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Abstract: <p>| present a one-function family of solutionsto 4D vacuum Einstein equations. While all diffeomorphic to the extremal Kerr black hole,
they are labeled by well-defined conserved charges and are hence distinct geometries. Out of the appropriate combination of these charges, we
construct aVirasoro algebra and consistency conditions lead usto a proposal for identifying extreme Kerr black hole microstates, dubbed as extreme
Kerr fluff. Counting these microstates, we correctly reproduce the extreme Kerr black hole entropy.</p>
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Introduction
000

Review of Hamiltonian Formalism

Hamiltonian Formalism

@ The construction of Hamiltonian formulation involves an explicit choice
of time direction. This breaks the covariant form of general relativity.

From the relativistic point of view we are thus singling out one particular
observer and making our whole formalism refer to the time for this
observer. That, of course, is not really very pleasant to a relativist, who
would like to treat all observers on the same footing. However, itis a
feature of the present formalism which | do not see how one can avoid if
one wants to keep to the generality of allowing the Lagrangian to be any
function of the coordinates and velocities. P. A. M. Dirac
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Review of Hamiltonian Formalism

Hamiltonian Formalism, A very brief review

@ The cotangent bundle of the configuration manifold I', is naturally
endowed with a canonical 1-form 6, which 2 = d#f is non-degenerate,
and therefore defines a symplectic formon I'.

@ Given a Hamiltonian function H on I', Hamiltonian vector field X}, is
defined by dH = Q(X4, ).

@ Darboux’s theorem: There is no local invariant in symplectic
geometry.

Q=) do' ndqg

® In the Darboux base X, = §fg, — 918y, and therefore

canonical equations reduce to
q = OpH p' = —0gH
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Review of Hamiltonian Formalism

Hamiltonian Formalism, A very brief review

@ Qis non-degenerate —> Q& = (Q,) "

@ Poisson bracket between two functions:
{f, g} = QXs, Xg) = {f, g} = Q%0,f0sg

e Dynamical equations: % = {f, H}

@ Liouville’'s theorem: Ly, (2 AQ2---Q) =0
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Symplectic symmetry

Hamiltonian Formalism, Symplectic symmetry

@ If LyQ =0, Y is generator of a symplectic symmetry.

LyQ=Y dQ+d(Y - Q) =d(Y - Q) =0— Y- -Q=dHy
Y2 = Q®9,Hy = 8?Hy

@ On-shell value of Hy is called charge of Y over that solution.

@ Conserved charges {H, Hy} = 0.
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Symplectic symmetry

Hamiltonian Formalism, Algebra of Symplectic
Symmetries

@ Symplectic Symmetries form an algebra
LyQ=LyQ=0 = Ly, v Q= LyLyQ—-LyLyQ=0

@ Fundamental Theorem of symplectic symmetries:

The algebra of generators of symplectic symmetries (Hy,) through the Poisson
bracket is the same as the algebra of symplectic symmetries (Y;) through the
Lie bracket, up to a central extension. { Hy,, H\,zj b =H, v,y C, dC=0.

OaHy, vy = Qasl Vi, V)I° = QabLy, Y7 = Ly, Qap Y] = Ly,(dHy))a
(d(Yi - dHy,)a = 0a(Q%0sHy,0cHy, = da({Hy,, Hy})
{Hy,C} =0
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Covariant Phase—Space Formalism BTZ Black Hole Microstates

Covariant Phase-Space Formalism, set up

@ F: space of all field configurations ® with given b.c
@ F c F: on-shell field configurations

@ /®: An infinitesimal field perturbation — tangent vector to
}"

@ The idea of CPSM is taking F as a phase-space
(symplectic manifold).

@ How to construct a symplectic structure?
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Covariant Phase-Space Formalism

Pre-Symplectic Structure

@ Starting with an action o
S= L, L(®) = L(P) e, oy OX A - aXH

§S =0 — f E(®)5d + dO(®, 50) = 0

0 = /—go"

1
(G 1y oo A

(

@ Example:

— R . /7g 1 » N
E - m - E(¢)5¢ - WEHT'-Hd(H,MV_ég,u,uR)6g dX

(Vadg"® — V*4g5)
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Covariant Phase-Space Formalism

Pre-Symplectic Structure

@ Ambiguities:

@ underl - L+ du
E.o.M does not change but © — © + dpu

Q@ ©-50+4aY
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Covariant Phase—Space Formalism BTZ Black Hole Microstates

Pre-Symplectic Structure

Pre-Symplectic Structure

@ pre-symplectic current w:
w = w[01P, 620] = 610(62P, @) — 620(51 P, )

L—L+dy, w—w+ (8162 — d201)p = w
© > 0+dY, w—w+d(dY(020,) -5 Y(61P,P))

@ dw~0
dw = 61d0(32) — (1 > 2) = 61(d2L — EG®) — (1 > 2)
= (6162 — 6101)L + 81ES® — 6,E51 9 = 0
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Charge of Residual Gauge Transformation

Residual Gauge Transformation

Residual gauge transformations —  Conserved surface charges
It plays an important role in holographic description of gravity

d, ® denotes a gauge transformation by gauge parameter y.
example: in E.M 6, A = d x or in gravitational theoreis 6, g,.. = L9

For an infinitesimal gauge transformation 4, ¢, the generator of gauge
transformation H, is defined by 6, ® = {$, H, }.

®
H, =f SHy,  &Hy =fw[a¢_§5x¢]
b

@ On-shell value of H, is called charge of the gauge transformation
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Charge of Residual Gauge Transformation

Residual Gauge Transformation

Example:

L= lF;wF‘“’ = 0" =F"5A,

Q[J‘] A, 52A, A] —_ /(51 F“VCSQAV == 52F[J-U51 Ay)ds,u,
JI
Taking 6.A, = 0.e(x) =

§H, = /(JF#uasAu — 6.F""5A,)ds,, = /(JF#Uﬁyt)dS#
Jx ok

I.B.P = d.H = [ €0, F"" + ¢ edF*". If € is A-independent
= He = [{ O, F" + §5 €FM.

Charges are on-shell value of H. = Q. = §,5 €(X)F*
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(ala] lale]

Charge of Residual Gauge Transformation

Conserved Charges in Gravitational Theories

Lagrangian is "Invariant” under gauge trans. up to a total derivative

ox L =dM, [®]

x Is generator of local coordinate transformation, which is a vector field.
Gauge transformation is given by Lie derivative
IxL=LyL=x-dL+d(x-L)=d(x-L) = My=x-L

Jy = O[5, P, 0] - My [®] = dJy ~0 = J, =dQ, — S,
Fundamental identity of C.P.S.M for gravity:

w[od, 6,P; P] = G, + dry

where G, = S, + x - E[®]6® and x, = 6Q, — x - © + d(possible b.t)
Therefore generator of gauge transformation H, obtained from

SH, = /w[5¢,5x,¢]=/ex+j{ o =
JE JE oL

5Q, = jé o [66, ]
-
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Charge of Residual Gauge Transformation

Example:

@ Einstein gravity in4d: L = ﬁ

defining 6g,... = h,. we get

V™ 1 L 1 4 4
E[®]é® = ﬁ(ﬁw - ég#l’R)hL Eﬁmuznamdxﬁ A axt

- 1 LA M V_17 I S TV
f167rGN(Vuh vth) = *Q! = fergy VX'V x")

1 , ( -
Ky = 4Lﬁ/_g K €uvapdX® A dx®

Jgtu1p2p3“4dxﬂ1 A Xt

9#

where

1 1
NI UV py LV Lo / VT papu n ! vop
Ky = 167TGN(X Vh - x"Voh"" 4+ x-V"h h“'V ,x +2hV x")
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Covariant Phase-Space Formalism
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Charge of Residual Gauge Transformation

Integrability Conditions :

It is not obvious that the infinitesimal charge defined in is really a
variation of a function Q, over the phase space.

Example from Thermodynamics: heat transformation §Q vs. S = .['7 5?

Theorem: The necessary and sufficient condition for charge
integrability:

Finiteness of charges
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Covariant Phase-Space Formalism

9000;
Examples

Examples :

@ x = 0, for Schwarzschild B.H metric = §Qy, =M = Q, =M

@ x = 0y for Kerr B.H metric = 6Qs, = d(ma) = Q, = —J
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BTZ Black Hole arxiv:1607.00009, 1608.01293, 1705.06257

@ Starting with an extremal BTZ B.H solution

/ 2‘0 2 gz" 2 2 2 2 : 2
i — f —
7 at +7(r2 )2 ar—2ry didp+rode®, M=/ =

2 __
ds” = 4G

2 : ) |
dS2—€2dZ— o (rdx*F{;Zf—er ) (rdx 7€gf+dX )’ Xi _ ; + o

22 r
Extremal BTZ corresponds to f- = 0 (or fy =0) and f; > 0.

@ Consider one-function class of solutions generated by

de — J(p)dy
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BTZ Black Hole Phase-Space

2
ds?; = _'2 205 4 %dﬁ — 2J()R dtde + P ()d,

@ In above phase-space consider transformations x = ¢(¢)d,, and

phase-dependent transformation 7 = 527759,

@ Their Fourier modes X, and 7, forms algebras

[Xms Xn] = —i(M — MXmin,  [Dmynale =0, [Xm, Mn)s = iN Nmyn
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BTZ Black Hole arxiv:1607.00009, 1608.01293, 1705.06257

@ Starting with an extremal BTZ B.H solution

/ 2‘0 2 gz" 2 2 2 2 : 2
i — f —
7 at +7(r2 )2 ar—2ry didp+rode®, M=/ =

2 __
ds” = 4G

2 : ) |
dS2—€2dZ— o (rdx*F{;Zf—er ) (rdx 7€gf+dX )’ Xi _ ; + o

22 r
Extremal BTZ corresponds to f- = 0 (or fy =0) and f; > 0.

@ Consider one-function class of solutions generated by

de — J(p)dy
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BTZ Black Hole Phase-Space

2
ds?; = _'2 205 4 %dﬁ — 2J()R dtde + P ()d,

@ In above phase-space consider transformations x = ¢(¢)d,, and

phase-dependent transformation 7 = 527759,

@ Their Fourier modes X, and 7, forms algebras

[Xms Xn] = —i(M — MXmin,  [Dmynale =0, [Xm, Mn)s = iN Nmyn
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Twisted Sugawara Construction

@ Their corresponding charges form similar algebra up to central
extension

inc ~ .
{LmsLn} = (m n)Lm+na {ImyIn}s = 125m+na {LmyJn}x = iNImsn

@ A combination L, = L, + inl, give

3¢

{]Lm,]Ln}* - (m n)LnH—n 125m+n, c= 2GN
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Conclusion

@ Adjusted Lie bracket

[x(e1: ®), x(e2: @)« = [x(er; @), x(e2; P)] — (de, x (€2, P) — de, x (€1, P))
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Conclusion

@ We have shown how the horizon fluff idea can be worked through for
the BTZ and 4D extremal Kerr black hole.

@ Our analysis expands upon the Kerr/CFT analysis in three important
ways:
@ our symmetry algebra is defined over the whole extremal
Kerr geometry and not only in the near horizon region

© we have introduced the extremal Kerr phase space, our
symmetries are symplectic (and not just asymptotic)
© besides the Vir. we have a current algebra and our
symmetry generator diffeos. are all along the azimuthal
angle 0,
@ Our preliminary analysis shows that similar features can be extended to
other extremal black holes in higher dimensions.

Hossein Yavartanoo

Kerr Black Hole Microstates

Pirsa: 17110110 Page 24/53



Pirsa: 17110110

Twisted Sugawara Construction

@ Their corresponding charges form similar algebra up to central
extension

{LmsLn} = (m n)Lm+na {ImyIn}s = %&TH»IH {Lmn]]n} = iNJm+n

@ A combination L, = L, + inl, give

3¢

{]Lm,]Ln} - (m n)LnH—n 125m+n, c= 2GN

@ Using the Dirac quantisation rules { } — —i[]

[]Lm,]Ln] = (m - n)HAern + m 125m+m [«Hm; Jn] 6m+n
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BTZ Black Hole Microstates

900000

BTZ black hole microstates

Hilbert Space

@ Given the sym. algebra one can construct Hilbert space of unitary
representations of the algebra.

vn>0 .]InIO; J{)> = 0, Jolo; Jo> = Jo

{ni}, Jo) = H J—n4|O,J0>

{n;>0}
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Twisted Sugawara Construction

@ Their corresponding charges form similar algebra up to central
extension

{LmsLn} = (m n)Lm+na {ImyIn}s = %&TH»IH {Lmn]]n} = iNJm+n

@ A combination L, = L, + inl, give

3¢

{]Lm,]Ln} - (m n)LnH—n 125m+n, c= 2GN

@ Using the Dirac quantisation rules { } — —i[]

[]Lm,]Ln] = (m - n)HAern + m 125m+m [«Hm; Jn] 6m+n
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BTZ Black Hole Microstates
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BTZ black hole microstates

Another Construction of Virasoro Algebra

Positivity of norm implies J}, = J_, for n # 0 but J, can be either
Hermitian or Anti-Hermitian.

The Hilbert space includes states with Jo = +iv/2 for v € (0, 1].

It is more convenient to work with operators W =: exp(—2 [ J) :

One expects v to take discrete values, v = r/c,r=1,2,--- ,c.
Recalling W(y + 27) = €¥™W(y), we have c independent W fields.
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BTZ Black Hole Phase-Space

2
ds?; = _'2 205 4 %dﬁ — 2J()R dtde + P ()d,

@ In above phase-space consider transformations x = ¢(¢)d,, and

phase-dependent transformation 7 = 527759,
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Twisted Sugawara Construction

@ Their corresponding charges form similar algebra up to central
extension

P ! A inc A .
{Lm,Ln}x = —f(m—n)l-m+ns {ImyIn}s = ﬁ5m+n, {LmyJn}x = iNImsn
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BTZ Black Hole Microstates
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BTZ black hole microstates

Another Construction of Virasoro Algebra

Positivity of norm implies J}, = J_, for n # 0 but J, can be either
Hermitian or Anti-Hermitian.

The Hilbert space includes states with Jo = +iv/2 for v € (0, 1].

It is more convenient to work with operators W =: exp(—2 [ J) :

One expects v to take discrete values, v = r/c,r =1,2,--- ,¢.
Recalling W(y + 27) = €¥™W(y), we have c independent W fields.

In the large c limit, these fields provide a free field rep. for the Vir.
algebra.

It is more conveniently to work with 7, operators which are the
collection of Fourier modes of the ¢ independent W-fields, into a single
operator Jpc+r = Wy,

m
[Jma Jn] = §5m+n
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BTZ Black Hole Microstates
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BTZ black hole microstates

Another Construction of Virasoro Algebra

@ Intermsof JowegetL, =13 Ten-mTm

c
[Lm, Lo) = (M — N)Lmsn + msﬁa,w

@ To construct the Hilbert space for this Vir.

vn>0, J.0)=0, [{n})=[] T-nl0)

nf->0

@ For any given state |¢) we get Jp|1)) = 0. Since Jo measures the
energy from the near horizon viewpoint, this Hilbert space may be
conveniently called Hilbert space of near horizon soft hairs.
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BTZ Black Hole Microstates
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BTZ black hole microstates

|dentifying Microstates

Two different constructions for the same Vir. algebra at central charge ¢
and their associated Hilbert spaces.

Recalling that .7, was constructed from W, which in turn is constructed
from Jp.

We can use this equivalence to identify microstates of BTZ black hole.

To identify the microstates, we propose that these two Vir. and the
corresponding Hilbert spaces provide dual descriptions for the same
physical system, i.e. we require L, = IL,, or more precisely

1 ) ~ .
E Zp: : [fnc—p..']p = inln + Zp:“ﬂn_p'ﬂp
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BTZ Black Hole Microstates
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BTZ black hole microstates

|dentifying Microstates

@ BTZ black hole state |0, Jy) corresponds to set of |{n;}) states in H 7
Hilbert space with same mass/angular momentum. Recalling
M =J = gJ§
6
({nf}lLﬂ’F'{n:}) = 5!’?1,05:1,'.:1; EJg

@ The solution turns out to be

{ni}) with Y ni=ctM
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BTZ Black Hole Microstates
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BTZ black hole microstates

Counting Microstates

@ As the check for our proposal, we note that one can count number of
states.

@ For large N = c¢M this is the standard Hardy-Ramanujan problem.

exp (2w \/g )

4/3 N

P(N) ~

@ The logarithm of this number gives the black hole entropy S = 2 %
+ log-corrections
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BTZ Black Hole arxiv:1607.00009, 1608.01293, 1705.06257

@ Starting with an extremal BTZ B.H solution

/ 2‘0 2 gz" 2 2 2 2 : 2
i — f —
7 at +7(r2 )2 ar—2ry didp+rode®, M=/ =

2 __
ds” = 4G

2 : ) |
dS2—€2dZ— o (rdx*F{;Zf—er ) (rdx 7€gf+dX )’ Xi _ ; + o

22 r
Extremal BTZ corresponds to f- = 0 (or fy =0) and f; > 0.

@ Consider one-function class of solutions generated by

de — J(p)dy
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Kerr Black Hole Microstates

Extremal Kerr Black hole Phase-Space
1708.06378, 1711.XXXXX

sin @

ds? = —%(dm msin® 6 d¢)? + %dre + £do? +

(7 + mP)dg + mdt)2 ,

A=(r—-m)? X=r’+mfcos’d
where mass, angular momentum and entropy are given by
m . m b5 An
Gv' T Gy TPMT 4Gy

@ To generate the Extremal Kerr Phase-Space we consider

1 2w

do > J(@)dg, =, [ J(9)ds =1

@ On this phase-space consider two trans., generated by vector fields

M= = 27j

2= @0 1= 5500
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Kerr Black Hole Microstates

Extremal Kerr Black hole Phase-Space

6)‘2_9;:1/ [IJ] - E)Qg,u.u - g;u.' [J -+ be] ha g;u.f [J]q fg'r;g;f.rz [J] - lt'r,rg;f.r.f = Juv [J { (5”‘]] gju/[J]
Sed ~ (eJ), Spd ~ €' /2 A
@ If we denote associated charges to x, and n, by L, and J,
[)%m;)?_n] = *i(m - n)):’_m+n, [??maq’?n]* =0, [X’_m; 7]n]m = iIMmsn
{H:ms H:m} = —i(m—n)ﬂzr)+m+' oy {ImdIn} =0+, {H:m; Jn} = inlmen+---

@ Standard CPSM analysis reveals that I, and J, are both symplectic
and integrable and that

{Lm, Lo} = - 2qu f dep €™ (2J(imd + J'))

Hossein Yavartanoo
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Extremal Kerr Black hole Phase-Space

which gives

We get

in. ~
{-Um,-]]n} = EJ5m+n,0: Lp= J
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Kerr Black Hole Microstates

Twisted Sugawara Construction

@ Given the symplectic symmetry generators ¥, n, any linear combination
of them is also a symplectic symmetry generator. In particular, let us

consider )

xle(@)] = (et 55 )96 = Rlel+nle']

@ The charge associated with ¢ = €%, LL,, is then

A 1 :
Ly =La+inly, = ; Z.Hp.ﬂnfp“i”lnjn
p

and together with current J, form a Kac-Moody algebra,

{Lm,Ln} = —i(m — N)Lmsn — im?® J25n1+n,0-

Hossein Yavartanoo
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Kerr Black Hole Microstates

Extremal Kerr Hilbert space

@ Vacuum state of Hyer can be defined by
Jo|0; Jo) = jo|0; o), Jnl0; o) =0, n>0,

@ The other states in Hyer may then be constructed as
{1} do) = Ny [ 3-nl0:), NG =TT

n,—>0
@ Hker includes states with imaginary Jo = +iv/2 with v € (0,1]

Wig)=e?/",  w=we1l"
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Kerr Black Hole Microstates

Extremal Kerr Hilbert space

@ Vacuum state of Hyer can be defined by
Jo|0; Jo) = jo|0; o), Jnl0; o) =0, n>0,

@ The other states in Hyer may then be constructed as
{1} do) = Ny [ 3-nl0:), NG =TT

n,—>0
@ Hker includes states with imaginary Jo = +iv/2 with v € (0,1]

Wig)=e?/",  w=we1l"

@ jis the angular momentum of the original Kerr black hole and it is
expected to be quantised. Therefore, central charge ¢ = 6j is also
integer-valued.
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Extremal Kerr Black hole Phase-Space
1708.06378, 1711.XXXXX

sin® @

ds? = —%(dw msin® 6 d¢)? + %dre + £do? +

(7 + mP)dg + mdr)2 ,

A=(r— m)z, Y = r? + m®cos? 0
where mass, angular momentum and entropy are given by
m . m So .= An
Gv' T Gy TPMT 4Gy

@ To generate the Extremal Kerr Phase-Space we consider

1 2w

dp = J(@)dp, b=, | J(@)dp=1
JO
@ On this phase-space consider two trans., generated by vector fields

%= e($)0s, n= 0,

M= = 27j
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Kerr Black Hole Microstates

Microstate Counting

@ For large j this is the standard Hardy-Ramanujan formula gives
S(j) = 27j + log-corrections,

reproducing the Bekenstein-Hawking entropy and its logarithmic
corrections.
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Kerr Black Hole Microstates

Extremal Kerr Black hole Phase-Space
1708.06378, 1711.XXXXX

2
= (

2
ds® = —%(dt + msin® 6 dg)? + %dr2 + Td6? + (r* + m?)dg + md!‘) ;

A=(r—-m)? X=r’+mfcos’d
where mass, angular momentum and entropy are given by

m . m g, . _ A
Gy 7 Gy “B"T 4G,

@ To generate the Extremal Kerr Phase-Space we consider

1 2w
Ao+ S@)do, =5 [ Ue)ds =1

M= = 27j
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Kerr Black Hole Microstates

Extremal Kerr Black hole Phase-Space

6)29;:1/ [J] - Ljﬁ_g,u.u - g;“/ [J -+ OXJ] - g;u.' [J], (g'r,rgu.r.f [J] - L‘r'r,rg;f.r.f = Juv [J { 6?;\” gju.-'[J]
Sed ~ (eJ), Spd ~ €' /2 A
@ If we denote associated charges to x, and n, by L., and J,
[i’-m! 5\;"] = *i(m - n))?_m+n, [??ma"'?n]* =0, [)?_mg T]n]m = IMmsn
{I[ij lI:n} = —i(m—n)ﬂzr)+n1+' <oy {Imdn} =0+, {H:m; Jn} = inlmen+---

@ Standard CPSM analysis reveals that I, and J, are both symplectic
and integrable and that

{Lm L} = — - f dep €™ (20(imd + J'))
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Conclusion

Conclusion

@ We have shown how the horizon fluff idea can be worked through for
the BTZ and 4D extremal Kerr black hole.

@ Our analysis expands upon the Kerr/CFT analysis in three important
ways:
@ our symmetry algebra is defined over the whole extremal
Kerr geometry and not only in the near horizon region
©@ we have introduced the extremal Kerr phase space, our
symmetries are symplectic (and not just asymptotic)
© besides the Vir. we have a current algebra and our
symmetry generator diffeos. are all along the azimuthal
angle d,
@ Our preliminary analysis shows that similar features can be extended to
other extremal black holes in higher dimensions.

@ Whether similar analysis and horizon fluff proposal work for generic
non-extremal Kerr geometry?
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Conclusion

The phase space corresponding to generic Kerr will presumably have
two or four independent functions and consequently one expects to see
a larger algebra than U(1) Kac-Moody.

This symmetry algebra is inevitably a subalgebra of the asymptotic
BMS, symmetry.

The first check of our proposal was provided through reproducing the

Bekenstein-Hawking area law.
The non-trivial test, however, comes from the logarithmic corrections.
The Hardy-Ramanujan counting gives S = 2xj — 21Inj + subleading.

The Kerr/CFT analysis the log-corrections for the 4D extremal case is
not yet available.

Nonetheless, there are general analysis by Sen divides the
log-corrections into “zero-mode” and “non-zero mode” contributions.

Hossein Yavartanoo

Kerr Black Hole Microstates

Pirsa: 17110110 Page 51/53



Conclusion

Thank You For Your Attention
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