
many-body systemay =AJ 4, each partition is labeled by a
boundary pinning field configuration, or equivalent a set of
visible spins.

(7] Tu={+1 ved A A

=1 vcA TEVLLILLFTRRELEY L

Given a quantum many-body state |¥) (to learn), each
partition [1] is associated with an entanglement entropy

SE4[7] = SEY(A) = —In Try(Try W) (¥|)°

Goal: fit the entanglement feature by that of a random tensor
network (RTN)

Data ([7], S (7]) Model Sikrn[7; /] Parameters J.
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Training Scheme (Superwsed)

,,,,,,,

e From free fermion chain, prepare :;; =
training set ([7], Se[7]) P X

e From planar Ising model, predict Tensor
the label ([7], F[r] = F[70])

e Objective: mean square error

e Ul D ) et |

e Optimizer: gradient descent (Adam)
e Regularization

e Positivity ;>0 (z=1, 2, ...)

e Coupling decay with depth

h=b=hk=". h J =
e Implementation: TensorFlow™ -

Ising_net regularizer
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Graph Gauge Fixing
e Architecture designs

e Layered structure (learning
signal passed down from one
layer to the next)

e Uniform coupling within each
layer (preserving translational
symmetry as much as possible)

e Periodic boundary condition Hyperbolic network
e Background geometry: | |

Cylindrical network

cylindrical (flat) v.s. hyperbolic I J3
e Boundary pinning field set by the z| :jz
1

physical bond dimension (given
by the training set) h = % InD X
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Training Set: 1D Free Fermion Chain

e Computing entanglement entropies for generic many-body
system is hard.

e To test the idea of EFL, we start with the simplest free

fermion chain _~Majorana fermions
H= —Zzi Ui Xai Xai+1 ui=1+m(-1y
a=1 i=1 éi Xis1
e Two key parameters: Ui eunit cell>

e Central charge ¢ = N/ 2, counts fermion flavor number
e Mass m: controls correlation lengthé=1/m

e Entanglement entropy over any (multiple) regions can be
calculated efficiently from the fermion Green'’s function

1 " i
Ga == (Pax X" Pa) SE)(A)=—Trn(G; + (1 — Ga)?)
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Choosing the Central Charge
e Fix mass m = 0 (critical fermion chain), hyperbolic network

0.5F : |
0.4} s 8 g —
{—1/2
o 0.3} ]
iy 0‘2_ 2 - l‘

0.1}
0.0¢ » . -

AL‘A\‘A\ LI\ A\‘Ablk VAl

WMMM@WJMMMMMMMMWAM-

layer z 1.0F
e Ising coupling J. develops layer 82
by layer during training § 04| PM-like FM-like
® J; varies with central charge — 02
a FM-PM crossover in the bulk e

e AAS/CFT: c=3/¢/(2 Gy) J
small ¢ = strong-coupling (quantum) gravity/geometry

Pirsa: 17110111 Page 20/25



Multi-Region Entanglement Entropy

e Train a hyperbolic network using single-region entanglement
entropies — Can the network predict multi-region

entanglement entropies? Tl c=4

e Different color - different number 5}
of entanglement regions & 25}

e In the training phase, only single- 3 20
region data is served § 12

e The trained machine was ableto & . / _
predict multi-region entanglement Y R N
entropies (which was not in the ST loiTo S ot
training set) with accuracy ~ 95% actual S&’

e Not too surprising, as Se(A U B) = Sg(A) + Sg(B) - I(A, B)
The additive part is relatively easy to capture.
What about the sub-additive (mutual information) part?
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Mutual Information

e Adjacent regions: mutual e Separated regions: can not
information still fits well, provide sufficient mutual
because there is still a information, need additional
geometric interpretation matter on top of the

background geometry...
YA Ye l—A— t—B—1
c=4
tt—A—>tt—B—1 1.0
S bRk T actual ‘
@ - ¢ predicted §
2 < 06 ]
= Bt ~
= bt R S
<L — actual 2 : - -
2:. & predicted e ‘4 SR
54 6 st region length L
region length L e |earnt the classical bulk
e Deep network at work! geometry, nothing more
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How Deep Could It Be?

e Turn on the fermion mass m, the holographlc bulk is cut off at
the mass scale (in IR) T >

Zewt ~INé==Inm
e Deep layers fade away

e Quantum phase transition
of the Majorana chain is

signified by the peak of zcu [
5t ]

0.4 " ol - J=

0.3 _m (=) E{ g.g
= 0.2¢ {=—0.05 —o 0:1

01l . () 1 2 0

0.2
0.0¢ 0.5 1.

00 01 0.2 03 04 05
mass m
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Future Applications
e Modeling Thermalization Transition
e Many-body localization (MBL): area law state
e Eigenstate thermalization (ETH): volume law state

e MBL-ETH transition: a transition of entanglement features,
a transition of holographic bulk geometry

e Understanding Mandy-Body Entanglement
e Unfolding the structure of entanglement at multiple scales
e Classify phases of matter based on entanglement structure
e Dynamics of entanglement formation/propagation

Thanks for your attention!
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Single-Region Entanglement Entropy

e For critical fermion chain (m = 0), the single-region
entanglement entropy follows the logarithmic scaling

RGN = 1
S (A) = 3 (1 = E) InLy Calabrese, Cardy (2004)

Trained on hyperbolic net Trained on cylindrical net

c=4 c=4
4 -' : . i 4 i 5 enne 5
g 3t :‘T 3
Sw 2| Sy 2
O 4 —actual || © 4 — actual |
0 ¢ predicted o ¢ predicted
9 5 10 15 20 25 3@ 0 5 10 15 20 25 30
region length L, region length L,

e For CFT states, hyperbolic network provides a better fit of the
logarithmic scaling of the entanglement entropy.
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