Title: Emergent State-Dependence in Holographic Models of Black Holes

Date: Nov 09, 2017 03:50 PM

URL: http://pirsa.org/17110090

Abstract:

Pirsa: 17110090

State Dependence in Holographic Models of Black Holes

Thomas Hertog
KU Leuven

w/ Adam Bzowski & Alessandra Gnecchi

Pirsa: 17110090 Page 2/21

Motivation

- Information transfer through weak interactions [Giddings etal]
- Coupling between entangled CFTs dual to AdS Schwarzschild wormhole allows to glean information from behind the horizon [Gao, Jafferis & Wall; Stanford & Maldacena;..]
- Interaction (in addition to entanglement) between the dual CFT and its thermofield double (through heat bath) may avoid firewalls/information paradoxes [Chowdhury,...]
- State-dependent operators [Papadodimas & Raju]

Pirsa: 17110090 Page 3/21

Motivation

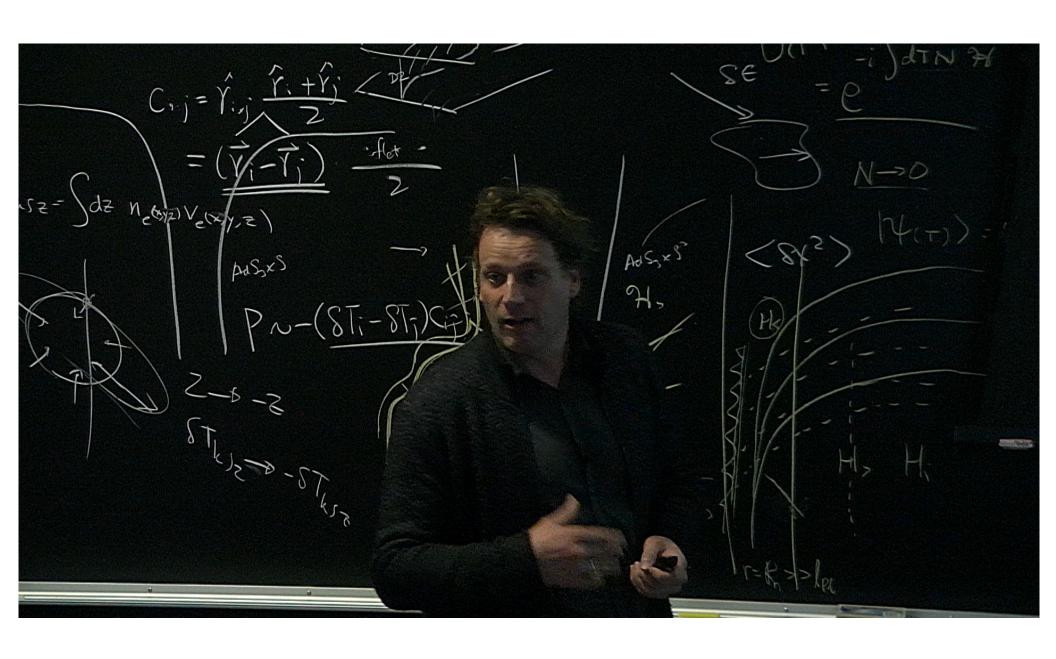
- Information transfer through weak interactions [Giddings etal]
- Coupling between entangled CFTs dual to AdS Schwarzschild wormhole allows to glean information from behind the horizon [Gao, Jafferis & Wall; Stanford & Maldacena;..]
- Interaction (in addition to entanglement) between the dual CFT and its thermofield double (through heat bath) may avoid firewalls/information paradoxes [Chowdhury,...]
- State-dependent operators [Papadodimas & Raju]

Pirsa: 17110090 Page 4/21

Pirsa: 17110090

Bulk Model

Consistent truncation of N=8 SUGRA to gravity in AdS₄ coupled to an $m^2 = -2$ scalar with potential


$$V(\phi) = -2 - \cosh(\sqrt{2}\phi)$$

In all asymptotically AdS solutions, the scalar falls off like

$$\phi = \frac{\alpha}{r} + \frac{\beta}{r^2}$$

Consider designer gravity boundary conditions: [TH & Horowitz]

$$\beta(\alpha)$$

Pirsa: 17110090 Page 7/21

Dual Description

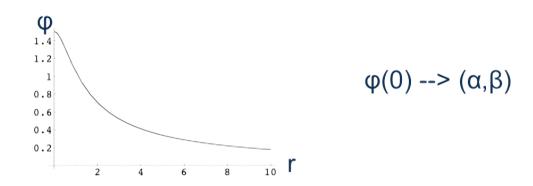
The 3D dual is ABJM theory, which has 8 scalars. With $\beta = 0$ boundary conditions the bulk scalar is dual to the $\Delta = 1$ operator

$$\mathcal{O} = Tr(\phi_1^2 - \phi_2^2)$$

Designer gravity boundary conditions correspond to adding a multi-trace interaction $W(\mathcal{O})$ such that

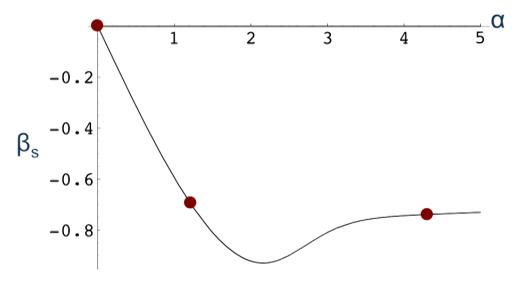
$$\beta = \frac{\delta W}{\delta \alpha}$$

Pirsa: 17110090


Vacuum structure: bulk

$$\beta_{bc}(\alpha) = -c_1 \alpha^2 + c_2 \alpha^3$$

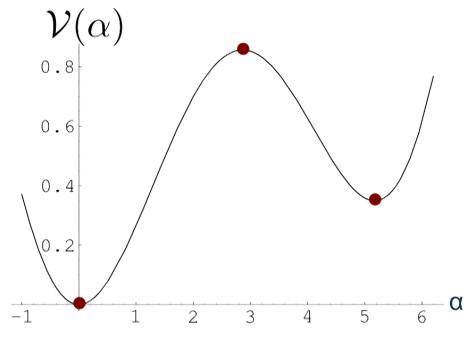
Solitons?


$$ds^{2} = -h(r)e^{-2\chi(r)}dt^{2} + h^{-1}(r)dr^{2} + r^{2}d\Omega$$

Regularity at origin: h=1, h'= ϕ '= χ '=0

Vacuum structure: bulk

$$\beta_{bc}(\alpha) = -c_1 \alpha^2 + c_2 \alpha^3$$



Solitons: $\beta_s(\alpha) = \beta_{bc}(\alpha)$

$$M = \operatorname{Vol}(S^2) \left[M_0 + \alpha \beta + W \right]$$

Vacuum structure: dual

$$\mathcal{V}(\alpha) = -\int_0^\alpha \beta_s(\tilde{\alpha})d\tilde{\alpha} + W(\alpha)$$

$$\beta_{bc}(\alpha) = -c_1 \alpha^2 + c_2 \alpha^3$$

Vacuum structure: dual

$$\mathcal{V}(\alpha) = -\int_0^\alpha \beta_s(\tilde{\alpha})d\tilde{\alpha} + W(\alpha)$$

$$\mathcal{V}(\alpha)$$

$$(\alpha-L/2)$$

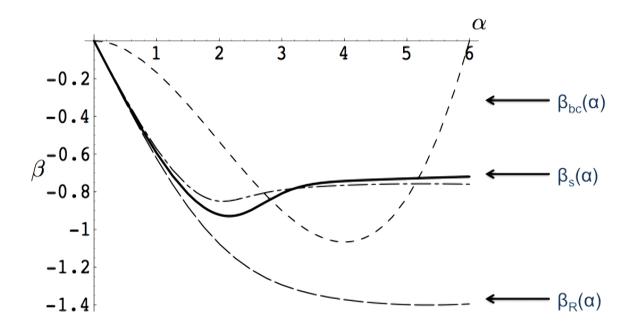
$$\beta_{bc}(\alpha) = -c_1\alpha^2 + c_2\alpha^3$$

Page 12/21

Pirsa: 17110090

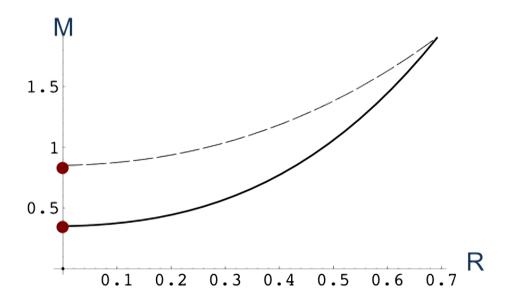
Black Holes

$$ds^{2} = -h(r)e^{-2\chi(r)}dt^{2} + h^{-1}(r)dr^{2} + r^{2}d\Omega$$


Regularity at horizon:

$$\phi'(R_e) = \frac{V_{,\phi}}{h_{,r}} = \frac{R_e V_{,\phi_e}}{1 - R_e^2 V(\phi_e)}$$

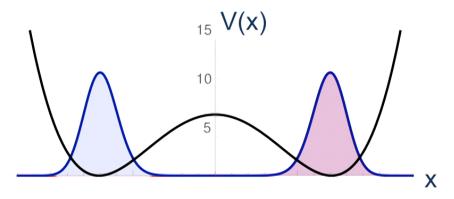
$$\varphi(R_e) \longrightarrow (\alpha, \beta)$$


- 1. Schwarzschild-AdS black holes: $\varphi = 0$ outside horizon
- Black holes with scalar hair

Black Holes

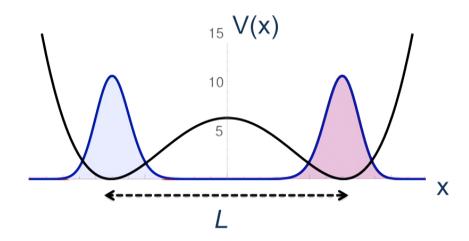
Black holes with hair: $\beta_R(\alpha) = \beta_{bc}(\alpha)$

Black Holes



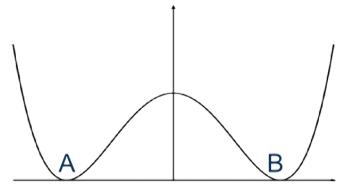
Black holes with hair: $\beta_R(\alpha) = \beta_{bc}(\alpha)$

Black Holes: dual description


Black holes with hair: Schwarzschild - AdS inside horizon smoothly glued onto soliton vacuum outside.

Dual toy model description:

Pirsa: 17110090 Page 16/21


Dual toy model

- Two semi-classical vacua, without introducing a second boundary.
- Non-perturbative interaction λ ~1/N^2
- As the separation L →∞: decoupling/cosmic censorship violation

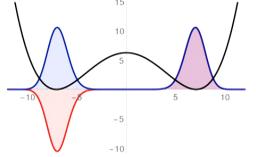
Pirsa: 17110090 Page 17/21

Dual toy model

Perturbatively: Two harmonic oscillators

$$b_R|0\rangle_R = 0,$$
 $|n\rangle_R = \frac{1}{\sqrt{n!}}(b_R^+)^n|0\rangle_R$

No tensor product: $\mathcal{H}\cong\mathcal{F}_R\cong\mathcal{F}_L$


Naively there is a firewall, since vacuum A is a highly excited state from the viewpoint of vacuum B.

Black hole 'microstates'

More natural to consider parity based decomposition: $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$

Energy eigenstates:

$$H\Psi_n^{\pm} = E_n^{\pm} \Psi_n^{\pm}$$

Black hole microstates:

$$\mu = \alpha_+ \Psi_0^+ + \alpha_- \Psi_0^-$$

Contain both coarse and fine-grained information, e.g.

$$E_0^- - E_0^+ = \frac{2}{\sqrt{\pi \lambda}} e^{-\frac{1}{6\lambda}} \left[1 + O(\lambda) \right]$$

State-dependence emerges

Many different black hole microstates,

$$\mu = \alpha_{+}\Psi_{0}^{+} + \alpha_{-}\Psi_{0}^{-} = \alpha_{R}\Psi_{0}^{R} + \alpha_{L}\Psi_{0}^{L}$$

are mapped to the same doubled state

$$\Psi_{00}^{ ext{dbl}} = \left\{ egin{aligned} \Psi_0^L \otimes \Psi_0^R & ext{if } lpha_L, lpha_R
eq 0, \\ 0 & ext{if } lpha_L = 0 ext{ or } lpha_R = 0. \end{aligned}
ight.$$

Pirsa: 17110090 Page 20/21

State-dependence emerges

Many different black hole microstates,

$$\mu = \alpha_{+} \Psi_{0}^{+} + \alpha_{-} \Psi_{0}^{-} = \alpha_{R} \Psi_{0}^{R} + \alpha_{L} \Psi_{0}^{L}$$

are mapped to the same doubled state

$$\Psi_{00}^{ ext{dbl}} = \left\{ egin{aligned} \Psi_0^L \otimes \Psi_0^R & ext{if } lpha_L, lpha_R
eq 0, \ 0 & ext{if } lpha_L = 0 ext{ or } lpha_R = 0. \end{aligned}
ight.$$

- Fine-grained information about original microstate lost.
- Vice versa, since no correlation in the effective tensor product theory distinguishes fine-grained features of microstates, this information must be supplied to match predictions in the full theory

 In terms of operators, state-dependence can be viewed as the problem to define operators on an overcomplete basis of states [Jafferis]

Pirsa: 17110090 Page 21/21