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Abstract: <p><span style="font-size:11.0pt;font-family:& quot;Calibri& quot;,sans-serif;
mso-ascii-theme-font:minor-latin;mso-fareast-font-family:Calibri;mso-fareast-theme-font:

mi nor-1atin;mso-hansi-theme-font: minor-latin;mso-bidi-font-family:& quot; Times New Roman& quot;;

mso-bi di-theme-font:minor-bidi;mso-ansi-language:EN-CA ;mso-fareast-language:

EN-US;mso-bidi-language:AR-SA">From a quantum information perspective, we will study universal features of chaotic quantum systems. Recent
progress has made evident that quantifying chaos is a useful way to gain insight into strongly-coupled field theories, quantum many-body systems,
as well as the quantum nature of black holes. We will derive relations between different diagnostics of chaos and scrambling (OTOCs, spectral
functions, and frame potentials) and define a quantity to capture the onset of a random matrix description. We will review and use tools from
guantum information and random matrix theory, but our goal will be to understand strongly-interacting systems.</span></p>
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Quantum chaos and late-time dynamics

A look through the (translucent) QI lens

Nick Hunter-Jones

Institute for Quantum Information and Matter
California Institute of Technology

November 29, 2017 - Perimeter Institute

Based on:
J. Cotler, NHJ, J. Liu, B. Yoshida, "Chaos, Complexity, and Random Matrices,” JHEP11(2017)048, 1706.05400

and “Symmetry, k-invariance, and late-time chaos,” 1801.hopefully soon
(also related: NHJ, J. Liu; 1711.08184)
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I'll be talking about quantum chaos and random matrix theory in
quantum mechanical systems

— finite dimensional ‘H and discrete spectrum
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Chaos

(ubiquitous but not boring)

we are familiar with classical
chaos and sensitivity to initial
conditions, but chaos in quantum
systems is different

intuition: small perturbations
grow to affect the system

“Remember that hurvicane a thowsand miles away? That was me!”

[chaos in culture]
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Quantum Chaos - a historical tour

The definition of quantum chaos seems to depend on the decade
and subfield you work in:

70s-80s - QM chaos = quantization of a classically chaotic system

[Gutzwiller|

80s-90s - QM chaos = statement about universal properties of the
Spectrum [Bohigas, Giannoni, Schmit], [Bery] — Random matrix theory
([Berryl, [Srednicki] —» ETH)

2010s - QM chaos can be probed by correlation functions in
thermal states — Out-of-time ordered correlators (OTOCs)

|[Kitaev, Stanford, Shenker, Maldacena, Roberts, Yoshida, Susskind, . ..]
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Quantum Chaos - an admission

some semantic guidance:

Michael Berry - Quantum Chaology, Not Quantum Chaos!
remember: classical chaos is different from quantum chaos
and furthermore, a precise definition of quantum chaos remains elusive

in this sense, we should be careful when discussing “probes” of chaos
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OTOCGCs: Chaos in the modern era

quick review of out-of-time ordered correlation functions (OTOCs)
an OId idea [Larkin, Ovchinnikov]

Consider the 4-point function of a pair of local(ish) operators in
thermal states

(A(t)BA(t)B)g
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OTOCGCs: Chaos in the modern era

Rough IﬂtUithI‘l [Roberts, Stanford, Susskind] thlnk abOUt the t|me EVO|UtI0n
of a Pauli operator in a chaotic spin system

Z(t) = e~ 216t = 2y — i H, 20] — [H, [H, Z1]) + ...

operator ‘grows’ in time, measured by commutator
consider [Z(t), Zg| (for a chaotic spin chain)
expand out ([Z1(t), Zg)?)5:

((Z1(t), Zs)*)p =(Z1(t) 232321 (t)) g + (ZsZ1 (t) Z1(t) Z3) 8
—(Z1(t) 2821 (t)Zs)p — (28 Z1(t) Z3 21 (L))
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OTOCGCs: Chaos in the modern era

Rough |ntU|t|On [Roberts, Stanford, Susskind] th|nk about the t|me eV0|ut|0n
of a Pauli operator in a chaotic spin system

. . t2
Zl(t) — e___ZHtZleth = /1 — ’i-t[H_, Z1] — E[H’ [H_, Zl]] -+ ...

operator ‘grows’ in time, measured by commutator
consider [Z1(t), Zg| (for a chaotic spin chain)

(21826 _
Comm? otos Z210Za 2, (123 OTOC

1.0
2.0
0.8
0.6

0.4

0.2

Pirsa: 17110056 Page 9/58



OTOCGCs: Chaos in the modern era

OTOC: 4-point function of a pair of local(ish) operators in thermal
states
(A(t)BA(t)B)

salient features of (chaotic) OTOCs:

ot

(exponentially) growing
corrections at early times

small value at late times
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A chaotic resurgence

In recent years, a revival in quantum chaos
spurred by studying OTOCs

» Chaos in gravity: [Kitaev], [Shenker, Stanford] (also, Yoni's talk yesterday)
» Chaos in CFT: [Roberts, Stanford] (later: [Fitzpatrick, Kaplan], [Dyer, Gur-Ari])
» Chaos enfettered: a chaos bound [Maldacena, Shenker, Stanford]
» Chaos in SYK: [Kitaev], [Stanford, Maldacenal]

B> RMT n SYK [Cotler, Gur-Ari, Hanada, Polchinski, Saad, Shenker, Stanford, Streicher, Tezuka]
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Form factor in SYK

RMT n SYK [Cotler, Gur-Ari, Hanada, Polchinski, Saad, Shenker, Stanford, Streicher, Tezuka

StUd|€d SpeCtra| form faCtOI’ in SYK (to investigate BH info loss a la [Maldacenal)

Ra(B,t) = (Z(B,1)Z*(B,t))syk = (Tr (e PHTHN Ty (e7PHTIHL) ) oy

SYKR2forN=26,8=5
Rz

0.100

0.010
Pllgteatj
0.001 o -
1074
0.1 100 10° oo
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Form factor in SYK

RMT n SYK [Cotler, Gur-Ari, Hanada, Polchinski, Saad, Shenker, Stanford, Streicher, Tezuka

StUd|ed SpeCtra| form fa ctor in SYK (to investigate BH info loss a la [Maldacenal)

Ra(B,t) = (Z(8,)Z* (B,t))syk = (Tr (e PHTH Ty (e AHTHY) gy

found agreement with RMT

SYK Rz forN =26,8=5 GUE R, forL=8192, 8=5
Rz RZ
1) — | [P——
0.100 0.100
0.010 % 0.010
F{I@eau
0.001 Q}QQ_ 0.001
Q_
107 Dip 104
i ! t
0.1 100 105 108 0.1 100 105 108
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Goal: Chaos through the QI lens

a QI view can provide guiding intuition [Hayden, Preskill]

recently, OTOCs were cast in the QI light
[Hosur, Qi, Roberts, Yoshida] — relating OTOCs to MI, quantify scrambling

[Roberts, Yoshida] — relating OTOCs to the frame potential, quantify randomness

chaos is a ubiquitous feature of strongly-interacting systems — understand

strongly-coupled systems/BHs
as 80s chaos &~ RMT, and (some aspects of) the late time behavior of SYK ~ RMT

in @ quantum information theoretic way:
- understand the role RMT plays in describing chaotic dynamics
- want to relate symptoms of chaos (a chaotic first step)

distant motivation: understand BHs

Pirsa: 17110056 Page 14/58



Outline

» Motivation v/

» Quick overview of RMT

» Form factors and RMT

» Frame potentials and RMT
» OTOCs and RMT

» k-invariance
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Overview of RMT

Early success in nuclear physics (wigner], [Dyson]

famously reproducing the nearest-neighbor spacings of heavy nuclei
resoONancCes [Nuclear Data Ensemble]

10 : —

- Poisson NDE
" 1126 spacings

i N GOk

L |

¢ 1 2 3

taken from [Guhr, Miiller-Groeling, Weidenmiiller|
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Overview of RMT

Early success in nuclear physics (wigner], [Dyson]

Since has pervaded many seemingly disparate subfields
large N QFT, string theory, transport in disordered quantum systems, ...

Classic matrix ensembles (GUE, GOE, GSE)

— focus on the Gaussian unitary ensemble with

GUE(L,0,1/vL)

GUE = ensemble of L. x L Hermitian matrices
off-diagonal N (0,1/v/L)¢ and diagonal N(0,1/v/L)g

note: use different norm than RMT
also, sorry about L
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Overview of GUE

GUE has a probability weight, P(H) e~ 3 Tr(H?)
and invariant measure dH = d(UHUT)
In the eigenvalue basis:

P(A,...,Ap) = Ce 3 ZiX A2,

Average over GUE as

(ON\)quE = / DXO(\), where f D)= /.Hd)\iP()\) =1.

The density of states:

p(N) = <i15(x -3))

The spectral n-point correlation function:

L! '
s [ PO,

GUE

p(n)(/\l,: cevy )\n) -
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Spectral form factor

Ra(B,t) = (Z(B,t)Z*(B,1)) = /D/\Zei()\i)\j)teﬁ()\i+)\j)
©,]

Let's discuss some universal aspects of the form factor:

GUE R, forL=5006=5
Rz

0.500

0.100

0.050

0.010

0.1 1 10 100 1000 10*
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2-pt form factor at 3 = 0

The infinite temperature 2-point form factor

Ra(t) = /D)\ Z et (Xi=Aj)t
0]

can be computed as
Ro(t) = L*ri(t) — Lra(t) + L,
where we define the functions

J1(2t
ri(t) = '12 )_, and ro(t)

1- 55, for t<2L
0, for t> 2L
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2-pt form factor at 3 = 0

The infinite temperature 2-point form factor

Ro(t) = L*ri(t) — Lra(t) + L,

GUE Ry atg=0
R2
1
0.100
0.010
0.001
L=10
-4
0%  — L=10°
1076 — L=10"
0.1 10 1000 10

dip time: ty = v/L and dip value: Ry = v/L — linear rise
plateau time: ¢, = 2L and plateau value: Ry = L

Pirsa: 17110056 Page 24/58



2-pt form factor at finite (3
at finite temperature

Ra(t, B) = (Z(t,8)Z*(t, 8)) qug = / DAY i Al BitAs)
1,J

we insert the spectral p(z) and use the short-distance kernel [Brézin, Hikami] to find
Ra(t, 8) = L*ri(t+1iB8)r1(—t+iB) + Lr1(2i8) — Lr1(2iB)ra(t) .

GUER; atf=1

R; GUE R; for L = 100

1 R
0,100 ) 1
0.010| /

; 0.100
0.001| - /
ol L=10 Soro ﬁ

| — Le1¢?

I 1
107} L=10? 0.001 p

| pu2
] A L=10" I

0.1 1 10 100 1000 10 10 0.1 1 10 100 1000

dip time: tq = h2(8)VL and dip value: Ras = ha(B8)VL — linear rise
plateau time: £, = 2L and plateau value: Rop = h1(28)L
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4-pt form factor at B = 0
we compute the 4-pt form factor at infinite temperature

Rat) =(Z()Z() 27 (t) 2" (1)) qup = / DX Y eftithm e Aot
) 1,7,k

insert p(*) and carefully integrate each term, we find
Ra(t) = L'ri(t) + 2L°r3(t) — 4L%ra(t)
— TL*ry(2t) 4+ 4Lr2(3t) + 4Lra(t) + 2L° — L.

GUERsalf=0

Ry

1.
0.01| \ /
1074
10-6| — L=B

B; — L=40
7 — =200
10~} == L=1000

" t
001 010 1 10 100 1000 10

dip time: tg = V'L and dip value: Re = L — quadratic rise
plateau time: ¢, = 2L and plateau value: Ry = 2L?
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Frame potentials and random matrices
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Overview of QI Machinery

Haar: (unique left/right invariant) measure on unitary group U(L)

Consider an operator O acting on H®*, the k-fold channel of O
with respect to Haar:

ok

Haar

(0) = / dU (UK TOU®*
Haar
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Overview of QI Machinery

Haar: (unique left/right invariant) measure on unitary group U (L)
Consider an operator O acting on H®®  the k-fold channel of O

with respect to Haar:

"Haar

o) (0) = / dU (UERToU®*.
J Haar
Instead, consider an ensemble of unitaries £ = {p;, U;}, where the
k-fold channel of £ is

o (0) = / dU (UK oU®* .
JUEE

Ensemble £ is a unitary k-design if and only if

2 (0) = @100, (0),

"Haar

meaning we reproduce the first & moments of Haar.

Pirsa: 17110056 Page 29/58



Pirsa: 17110056 Page 30/58




Pirsa: 17110056 Page 31/58




Overview of QI Machinery

Ensemble £ is a unitary k-design if and only if

o (0) = 8}, (0),

Haar

Measure of this — Frame potential (scou:

.

FF = / dUdv | Te(Utv)|*
JUVEE

(distance to Haar)

k-th frame potential for Haar: FE gl for k <L.

Haar

For ensemble £, the frame potential is lower bounded by

FO > 7

> Haar ?

( = iff £ is a k-design)
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Why frame potentials?

in BH physics we often approximate by Haar unitaries [page], [Hayden,
presil], —> k-design behavior sufficient

[Reberts, Yoshida] made progress quantifying chaos by relating 2k-OTOCs
to the k-th frame potential

(k
_ ‘7:6')
 [2(k+1)

X P
. 5 ‘<AlBl(t)..-AkBk(t)>g
A’s,B's

where "B(t)" = UBU', and for any ensemble £.
makes precise an approach to randomness

(also complexity. . . )
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k = 1 frame potential for GUE

Consider the ensemble of unitary time evolutions at a fixed time ¢
with GUE Hamiltonians

EVE = {e7M' | with H € GUE}.
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k = 1 frame potential for GUE
Consider the ensemble: £5VF = {e~t  H ¢ GUE}

The first frame potential for GUE:

T&'(eiH]te_iH?‘t) ‘2

' L2 _ Lep2
f(&%E = / dH \dHy e 2 1711 e= 3 TrH;

insert Haar unitaries, use L/R invariance of Haar, and integrate
using the second moment

1 |
J—‘S&E =737 (’R2 + L2 - mg) |

written in terms of the 2-point form factor

1,J
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k = 1 frame potential for GUE

use explicit expressions for R for GUE
1 R:2  2Rs

‘FTUEN L2 - .2 +1‘-’
L 1
GUE A" for L = 200 at dip time ~ V/L, -7:((;{}13 =1,

?” forms a 1-design
10
104 at late times, after plateau time

o (1 _

1000 2L, Fig = 2, no longer Haar
100

10

1

t
0.1 1 10 100 1000 10t
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k = 1 frame potential for GUE

late time behavior not necessarily too surprising...

GUE A" for L = 1000
A

108
103
104
1000
100

10

0.1 1 10 100 1000 10*
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Higher k frame potentials

We computed the second frame potential for GUE to be
F&le :( (L* = 8L+ 6) R +4L7 (L* = 9) Ry + 4 (L° — 9L" +4L* + 24) R}

8L (L'~ 11L2 4+ 18) Ry + 2 (L' — TL* + 12) R} | — 4L* (1* - 9) Ry
+ (L' = BL* + 6) R, — 8 (L' — 8L + 6) RyRy — 4L (L* — 4) Ry Ry,
+ 16L (L* = 4) RoRayy — 8 (L +6) RaRa2 + 2 (L* +6) RyRu

~ AL (L® = 4) R4 Ry + 2L (L' - 121° 4 27) )

/((L —3)(L = 2)(L — DLAL+ 1)L+ 2)(L + 3}) .

and computed the third frame potential for GUE to be

=3
‘}—(il-‘l;' - ‘ R
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Higher k frame potentials

We computed the second frame potential for GUE to be
Fle :( (L* = 8L+ 6) R +4L% (L* —9) Ry + 4 (L° — L'+ 4L* + 24) R}

~ 8L (L' = 1112 + 18) Ry + 2 (L' — 7TL2 + 12) R, —4L* (L* - 9) Ry,
+ (L' = 8L* + 6) R, — 8 (L' — 8L + 6) RyRy — 4L (L* — 4) RyRy,
+16L (L* = 4) RoRayy — 8 (L* +6) RaRa2 + 2 (L* +6) R4Ru

— 4L (L* — 4) Ry R + 2L" (L' — 12L° 4 27) )

/((L —3)(L = 2)(L — DLAL+ 1)L+ 2)(L + :ﬂ) .

and computed the third frame potential for GUE to be

=3
}(:L'Il"‘_ “',I,,‘ ,‘.‘l,. T s &® — BTEs Ty oL 4 11

Page 39/58
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Higher k frame potentials

. R2 . .
k=1 Early: f((;l)JE ~ L—g, Dip: f((?}gIE =1, Late: fgl)JE =2

k=2 Early: F& o ~ 71 Dip F& =2, Late: F& =10.

R2
k=3 Eary: F&o ~ ¢+ Dip FE =6, Late: F&hy = 96.

k-th frame potential: form a k-design at the dip,
late times no longer Haar
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> related symptoms of chaos
» GUE forms a k-design, late times not Haar random

» if late time physics is GUE then Haar/k-designs might miss
important (global) aspects of chaotic systems at late times

» but what is GUE capturing about chaotic systems?

let's look more explicitly at why GUE only captures global physics
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> related symptoms of chaos
» GUE forms a k-design, late times not Haar random

» if late time physics is GUE then Haar/k-designs might miss
important (global) aspects of chaotic systems at late times

» but what is GUE capturing about chaotic systems?

let's look more explicitly at why GUE only captures global physics
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Correlators and form factors

Let's look at correlation functions in spin systems

Consider a Hamiltonian H on |H| = L = 2", and consider the

averaged 2-point function (at 8 = 0)
1

/' dA (A(0) AT ()5 = Z / dATr(Ae tHt ATetHY)

where A is a unitary integrated over the Haar measure.

H
/ 1A (A AT D)y = "2,

(RE for a single Hamiltonian)
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Correlators and form factors

Let's look at correlation functions in spin systems

Consider a Hamiltonian H on |H| = L = 2", and consider the
averaged 2-point function (at 8 = 0)

RE(t
/ dA (A(0)AT(t))s = 22( ;
or more generally, 2k-OTOCs (A1 B;(t) ... AxB(t)) s and average
H
[dA,]_dB]_ cdAg (A]_B]_(t) - Ak,Bk(t))ﬁ = Rzgl(f)

i.e. 2k-OTOCs < 2k-form factors

(can also understand universal 1/t® OTOC behavior [Bagrets, Altland, Kamenev])

— connects spectral statistics and physical observables
— gives a practical way to measure the form factors
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2-pt and form factors: a check

Pauli operators form a 1-design, so we average as

[aaaai@) = 35 Y (Aoate) = <257,

AePauli

if we pick a few random Pauli operators, we should be able to approximate R»
we can also check that A(A(O);U(t))fwg ~ O(1/L?%

Let's check this!
consider a random non-local spin system, sum over all 2-body
operators with random Gaussian couplings J

.H_RNL — Z Jz’jaﬁsfsfa

6]y
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2-pt and form factors: a check i}
Check: 7y Y acpaui (A(0)AT (1)) = %25°

consider a random non-local spin system:

Hrne = ) Jijas S5},
gy,

—]

0.8

Pl ety g R g,

0.6

0.4

0.2

! 10° 10 102 10°
time
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2-pt and form factors: an SYK check
just for fun, can also check this for SYK: (xix;(t))

i.e. 2-pt correlators of Majoranas

where SYK:

Hsyk = Y JijheXiXjXkXe
i,5,k,¢

0.8

06

0.4

0.2

0.2

107! 10" 10 10° 10° 10" 10% 10°

time

for SYK for N=10 Majoranas, |€| = 200, 8 =0
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OTOCGCs and random matrices

consider a 2-pt function averaged over GUE (fix ops and average
over H's, i.e. A(t) = e "t At with GUE H's)

GUE avg : f dH(A(0)AT (1)) 5 = "fg?j‘)_‘ll ~ R;S) ,

recall from before that the operator average (for any H)

Ri(t)
LZ

Op avg : / dA(A0)AN (1)) =

GUE average is the same as operator average, but in taking GUE
average we make no assumption about locality of operators
— GUE suited to capture global properties
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OTOCGCs and random matrices

2-pt functions averaged over GUE:

Ra(t)
L2

(A(0)AT(t))uE =~

furthermore, we can use the 4-th moment of Haar and compute
the OTOC averaged over GUE:

Ra(t)
L"l

(A(0)B(t)C(0)D(t))cuE ~ (ABCD)

what have we learned?
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OTOCGCs and random matrices

2-pt functions averaged over GUE:

Ra(t)
L2

(A(0)AT(t))uE =~

furthermore, we can use the 4-th moment of Haar and compute
the OTOC averaged over GUE:

Ra(t)
L"l

(A(0)B(t)C(0)D(t))cuE ~ (ABCD)

what have we learned?
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GUE as a chaotic pastiche

» GUE captures thermalization (apparent loss of Ql)
» GUE does not capture scrambling (ts ~ t2/2)

» GUE does not care about spatial /temporal locality

(BH viewpoint: GUE BHs are bad)

None of this is too surprising, but it at least formalizes why we fail
to capture physics at early times

More interesting is why GUE captures chaotic physics at late times
— Haar invariance

GUE is a good description of a system which has lost its notion of
locality
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k-invariance

In many of the expressions we derived (frame potential, OTOCs <> form
factors), the key ingredient was invariance of the measure

Consider an ensemble of unitary time evolutions by some
(ensemble of) physical Hamiltonians:

E = {e ™ He &yl

.e. SYK, Spin System, (QFT on a random lattice)
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k-invariance

Consider an ensemble of unitary time evolutions by some
(ensemble of) physical Hamiltonians: & = {e 7t H € £y}

Define the Haar-invariant ensemble: c‘z =U&UT

ensemble is k-invariant iff fé(-fc) = fgc) (reproduces the first k moments)

-~

t

equivalently,

Fed) - F () > 0
t

defines a distance to k-invariance

this quantity becoming small signifies the onset of a RMT description
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k-invariance: a check

random non-local spin system: H = Zi,j,a,ﬁ JijagSqu

(3
1-inv for RNL 1-Inv for RNL
T FPs for N=7 RNL
?_?._?_P‘ }—1- }—\". S
" o' — Fg
60 .. |
50 | |I 5 10 ~ 1000 Fe
| / 3 i
" | N=6 'y, \\ |
|| 7 N/ 100 |
) | ] / N=§ 1
20 | I =8 910 N=6 “D[
) I Fdiac o b
[/ \ N=7 7
10 N 0.01 1 . o
A N . ; e
O -t — . . R ¢ oo 0.10 1 10 100
0.10 1 10 100 o1 ; " 7S

integrable spin chain: H = — Ez 2iliy1 — Zz h; X;

1-Inw far INtNN . LoglLog 1-inv for ININN et i
Fe-Fe Fe-Fe P ior N=7 Intl
a —
\; N=5 10° N=5 = N\ N\ Fe
12000 A : 1 \ Ny i
[ \ N=6 N=6 1000 | \ N Fe
10000} [\ 1000 » | | N
| N=7 N=7 | ~
A00D0 | 100 \ ~———
| 100 ‘F
6000 | / t \I
- o T Uil
2000 1 'i LAWY Ay e
st eE———— " R 0.0t 010 1 10 100 1o00  10°
001 010 1 10 10 1000 10 001 010 1 10 100 woo 10!
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k-invariance: a check

SYK: H =} ke Jijke XiXi Xk X

1=inv for SYK

rN=14 §
Fe-Te FP for N=14 SYK
10
! N\ Fe
1ot \ ]
N=10 ‘Ir I\ .
10 Nete [ 1000 \
) N=16 ‘
1
\ 100 |
[ |
II 10 l'ﬂ
|t e |
I R
0.01 040 ' 10 wo 000 10t tooo 0.10 1 10 100 1000

random 3-local spin system: H =} ;. 5. .]aﬁ%ij?stg

1-Inv for HR3L

.:;.-b_.:i . FP for N=7 HR3l
1000
. F
=5 1 #
= 100
3 ‘I ‘l N=6
N=7 ‘|
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Summary

» computed form factors in RMT

> related symptoms of chaos (OTOCs, frame potentials, form factors)
» understood time scales at which GUE is Haar random

» and why GUE fails to capture early times

» related observables to spectral statistics

Late time behavior of chaotic systems understood as k-invariance
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» Extensions of this work:

i) Consider chaotic systems with symmetry
generalize to GOE, GSE and to all extended ensembles in 10-fold
symmetry classification (Altland-Zirnbauer) (as in classification of top. phases)

— quantify randomness/chaos for symmetry classes using Weingarten

calculus for the associated compact symmetric space U(L)/H

ii) Apply these ideas to study chaos in SYK models

(e.g. consider Wishart ensembles for supersymmetric SYK models [NHJ, Liu; 1711.08184] )

iii) Investigate k-invariance in random spin systems and SYK as a

characterization of late-time chaos
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Work in progress/future work

» Things to think about:

e understand the precise role ETH plays in k-invariance, use these tools
to study thermalization in quantum systems

e understand late-time OTOCs

e transport and hydrodynamics

e complexity?

e shockwaves on AdS-KN black holes
e chaosind > 2 CFTs

e sparse RMT?
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