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Abstract: <p>Quantum critical points (QCP) beyond the L andau-Ginzburg paradigm are often called unconventional QCPs. There are in general two
types of unconventional QCP: type | are QCPs between ordered phases that spontaneously break very different symmetries, and type Il involve
topological (or quasi-topological) phases on at least one side of the QCP. Recently significant progress has been made in understanding
(2+1)-dimensiona unconventional QCPs, using the recently developed (2+1)d dualities, i.e., seemingly different theories may actually be identical
in the infrared limit. One group of dualities between unconventional QCPs have attracted particular interests in the field of condensed matter theory.
This group of dualities include the so called deconfined QCP between the Neel and valence bond solid phases, and the topological transition
between a bosonic topological insulator and a trivial Mott insulator. Each of the transitions mentioned above is also "self-dual”. This group of
dualities make extremely powerful predictions for numerical test. We will review the theoretical aspects and most recent numerical evidences for
these new results.</p>
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Introduction

Quantum critical point/Continuous quantum phase transition:
sandwiched between two ground states of a quantum many body
system; gapless, power-law correlation between local operators, etc.

Classic example of QCP: quantum phase transition between superfluid
and Bose Mott insulator, realized in cold atom trapped n optical

lattice: ;
L Fisher et al, PRB (1989)
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Vi)

Introduction

What are we interested 1n about a quantum critical point?
A set of universal numbers called “critical exponents™.

Classical phase transition theory: Landau-Ginzburg-Wilson-Fisher
(LGWF) paradigm.

Central 1dea: order parameter and spontaneous symmetry breaking
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Conventional v.s. Unconventional QCP

Conventional v.s. Unconventional QCP

Conventional QCP: between a “direct product disordered state”
(quantum analogue of classical disordered state) and a spontancous
symmetry breaking state, example: the MI to SF transition.
Although the system is quantum, we can use the classical LGWF
paradigm in d+1-dimensional space, to describe the d-dimensional
conventional QCP.

it Fisher et al, PRI (1989)
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Conventional v.s. Unconventional QCP

Conventional v.s. Unconventional QCP

Unconventional QCP:

Type 1, direct 2" order transition between two ordered phases that
spontaneously break two totally different symmetries. (deconfined
QCP, Senthil, Vishwanath, Balents, Sachdev, Fisher, 2004)

Neel order VBS order
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Conventional v.s. Unconventional QCP

Conventional v.s. Unconventional QCP

Unconventional QCP:

Type 1, direct 2" order transition between two ordered phases that

spontaneously break two totally different symmetries. (deconfined
QCP, Senthil, Vishwanath, Balents, Sachdev, Fisher, 2004)
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Type 2: transition that involves (quasi) topological phase (quantum

disordered non-direct product state) on at least one side of the

transitions.

Page 10/38



Conventional v.s. Unconventional QCP

Conventional v.s. Unconventional QCP

Conventional QCP: between a “direct product disordered state”
(quantum analogue of classical disordered state) and a spontancous
symmetry breaking state, example: the MI to SF transition.
Although the system is quantum, we can use the classical LGWF
paradigm in d+1-dimensional space, to describe the d-dimensional
conventional QCP.

it Fisher et al, PRI (1989)

UA
3.0 oF
fi=3
2.0 SF
MI (n=2) =2

1.0

Niii’/ o
l

Pirsa: 17110041 Page 11/38



Pirsa: 17110041

Conventional v.s. Unconventional QCP

Conventional v.s. Unconventional QCP

Unconventional QCP:

Type 1, direct 2" order transition between two ordered phases that

spontaneously break two totally different symmetries. (deconfined
QCP, Senthil, Vishwanath, Balents, Sachdev, Fisher, 2004)

Neel order
L S 4
s—F 35—+
A b‘ ; s

VBS order

|
rs Y B

-
»

Type 2: transition that involves (quasi) topological phase (quantum

disordered non-direct product state) on at least one side of the

transitions.

Page 12/38



Pirsa: 17110041

Elementary Dualities

Challenge of studying 2+1d QCPs:

Standard methods of studying 2+1d QCPs are, 1/N expansion, epsilon
expansion, both have difficulty of convergence for 2+1d QCPs.

A powerful nonperturbative method: duality

Duality maps an unknown problem to a (hopefully) known problem.

Classic example: Particle-Vortex duality (Peskin, 1978, Dastupta,
Halperin, 1981, Fisher, Lee, 1989):

MI of boson condensate of boson

MI PN SF

Y

condensate of vortex MI of vortex
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Elementary Dualities

Classic example: Boson-Vortex duality (Peskin, 1978, Dastupta,
Halperin, 1981, Fisher, Lee, 1989):

A 2d (2+1d) superfluid phase is dual to a photon phase, gapless
Goldstone mode is dual to the photon excitation.

How do we describe a vortex in a superfluid? It 1s surrounded with
nonlocal supertluid current pattern, but in 2d (2+1d), it can be
mapped to a point charge coupled to an electric field (gauge field).

—
()

vortex vortex
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Elementary Dualities

Classic example: Boson-Vortex duality (Peskin, 1978, Dastupta,
Halperin, 1981, Fisher, Lee, 1989):

2

L =0, +r|®f+ g|P|

MI of boson condensate of boson

MI PY
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condensate of vortex MI of vortex
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Elementary Dualities

Example 2: “bosonization of” 2+1d Dirac fermion (Chen, Wu, Fisher
1993, Hsin, et.al. 2016; connection with SUSY duality, Kachru, et.al.
2016; Lattice duality: Chen, et.al. 2017):

: , 2 t !
L=, —ia,)®[+r|®f + g|®|' + e A da - 5=a N dA
p p-

]

r <0  Trivial insu. Integer QH r >0
O

m < 0 m > 0
L = 9Yyu(0s —iAL)Y + myyy + Uv,(0, —tA,)¥ + MIT

Spiritually analogous to bosonization/fermionization in 1+1d (such
as 1d quantum Ising model): the bound state between a boson/spin
and a “kink™ 1s a fermion.
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Elementary Dualities

Example 3: fermionic particle-vortex duality: (Son, 2015, Metlitski,
Vishwanath, 2015, Wang, Senthil, 2015, Seiberg, et.al. 2016)

L =xv(8, —tA4,)x + mxx

m<0 +1/2QH -1/2 QH m > 0
O
m > () m < ()
7
L =v¢Yv,(0, —1a,)¢Y + —aAdA +myy

N

These elementary dualities can lead to a large web of dualities, some
of these dualities involve unconventional QCPs that are of great
interest to CMT, and much easier to test numerically.
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Self-dual N=2 QED3
Restating the conjecture: the N=1 QED3 flows to an IR fixed point,
which 1s equivalent to a noninteracting Dirac fermion.

L: = X A.’;;((.);! e i"lp )\

: a dA

& L=9v,(0, —ia,)yY 4 —

/i

Assuming this 1s true, we can derive the following descendant duality:
The N=2 QED3, if it is a CFT, 1s self-dual, Xu, You, arXiv:1510.06032

—
Fr

- . , .
L':Z\_,",ﬂ(()ﬂ 80, )X + LAY T X = aldB
)=]

z : i l
< L= Z:',-‘,ﬂ(r‘)ﬂ tb, )Y + e By, T 4 bA dA
1=1

& i
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Self-dual N=2 QED3

Deriving the self-duality (Xu, You, arXiv:1510.06032):

al V“‘-\ . . y z fr
L= X = i) X; + iAuX N7 X + 5-a A dB
=]

Step 1: run the fermion-fermion duality for each flavor:

& L=1Y17,(0, — b)) + Yay,(0, — tc, )Y
' i

——andb+c—2B)— —ANd(b-c)

Il m

Step 2: Integrating out dynamical gauge field a:

‘“-4

bAdA

"D
=

/

‘)
o L= E iYu(Gu — b)Y + iB Yy, T3 +
j=1

Other Derivation of this duality: Mross, et.al. arXiv:1510.08455
Karch, Tong, arXiv:1606.01893, Hsin, Seiberg, arXiv:1607.07457
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Self-dual N=2 QED3

. : - . : ” Z
L= Z \_)n';r(();l o ”‘rﬂ)\_; -+ /,l‘,, XYuT X -+ o aldB
7=
2 .
: ‘ : 2 1
& L= P1,(8, —ib); +iBy v+ 5-bA dA
j=1

Implications of this duality:

1, the N=2 QED3 can at most have O(4) symmetry. The SO(4) ~ SU(2)
x SU(2) 1s the flavor symmetry of both y and y. The Z, subgroup of
O(4) 1s the selt-duality transformation.

Another way to see the O(4) symmetry, by mapping this model to a
low-energy effective field theory in terms of gauge invariant O(4)
vector boson (Senthil, Fisher 2006).
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Self-dual N=2 QED3

L’ — Z \_)n';r(();l o ”‘rﬂ)\_; + /,l‘,, \,..:‘“Ty X -+ 2?” N f/l)’
7=

;
27

2
& L= Pu(8 —ib); +iBPy,m %+ —bA dA
1=1

Implications of this duality:

2, there 1s an O(4) breaking but SO(4) invariant relevant perturbation:

myy ~ —mxx

Tuning m drives a bosonic topological transition (type II
unconventional QCP), between a bosonic “topological insulator™, 1.e.
bosonic symmetry protected topological (BSPT) state, and a trivial
state (Grover, Vishwanath, 2012, Lu, Lee, 2012):
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Self-dual N=2 QED3

. : - : : A 2
L = Z \.)n'ﬂ(();l S “‘r,r.f)\_; + "l;r\nf‘ur X -+ 2?.‘ a /\ f/l)’
7=
2 .
. ‘ : : 2
& L= P1,(8, —ib); +iBy v+ 5-bA dA
j=1

Implications of this duality:

3, there is also a SO(4) breaking fermion mass term, that drives the
system into two different superfluid phases (type I):
mypo*y ~ —myo’x
Superfluid phase Superfluid phase

m < () O m >0
SSB of B-4 SSB of A+B
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Self-dual N=2 QED3

4, evidences for the N=2 QED3 to be a conformal field theory:
4.1 Direct numerical evidence for CFT and emergent O(4) symmetry:
Karthik, Narayanan, 2016, 2017

4.2 the tuning parameter M) ~ —mxx drives a bosonic topological
phase transition (Type II), and the Chern-Simons level of the back
ground field 4 and B change by +2 and -2 respectively. If we enhance

A and B to SU(2) background gauge fields, their levels change by +1

and -1 respectively.

Simulation on a lattice model with the same transition (Slagle, You,
Xu, 2014, He, etc. 2015),
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More duality of N=2 QED3

More duality of N=2 QED3 (Karch et.al. 2016, Potter, et.al. 2016,

Wang et.al. 2017)

‘ 2 | | | , :
L= Z X5 Vu(Op = ta,) x5 + tALXYuT X 4 5 adB
=1

(s

Step 1: run the fermion-boson duality for each flavor:

< L=|(0,—ib,)z :

+L”_ A(b—rc)+ L[J A db — Lf' A de
2T {9/ 4

‘+g ‘40

'+ (O — i)z

1 <9

Step 2: Integrating out dynamical gauge field a:

£=3 10, - bzl + glesl!
J
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More duality of N=2 QED3

More duality of N=2 QED3 (Karch et.al. 2016, Potter, et.al. 2016,
Wang et.al. 2017)

: 3 oo e 2 o
L= 18— iby)z|* + rlzi]* + glz]
J
r <0 SF ordered SF(VBS)order 7 >0
O
m < () 9 m > []
L= E Vivu(0y — ta,); + mypo®y
=1
Neel order : -—«I— VBS order
f_i "_’ — ———— ——
g =— | -9
L f $—+ ot I I l
" « f .
s s & !
s —te e

nm
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More duality of N=2 QED3

More duality of N=2 QED3 (Karch et.al. 2016, Potter, et.al. 2016,
Wang et.al. 2017)

: : 2 2 1
£= Z (O = 1by) 2;|° + 25| + 9|2
j
r <0  SF ordered SF (VBS)order 7 >0
@
m < 0 . m > ()
L= Z Vivu(0y — ta,); + mypo®y

J=1

“Miniweb” of duality: each of the

Q>Q

Lagrangians above are self-dual, and
they are dual to each other: duality Q
between (self-dual) type I and (self-

Q

dual) type Il unconventional QCPs!

h;
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Implications Q/ ‘the pi‘upnm’d dlla/i{]'

Q>Q

Q

Q<Q

|I“r <0 0 ny

h,

Duality predicts:

The easy-plane dQCP has an emergent O(4) symmetry, and a set of

3 I I+ niqep
VR 2 :
3 l 1 + Nged
N Ty
Yaqop =
0(4) ) Ly A vhs
mBTT = aqee = TaqQep

1 + e

2

exact relations between the critical exponents of the bosonic

topological transition and deconfined QCP:
(Wang, Nahum, Metlitski, Xu, Senthil, 2017)
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Numerical Simulation for Bosonic topological transition
We want to design a similar lattice model with all the key physics, and
“easy” to study numerically:
H Hh;mcl * Hint 3

Hpana =—t Y clycje+ Y iNjelotcje+ He.
)€

(15).€ {(i5)).€

2
Hipt = 4 -]Z [54 - Sio 4 4(’”:‘1 1)(n — 1)

Simple limits of this model:
(1) Noninteracting: bilayer quantum spin Hall, boundary has two
channels of gapless fermion modes

\ 4

A
—
——

I
vy
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Numerical Simulation for Bosonic topological transition
We want to design a similar lattice model with all the key physics, and
“easy” to study numerically:
H Hh;mcl * Hint 3

Hpana =—t Y clycje+ Y iNjelotcje+ He.

(15).€ {(i5)).¢

2
Hipt = 4 -]Z [54 - Sio 4 4(’”:‘1 1)(n — 1)

Simple limits of this model:
(2) Strong J-interacting limit: trivial Mott insulator, with inter-layer
spin singlet one every site. W) = H Singlet)

What happens at intermediate .J ?
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Numerical Simulation for Bosonic topological transition

Apparently, this model has at least U(1)

x U(1)

spin /charge

symmetry. At
relatively weak interaction J, we can directly bosonize the edge

v z
Hy = /"” E i, Liv0. Y L — Y1, 10O V1L R
: =1

l

. 2 : . K .
Hy = / dx Z ')}\' (0.0;)° + !l)\ (Dythy)°
=1 ° i

states:

l interaction H, ~ acos(2r¢, — 2n¢y)

. 3 v . oK .
H= / de —(0,0)° + — (0, ¢)°
: 2K
When 71, 1s relevant, all the fermion modes are gapped at the
boundary, but bosonic modes are gapless, and protected by symmetry.
Thus the system becomes effectively a “bosonic topological insulator”
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Numerical Simulation for Bosonic topological transition

This model actually has an exact SO(4) symmetry. Spin-up and
spin-down fermions have their individual SU(2) symmetry.
SO(4) vector:

mn; (.'\7:'_ I]Il Af-. R(\ A’ ."\T!‘”).

H= E =) fir(~ty +x,.1,-,-)f;-.,+h.c.—]i( E (D; D] + D} D) u,—,§ fir i fio
- ) f
Ij«r i
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Numerical Simulation for Bosonic

Determinant QMC for the
bosonic topological phase
transition: (Slagle, You, Xu,
2014, He, etc. 2015), this model
has an exact SO(4) symmetry
on the lattice, consistent with
the emergent N=2 QED in the
infrared.

In terms of the N=2 QED
language, this transition
corresponds to changing the
sign of the SU(2) invariant
fermion mass term )

Ag/t

04
0.0

* topological transition

L 12L T - T T - T
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4] £ &b
0.0} 2 ;f’
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i 33 35 36 :;? 38 ﬁ.f
O
i A=0.2t, U=0 .0t )
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Numerical Simulation for Bosonic topological transition

Determinant QMC for the 25F 12— =7
. - g 1.1} M
bosonic topological phase sok il . K
", » 2 4 ) €0 Py
transition: (Slagle, You, Xu, ook b i
. C15F  osf g & 4
2014, He, etc. 2015), this model = e | ;
& 34 35 36 37 38 &
has an exact SO(4) symmetry < 10} T
on the lattice, consistent with el : |
R _~ . . ' 4=0.2t, U=0.0t
the emergent N=2 QED in the - B (a)
infrared. e
L

In terms of the N=2 QED
language, this transition

corresponds to changing the
sign of the SU(2) invariant
fermion mass term 1y
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The easy-plane J-Q model with a continuous AF-VBS transition

Hiq=-J) (P +AS87S})—=Q Y PijPuPmn

(i7) (ijklmn)
1
[)?} o T — S} . S} )
—p < '
Neel order F— N I_ ~ VBS order

," H‘ Py ° F—r < > ——

\ &

-« |© 2 ’ | *>
s—f—¢—f °’I | I

1 -

———¢ |
L bl . .

(O, O/J

Qin, He, You, Lu, Sen, Sandvik, Xu, Meng, 2017
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The easy-plane J-Q model with a continuous AF-VBS transition

Hiq=-J) (P +AS87S})—=Q Y PijPuPmn

(i7) (ijklmn)
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. e . B4 . ;
, ° E L ]
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L ® g - F 7
1021 1 1 1 1 J L 0 4 ou L L 1 J
F T T T T T T T T E
E 3
F o () :
10-?’F ° . l L Tlaqerp
: : ®* e B ) - : .
2 E e 04 3 VBT 2
; * .
3| ® y
il *%e ] g _ ] 1+ Ned _ 1+ mmrm
< T VA 110 210 3|0 410 J V('; {i. & B 5 "
L
Within error bar, the numerical data Y. ah. ks
: : S BT = Nlaqer = TaqQerp
are consistent with predictions!
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Possible Experimental Platform

bosonic topological insulator, and potentially bosonic topological
transition, have been proposed to be realized in bilayer graphene.
Interaction plays the crucial role.

B1, Zhang, You, Young, Balents, Liu, Xu, 2016.

(a) no interaction (b) with interaction

— Tfo - g B u s LS
‘,;}[:‘\,.H ‘*{"1"'._ o B. 3ty ‘x‘\,‘ Sttty B.

TN B A s e ey "-"r Tttty ey
< 3 Tty D
SR ‘%&‘f‘f‘ S
e ‘xuh%;%;&-.x
1*'."{’ x‘x‘fmxmx‘; g s T R -.;‘
gapless fermion modes gapless boson modes
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Deconfined Quantum Critical Point on the Triangular Lattice

Thomson, Rasmussen, Bi, Xu, 2017

P < { h N + W 0(4)

VIRV * VARV, *!
P { e * { S

Self-dual Z, spin liquid:
O(4) invariant pairing
of QED

W * W * /_:l + LE
Ground state manifold al >
SO(3) 04)~”
K1 L,—-L

Ground state manifold:

V12 x V12 VBS

Ground state manifold
approximately SO(3)
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Summary

V
Proposed duality between two (self- :
dual) unconventional quantum A ’
critical points: bosonic topological S

[~ 1t1¢ g =3 r S B Q s c— —— ()
transition (type II) and the easy- Q Ol BePT b Mot \
plane deconfined quantum critical
point (type I); v v

h, <0 0 h,>0
h,

Numerical simulation does support the theoretical predictions!
dQCP and bosonic topological insulator have both been proposed
to be realized in bilayer graphene!

Lee, Sachdev 2014,

B1, Zhang, You, Young, Balents, Liu, Xu, 2016.
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