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Abstract: <p>The SYK model and its variants are a new class of large N conformal field theories. In this talk, we solve SYK, computing all

connected correlation functions. Our techniques and results for summing al leading large N Feynman diagrams are applicable to a significantly
broader class of theories.& nbsp;</p>

<p>& nbsp;</p>
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SYK is 0+1 dimensional theory of N
fermions with 4 body (or, more generally, g
body) random all-to-all interactions.

It flows to a CFT in the infrared, at strong
coupling.
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SYK

1 d
L=, SXi=Xi= 2, Jijki XiXjXkXi
Z 2,\ e X Z ikl Xi X3 XkXI

fermion dimension in infrared (large J):

A=1/q, q

|
.
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Kitaev introduced SYK as a solvable
model of holography
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In this talk we will solve SYK
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We will compute all correlation functions, at
strong coupling, to leading nontrivial order in 1/N
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Why do we want to solve SYK?
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Let us recall the two canonical examples
of AdS/CFT

Pirsa: 17110051 Page 9/102



A =4, maximally supersymmetric

SU(N) Yang-Mills, is a CFT, for any value of
the 't Hooft coupling
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N =4, atlarge N, is dual to string theory in

AdS. At large 't Hooft coupling, there is a gap,
leading to Einstein gravity and black holes.
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A =4 is incredibly rich, and is integrable.

Over the last decade, major progress has
been made in solving 4 = 4, enriching our

understanding of AdS/CFT.
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The free/critical vector O(N) model is another
solvable, large N, CFT
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The O(N) model is dual to Vasiliev
higher spin theory
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A = 4 and the vector O(N) model are very
different theories
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Correspondingly, the bulk duals, string
theory and Vasiliev theory, are very different.
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SYK is a new class of solvable, strongly
coupled, large N, CFTs.
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SYK is harder than the O(N) model, but
easler than 4 =4,
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* |nitially, SYK seemed very special
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* |nitially, SYK seemed very special

* |t was just something Kitaev made up
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* |nitially, SYK seemed very special
* |t was just something Kitaev made up
* Yet, it had the remarkable properties of being a

CFT in the infrared, solvable at large N, and
maximally chaotic (like a black hole)
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A number of generalizations and variations
of SYK started being found. These also had
the salient features of SYK.
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A number of generalizations and variations
of SYK started being found. These also had
the salient features of SYK.

One could, for instance, add flavor Gross, VR ‘16
or supersymmetry Fu, Gaiotto, Maldacena, Sachdeyv, ‘16
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The two canonical examples of AdS/CFT that |
mentioned were maximally supersymmetric
SU(N) Yang-Mills (a matrix model), and the O(N)
vector model (a vector model)
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We generally don'’t discuss tensor models.
One might assume they would be too difficult
to study.
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Melonic Tensor Models

Bonzom, Gurau, Riello, Rivasseau
Gurau
Witten

H = ZXZJ’\\AI”!XHIJP\[D[!

.
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Since we have studied vector models and
matrix models, it is only natural to study
tensor models.
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Since we have studied vector models and
matrix models, it is only natural to study
tensor models.

In fact, there are arguments that the
description of M2 branes stretching between

M5 branes should be described by tensors

Beccaria, Tseytlin, ‘17
Klebanov Tsyeltin, '96
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Tensor model Matrix model Vector model

S Jod(

melon diagrams planar diagrams bubble diagrams
Gurau-Witten i
Klebanov-Tarnopolsky N =4 O(N)
Many towers massive Tower massless
. arge gap |
particles particles

? String theory Vasiliev

Pirsa: 17110051 Page 30/102



SYK and the melonic tensor models have the
same large N fermion correlation functions.
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For the rest of the talk we will focus on SYK,
but the results trivially extend to tensor
models and all variations and generalizations
of SYK.
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1) To better understand holography
and black holes
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2) To find the AdS dual of SYK
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3) SYK is also a model of a strange metal, and of
a maximally chaotic quantum system
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4) Our solution applies to all melonic tensor
models
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The computation of SYK correlation functions will
be direct. We sum all Feynman diagrams.
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The result will be interesting.

All higher-point functions will follow from the six-
point function through simple rules.
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2-point function
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Melons

o<

IR dimension: A

Sachdev Ye ‘93
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4-point function
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Fermion four-point function is a sum of conformal

blocks,
b? ,
- ;2 by o 'T12T3-'1
.F(Tl,, Ce ey 7_4) = TIA E C, “FA (7) ' T = —
J ; T13T24

These are the conformal blocks of the primary,
fermion bilinear, O(N) invariant singlets, O,

with dimension hn

Z XiC )H )n,
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We may also write this as,

***** SN
| | " dh
.F(-‘Tl;a “e. ,_,-T4) = G(le)G(T34) /ﬂ ; [)(h)qjh_(:]f)

9

d

|’le |2A |"T:;.-1 |‘M

U, (x) = B(h,0)Fha(x) + B(1 — h,0)Fx "(x)
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Fermion four-point function is a sum of conformal

blocks,
b? ,
- ;2 by o 'T12T3-'1
.F(Tl,, Ce ey 7_4) = TIA E C, “FA (7) ' T = —
J ; T13T24

These are the conformal blocks of the primary,
fermion bilinear, O(N) invariant singlets, O,

with dimension hn

Z XiC )H )n,
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This was general

For SYK, the four-point function is a sum of
ladder diagrams

JUOC

So we know  p(h)

Maldacena, Stanford ‘16
Polchinski, V.R., '16
Kitaev, ‘16
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Summary

2-point function: A

4-point function: p(h)
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6-point function
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The fermion 6-point function has the same
information as the bilinear 3-point function

7 2N [ o 1 €123
(()] (TI )L)Q(TQ)C)Z(TJ) - m ‘le|hl Fho—hy ‘_r3:;|f;3 fha—hy |_T13’h.] fhy—ho
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. o (1) (2)
C123 — €C1CoC3 (1123 + 1123)

2 2!11 Fhg -ty —1 (1 — (1 — . (1—h |
7h - VT Q)T =) hs) )+ plha, b B )+ phg, s o)

I-1(;: hy—hy—h )

_ [(fratha=hy sin(mhe
f)(h'lahﬁ._h-;{) - : ( : : ) (I i " ‘-»111(71' "‘) )
S

NESCEERREY) JESCEERY (mhy) — sin(7h, + 7hy)

- e
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I:.%]{ = J]‘W:l,—l_h] hl Ei_hﬂ I_h:i'-lj|

| L+hy—hy 2A 2—hy,—hy
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* We have computed this for general hy hz ha. The
physical 3-point function is for hi hz, hs at the
physical dimensions.
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* We have computed this for general hy ho, hs. The
physical 3-point function is for hs ho hz at the
physical dimensions.

* Viewed as a function of hy, there are poles at,

hll = hu) -+ h.;;; -+ 2'71-
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Summary

2-point function: A

4-point function: p(h)

6-point function: ¢Cq93
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0 00

to
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.
5

Vi (h I‘(Qh.-) 12h .54h ){4( )

| / dh p(h) I'(h)?

Pirsa: 17110051 Page 60/102



" dh p(h) T'(h)* E
/c 9 (-7)1 [(2h) C12nCaan Fr23a (1)

e /
Ly

Closing the contour,

(O1(11) - Ou(ma))s = Z C120C34h -Fli{g:;-i(-'”_)

h=h,,
':X'J v “3
Crop )T s
| E Res - p(h) - Floga ()
0 Cp dh=h;+hy+2n | (z.f)h) Cy, dh=h{+ho+2n
n=
o0 Vi 2 =
[C3ah ] L) e o,
+ § —Res : p(h) o= Flasa ()
0 L ("r', dh=hy+hy42n L F(Zh} (fh Jh=hy+h,+2n
n=
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10-point function

3

) -
%,

b
O, =f sl WO [ op) DO iy
SN T omi 2 ¢ Vs A2 T 12h,Ch, 3y, Chy, 45 Y 1234501 2,
Je 27 Ch, I'(2h,) . ¢ 27 Ch, I'(2hy,) ta a2 Mt 1234
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* To reiterate, we computed the bilinear three-point
function as an analytic function of the operator
dimensions.
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* To reiterate, we computed the bilinear three-point
function as an analytic function of the operator
dimensions.

* This is not normally done. We relied on the fermion six-
point function.
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* To reiterate, we computed the bilinear three-point
function as an analytic function of the operator
dimensions.

* This is not normally done. We relied on the fermion six-
point function.

* This analytically continued three-point function had
singularities in just the right places.
There should be a general argument why this occurred.
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* Our results apply to all theories in which higher-
point correlators are built out of four-point functions
joined together,
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» Qur results apply to all theories in which higher-
point correlators are built out of four-point functions
joined together,

« Actually, in SYK this is not completely true. There is
an additional diagram, 4 ladders joined to a single
melon, which we must also be included.
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* One point | skipped over is that SYK is not fully a
CFT in the infrared, but only ""nearly” a CFT
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The Bulk Dual
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We have solved SYK at large N. So we have, in
principle, determined the tree level bulk
Lagrangian.
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The bulk has a tower of fields dual to the primary
fermion bilinear O(N) singlets

O, ~ % Z X0y, A ¢TL
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On general grounds,

1 1 |
Sru.. s T ({ L d( n + ”Iu()u = ’\n.-m : PnPm Pr
bulk / \f[ b ) / \W k Pn@m Qi

+ nmkl (/)n(/)m(bl. (/)1" + )\mni.f d(/)ndr m“ﬂ. (/)f ) + ...

5~
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On general grounds,

1 1 .
Sru.. s d L d( n) ”In()n v ’\n.-m : PnPmPh
bulk | / VY [ hu)’ b JN k PnPm O

1 "\ O | ‘
+ AT )\TH'NM (z)'n. (/)'rrrq'si.'d)f + )\n'nrk‘f d(/)n d(r)m()ﬂ. /)f ) + ...

v

Using this Lagrangian, we compute Witten
diagrams to obtain CFT correlators, and fix the
coefficients of the Lagrangian so as to match the

SYK answers.

Pirsa: 17110051 Page 79/102



2-pt

3-pt

RDER
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On general grounds,

1 1 .
Sru.. s d L d( n) ”In()n v ’\n.-m : PnPmPh
bulk | / VY [ hu)’ b JN k PnPm O

1 "\ O | ‘
+ AT )\TH'NM (z)'n. (/)'rrrq'si.'d)f + )\n'nrk‘f d(/)n d(r)m()ﬂ. /)f ) + ...

v

Using this Lagrangian, we compute Witten
diagrams to obtain CFT correlators, and fix the
coefficients of the Lagrangian so as to match the

SYK answers.
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The bilinear three-point functions for SYK, which
determined the cubic couplings, were complicated.
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The bilinear three-point functions for SYK, which
determined the cubic couplings, were complicated.

Universality: the c123 are analytic functions of A
and hi. Therefore, to the extent that two theories
in the SYK family have similar A and h;, they
will have similar three-point functions, and by
extension, all-point functions.
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The high dimension bilinears have small
anomalous dimensions,

O, ~ — Z )(,()IJF)”,-*;,;

h,~2A4+2n+1, n>1

These are the same as the dimensions of the
bilinears for cSYK at weak coupling (generalized
free field theory of fermions of dimension A, in
the singlet sector).
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For the bilinear 3-point function, and hence
the cubic couplings,

N1
/\-n.ln.:n.;_{ ~ - - 1 ¢ . 1 : &y 1
F(JV — Z'Nwl —+— E)F(JV — Z‘N.Q _+_ ‘“)F(N — 2'”:3 + E)

2

-

N =n; + ny + ny
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For the bilinear 3-point function, and hence
the cubic couplings,

N
TN = 20y 4 )TN = 2ng + 5)D(N = 203 + 3)

2

-

N =n; + ny + ngy

Pirsa: 17110051 Page 86/102



For the bilinear 3-point function, and hence
the cubic couplings,

N
TN = 20y 4 )TN = 2ng + 5)D(N = 203 + 3)

2

-

N =n; + ny + ngy
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For the bilinear 3-point function, and hence
the cubic couplings,

N

~

A mome R - ' ' '
TN = 20y + 5)D(N = 20y + 5)I(N = 205 + 3)

2

-

N =n; + ny + ngy

We have written it in a form that is
suggestive of a string bit like interpretation,
but we have no concrete statement.
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4-point function

oL (I by

<C)'n ('Tl) N C)H (T1)> ~ 9 , 2 ;
| | (‘sz”f:il) (1 —x)° ('“--:1!)1

n; > 1
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4-point function

~1 ((\/EJr V1—x+ 1)‘1)”' 1

(O (7). 0, (1)) ~ . S L —
= S (7'13 ;1) (1_4'1--’)H ('“-1!)1

n; > 1

From preliminary studies of the Mellin
transform, this gives bulk quartic couplings
that can not be obtained from a local theory.
This is not surprising.
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The dual of large N 4 = 4, at large 't Hooft
coupling, has:

a) Einstein gravity

b) Stringy modes
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* The dual of SYK contains dilaton gravity. This is
related to the breaking of conformal invariance in
the four-point function.

* The dual of cSYK does not contain dilaton gravity.
The lowest dimension operator is just dual to the
lightest bulk scalar. cSYK is quantum field theory
on a fixed AdS background
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We wrote the fermion four-

. . s B« S
point function as: I
| | " dh
.F(-‘Tl;a s . ,_,-T4) = G(le)G(T34) /ﬂ ; f)(h)qjh_(:]f)

9

d

|’le |2A |"T:;.-1 |‘M

U, (2) = B(h,0)Fa(z) + 8(1 — h,0)Fy "(x)
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The shadow formalism allows us to write,

bsgn(7y) bsgn(7sy)
2A 20
| S T2 [T 734

U0 —

Wy (1) = /f/'"fn (.\ﬁ('Tl)_\'(T;J)C)h(Tu)><.\ﬁ('7:s),\'(71)@1 h.(ﬂn))

2 ChCl—h
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Summary

* The SYK fermion two-point, four-point, six-point
correlation functions are encoded in A, p(h), and ¢y
These determine all higher-point correlators
through simple rules: Feynman like rules for gluing

four-point functions.
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Summary

* The SYK fermion two-point, four-point, six-point
correlation functions are encoded in A, p(h), and ¢y
These determine all higher-point correlators
through simple rules: Feynman like rules for gluing

four—point functions.
lh p(h) I'(h)
(O1(11) -+ - O4(14)) /(zpz ((,

h '
C12nC34h Flzn( )
271 Ch,

2h)
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e This is valid not just for SYK, but for any theory in
which higher-point correlators are built out of four-
point functions. For instance, vector models.
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* This is valid not just for SYK, but for any theory in
which higher-point correlators are built out of four-
point functions. For instance, vector models.

* Requires, seemingly remarkable, analytic
properties of €123, having poles in just the right
places.
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* This is valid not just for SYK, but for any theory in
which higher-point correlators are built out of four-
point functions. For instance, vector models.

* Requires seemingly remarkable analytic properties
of C193, having poles in just the right places.

* Universality: To the extent that two theories in the
SYK family have similar A and h;, they will have
similar correlation functions.

Pirsa: 17110051 Page 99/102



Pirsa: 17110051

This is valid not just for SYK, but for any theory in
which higher-point correlators are built out of four-
point functions. For instance, vector models.

Requires, seemingly remarkable, analytic properties
of €123, having poles in just the right places.

Universality: To the extent that two theories in the SYK
family have similar A and hj, they will have similar
correlation functions.

Details of strongly coupled SYK are in the correlation
functions of low dimension operators. Correlation
functions of high dimension operators are the same as
at weak coupling of cSYK, generalized free field
theory of fermions in the singlet sector.
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* Bulk: We have given simple expressions for the cubic
couplings of the very massive fields, and the four-point
functions of the very heavy operators.
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» Bulk: We have given simple expressions for the cubic
couplings of the very massive fields, and the four-point
functions of the very heavy operators.

* The next step is to find a theory of extended objects
which naturally gives these.
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