Title: Remarks on cosmic censorship and its possible violations

Date: Nov 10, 2017 02:00 PM

URL: http://pirsa.org/17110098

Abstract:

Pirsa: 17110098

Roberto Emparan ICREA & U Barcelona

Quantum Black Holes in the Sky?
Perimeter Institute – Nov 2017

funded by the European Research Council

Pirsa: 17110098 Page 2/41

Quantum Gravity in the sky?

How does one get there?

Pirsa: 17110098 Page 3/41

Cosmic censorship

A conjecture about *highest-energy physics*

Starting from low-energy densities, can we, within a quick, classical time-scale, get to explore Quantum Gravity?

Pirsa: 17110098 Page 4/41

If cosmic censorship is violated, predictability (within GR) is lost

May learn new physics

Pirsa: 17110098 Page 5/41

Naked Planck-scale energy densities easily form

but in long, quantum timescales

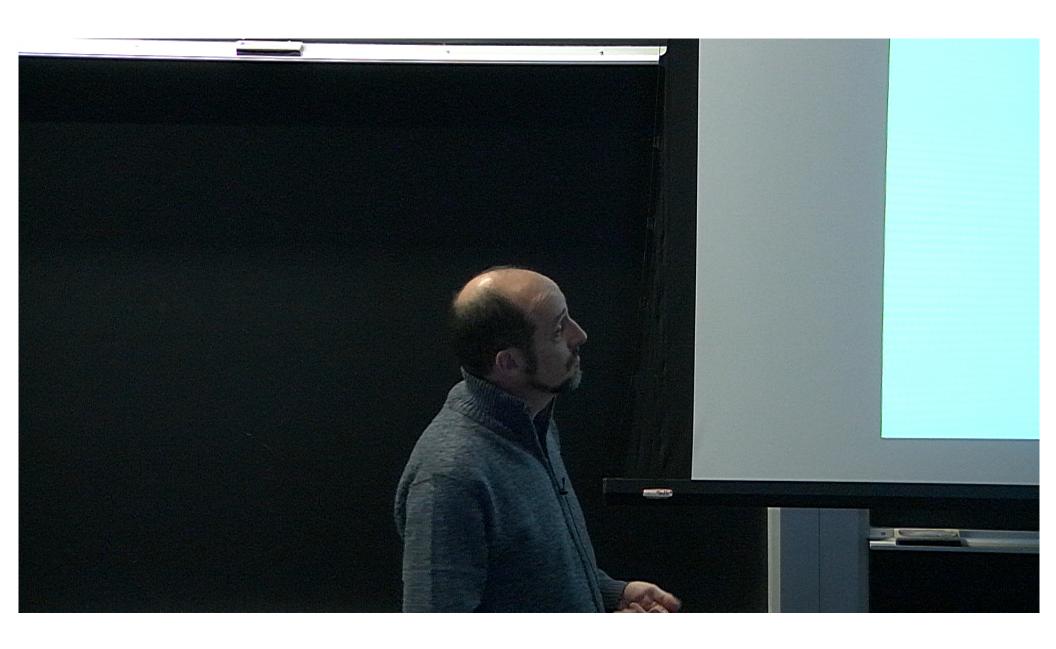
Pirsa: 17110098 Page 6/41

Pirsa: 17110098

Classical timescale

$$t_M^{(cl)} \sim \frac{GM}{c^3} = M$$

Collapse time


Quantum timescale

$$t_M^{(qu)} \sim t_{Pl} \left(\frac{M}{M_{Pl}}\right)^3 \sim M \left(\frac{M}{M_{Pl}}\right)^2 \gg t_M^{(cl)}$$

Hawking evaporation time & Page time Firewall formation time (?)

If this quantum time-scale is required to reach quantum gravity, then forget it...

Pirsa: 17110098 Page 9/41

Pirsa: 17110098 Page 10/41

Quantum timescale?

$$t_M^{(sc)} \sim M \log \frac{M}{M_{Pl}} \gtrsim t_M^{(cl)}$$

Scrambling time

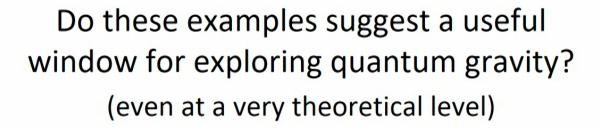
Fuzzball tunneling time

Echo time

Does not appear to involve Planckian curvatures

Seems to require large non-locality

Pirsa: 17110098 Page 11/41

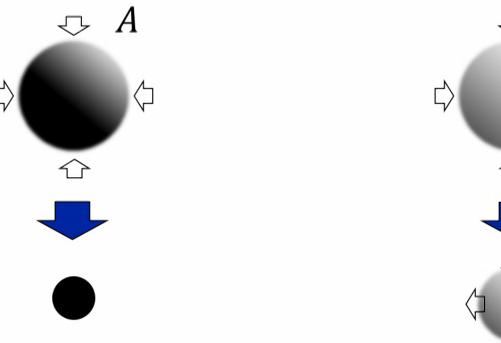

There exist a few well-established violations of cosmic censorship

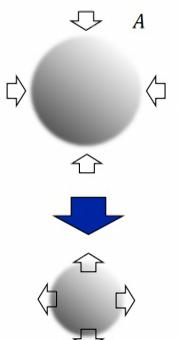
Naked singularities of arbitrarily high curvature form within the classical time scale of the system

Pirsa: 17110098 Page 12/41

Critical collapse Black string instability

Pirsa: 17110098 Page 13/41




Pirsa: 17110098 Page 14/41

Critical collapse

Choptuik 1993

Change initial amplitude ${\cal A}$

Pirsa: 17110098 Page 15/41

Physically, for a small range of values around A_{crit} there forms a Planck-sized object, with naked Planckian curvature

Quantum gravity becomes observable

Pirsa: 17110098 Page 16/41

Is this a useful violation of CC?

Often disregarded since it requires fine-tuning

Pirsa: 17110098 Page 17/41

Fine-tuning of initial conditions

⇒ reaching Planckian scales requires purposeful action

 It is possible—the job of experimentalists is to do fine-tuning

 It won't happen spontaneously in Nature – not in the sky

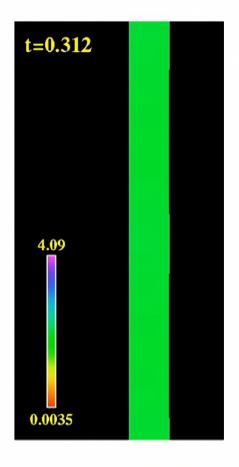
(or only extremely rarely)

Pirsa: 17110098 Page 18/41

But anyway it is not very useful for studying quantum gravity

Too small fraction of initial energy goes into singularity

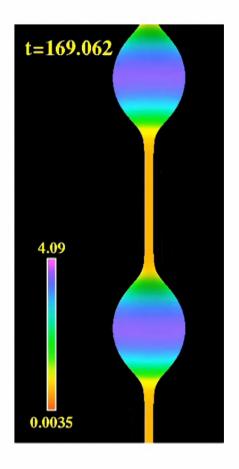
Pirsa: 17110098 Page 19/41


Evolution across singularity is almost entirely predictable

Planck-size "black hole" is likely to evaporate into a few Planckian-energy quanta

Similar to endpoint of Hawking evaporation (but without info-loss issues)

Pirsa: 17110098 Page 20/41

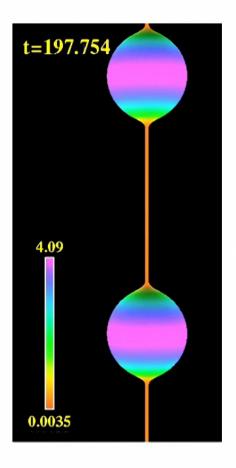


Gregory+Laflamme 1993 Lehner+Pretorius 2010

Evolution of unstable 5D black string

Pirsa: 17110098 Page 21/41

Black string instability

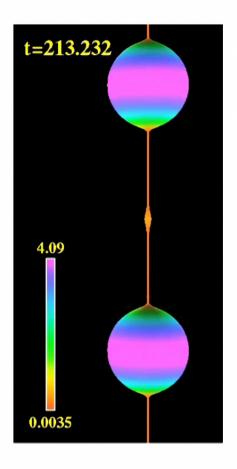


Gregory+Laflamme 1993 Lehner+Pretorius 2010

Evolution of unstable 5D black string

Pirsa: 17110098 Page 22/41

Black string instability

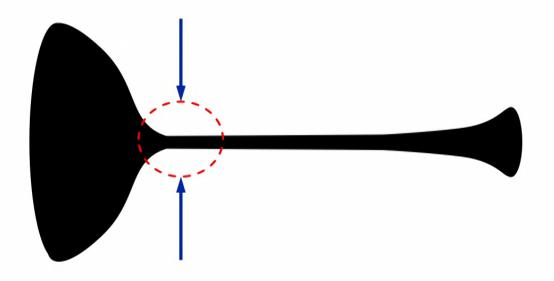


Gregory+Laflamme 1993 Lehner+Pretorius 2010

Evolution of unstable 5D black string

Pirsa: 17110098 Page 23/41

Black string instability



Gregory+Laflamme 1993 Lehner+Pretorius 2010

Evolution of unstable 5D black string

Pirsa: 17110098 Page 24/41

Naked arbitrarily large curvatures form within the classical timescale of the system

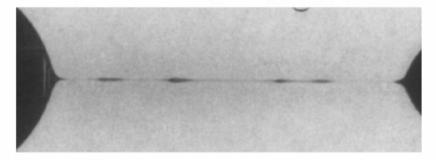
No fine-tuning is needed

Pirsa: 17110098 Page 25/41

Is this useful?

How strong is the loss of predictability?

Pirsa: 17110098 Page 26/41


A model for black string breakup

RE w/ J Rocha & U Miyamoto

Pirsa: 17110098 Page 27/41

Breakup of fluid jets

Eggers 1993, 1995

Glycerol

Pirsa: 17110098 Page 28/41

FLUID JET BREAKUP

When surface tension becomes too large molecular dynamics enters thin neck evaporates

Subsequent evolution is quickly described by hydrodynamics

Pirsa: 17110098 Page 29/41

BLACK STRING BREAKUP

When surface gravity becomes too large quantum gravity/string theory enters thin neck evaporates

Subsequent evolution is quickly described by classical gravity

Pirsa: 17110098 Page 30/41

Proposal

Breakup controlled by same physics as at

endpoint of Hawking evaporation

Pirsa: 17110098 Page 31/41

Singularity only occupies a Planck-sized region of space and time

Only a Planck-size mass is radiated

Pirsa: 17110098 Page 32/41

Quantum gravity is just a little pixie dust to effect breakup

Almost all is described (*predictable*) by classical GR attractors

Pirsa: 17110098 Page 33/41

If this is correct,

Cosmic Censorship is violated in the

mildest way

during black string break up

Pirsa: 17110098 Page 34/41

A strength-index s for CC violations

$$M_{sing} \sim M \left(\frac{M_{Pl}}{M}\right)^{1-s}$$

s = 1: very strong, maximal violation

s = 0: very mild, minimal violation

Pirsa: 17110098 Page 35/41

A strength-index s for CC violations

$$M_{sing} \sim M \left(\frac{M_{Pl}}{M}\right)^{1-s}$$

s = 1: very strong, maximal violation

s = 0: very mild, minimal violation

Pirsa: 17110098 Page 36/41

Forming naked singularities

with s > 0

could violate entropy bounds

s = 0 is harmless / useless (black string, critical collapse)

Pirsa: 17110098 Page 37/41

Cosmic Censorship violations

with s > 0

could be forbidden by Thermodynamics

Pirsa: 17110098 Page 38/41

There seems to be little chance of reaching observable quantum gravity within classical timescales $t_M^{(cl)} \sim M$

Pirsa: 17110098 Page 39/41

Fuzzballs may form in $t_M^{(sc)} \sim M \log \frac{M}{M_{Pl}}$

But fuzzballs don't seem to reveal much quantum gravity

Cosmic censorship of quantum gravity

A perfect conspiracy?

Pirsa: 17110098 Page 41/41