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Abstract: <p>Standard models of cosmology use inflation as a mechanism to resolve the isotropy and homogeneity problem of the universe as
well& nbsp;as the flatness problem. However, due to various well known problems with the inflationary paradigm, there has been an ongoing search
for aternatives. Perhaps the most famous among these is the cyclic universe scenario or scenarios which incorporate bounces. As these scenarios
have a contracting phase in the evolution of the universe, it is reasonable to ask whether the problems of homogeneity and isotropy can still be
resolved in these scenarios. In my talk, | will focus on the problem of the resolution of isotropy. In the contracting phase of the evolution, the
mechanism of ekpyrosis is used in most cosmological scenarios which incorporate a contracting phase to mitigate the problem of anisotropies
blowing up on approaching the bounce. | will start by studying anisotropic universes and | shall examine the effect of the addition of ultra-stiff
anisotropic pressures on the ekpyrotic phase. | will then consider evolving such anisotropic universes through several cycles with increasing
expansion maxima at each successive bounce. This eventually leads to flatness in the isotropic case. My aim will be to see if the resolution of the
flatness problem aso leads to a simultaneous resolution of the isotropy problem. In the last section of my talk, | will briefly consider the effect of
non comoving velocities on the shape of this anisotropic bouncing universe.</p>
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I—Intrc>d uction

How do we get a bounce?

Coming out of the contracting phase the Hubble rate H is
negative.

H > 0 in the expanding phase

So in the transition or ‘bounce’ phase, H = 0 and

: kK 1

H_E—E(PJFP)
If the spatial curvature k is 0, then for H > 0 and H = 0, we
must have p + P < 0 (NEC violation)

If we have positive spatial curvature, we can have a bounce,
In the closed radiation FRW universe, exact solutions show
this but need a NEC violating field to have the bounce occur
at non-zero volume,

J.D.Barrow and Christos G.Tsagas, CQG Vol. 26, No. 19 (2000)
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I—Intrc:>d uction

Do the most general cyclic universes isotropise?

am
{,

m Closed FRW universe with ordinary matter or dust shows
oscillatory behaviour

m Simple solutions in these scenarios have been found
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I—Intrc:>d uction

We focus on the isotropy problem and split it up into 2 regimes of
Interest.

m In the contracting branch, on approach to the singularity, or in
the case of non-singular cosmologies, on approach to the

bounce
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I—Intrc:>d uction

We focus on the isotropy problem and split it up into 2 regimes of
Interest.

m In the contracting branch, on approach to the singularity, or in
the case of non-singular cosmologies, on approach to the

bounce

m Over a large period of oscillations with increasing expansion
maxima
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I—In the contracting phase

In the contracting phase
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L-1n the contracting phase

A simple example of ekpyrosis

m [ he metric
ds® = dt® — a%(t)dx® — b?(t)dy® — c?(t)dz?

m Friedmann equation: 3H? = 02 + pmatter,

m [ he shear evolves as,
C-T(\'.;'f + 3HU{}'H =0

B Pmarter Should evolve as V™" n > 2

. Khoury, B.A. Ovrut, P. J. Steinhardt and N.Turok, 2001, J. High Energy Phys. 11(2001)041
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L-1n the contracting phase

Bianchi Class A cosmologies

am
{0,

m [ he generalised metric

ds® = dt? — h,pdw?dw®

m Having an isotropic ultra stiff field of density p with equation
of state p = (v — 1)p, such that v > 2
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L-1n the contracting phase

The phase plane system

om
h

m We introduce

m Write EFE in terms of expansion normalised variables

R

6H?
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L-1n the contracting phase

The phase plane system looks like...

am
{,

m Einstein equations of the form x’ = f(x)
m subject to the Friedmann constraint g(x) = 0

m where the state vector x € R® is given by

{Hﬂ Z—l—?z— ) Nl?N2?N3 *Q}
N N e’

shear components spatial curvature variables
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L-1n the contracting phase

m [he fact that the matter is ultra stiff v > 2 is used and

m A no-hair theorem can be proved for all Bianchi types, I-VIII
as well as |X(separately)

Cosmic no-hair theorem

All initially contracting, spatially homogeneous, orthogonal Bianchi
Type |-VIIl cosmologies and all Bianchi type IX universes sourced
by an ultra-stiff fluid with an equation of state such that (y — 2) is
positive definite, collapse into an isotropic singularity, where the
sink is a spatially flat and isotropic FRW universe.

J.E.Lidsey, CQG, 23, 3517,(2005)
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I—Ekpyrosis meets anisotropic pressures!

Ekpyrosis meets anisotropic pressures!
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I—Ekpyro:.is meets anisotropic pressures!

Why include anisotropic stress?

am

Nty

m Bouncing models of the universe, such as ekpyrotic scenarios
or LQC models claim isotropisation occurs at early times. But
this isn't true on addition of anisotropic stress.

Interaction rates of particles

[ =onv~ga’T

To remain in equilibrium, ' > H
Before isotropisation, anisotropic universe expands faster

Harder to maintain equilibrium

Decoupled collisionless particles free stream and exert
anisotropic stresses.
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I—Ekpyrcasis meets anisotropic pressures!

Anisotropic stresses in a Bianchi | universe

We go back to our simple flat anisotropic universe and add
anisotropic pressures in.

m Friedmann equation
2 2
3H® = 0 + pmatter,

m T he shear evolves as,

(-T(I'Ji"f + 3ngzﬁ = N‘Pf\-ﬁ’

anisotropic stress

The equation for the shear isn't homogeneous and we can't say
straight away that an ultra stiff field will be able to dominate over
it.
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I—Ekpyrcasis meets anisotropic pressures!

Anisotropic stresses in Bianchi Class A

am
{,

m Resort to the expansion normalised variables and introduce
Z = 35 where 1 is the anisotropic pressure field energy
density with EOS, p;j = (v; — 1)p and
o=+ +15)/3>

m try to perform stability analysis on the state vector
x={H, 2, . X N, No,N3,Q 7}

m Linearise expansion normalised EFE around the FL point

. =0, Y =0, Ny=0 No=0 N3=0 Q=1 7Z=0
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I—Ekpyrcasis meets anisotropic pressures!

Stability analysis with anisotropic pressures:the results

am
4,

We find the following eigenvalues

_3,(2 — ~) of multiplicity 2

3—2L2 of multiplicity 3

3(y — %) of multiplicity 1

Using the condition v, >~ > 2, FL equilibrium point stability
cannot be determined
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I—Ekpyrcasis meets anisotropic pressures!

Stability analysis with anisotropic pressures:the results

am
4,

We find the following eigenvalues

_3,(2 — ~) of multiplicity 2

3—2L2 of multiplicity 3

3(y — %) of multiplicity 1

Using the condition v, >~ > 2, FL equilibrium point stability
cannot be determined

We can no longer determine the stability of the FL point and
can't prove a no hair theorem like before.

Pirsa: 17100077 Page 19/40



Isotropising anisotropic cyclic cosmologies

I—The Bianchi IX universe

The Bianchi IX universe
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I—The Bianchi IX universe

Bianchi Type IX: What it is and why we use it

am

Nty

It is the most general closed homogeneous universe,
describable by ODEs

It has the closed FRW universe as its isotropic sub-case

It has expansion anisotropy and anisotropic 3-curvature(which

has no Newtonian analogue)

The 3-curvature can change sign through the course of its
evolution and is positive when the model is closest to isotropy.

On approach tot — 0, in an open interval 0 < t < T,
exhibits chaotic Mixmaster oscillations, however oscillations
become finite in number even if t — tp; on the finite interval
tpy < t < T excluding t — 0.
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I—The Bianchi IX universe

We have a Bianchi Type IX universe with

am
{0,

m an isotropic pressure field with energy density p which follows
the equations of state p = (7 — 1)p and is effectively NEC
violating, to bring about a non-singular bounce

m Anisotropic pressure field with energy density j« and
pi = (vi — 1) with i = 1,2, 3, such that
Y =(n+12+73)/3and v, >

m Choose initial conditions satisfying the Friedmann constraint
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I—The Bianchi IX universe

Scale factor evolution

Figure: Scale factors with isotropic ghost field and with fields with
anisotropic pressures respectively
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m [ he scale factors with just an isotropic pressure ghost field
bounce and start to expand.

m T he scale factors with the anisotropic pressure field included
seem to contract towards a singularity.
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I—The Bianchi IX universe

Evolution of the shear
o |f we look at the evolution of the shear, we find,

Figure: Evolution of o2 with time

e g2With isotropic fluid

o?with anisotropic fluid
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I—Sc;l\,'ing the flatness problem within the framework of bouncing cosmologies

Solving the flatness problem within the framework of bouncing
cosmologies
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I—Scal\.fing the flatness problem within the framework of bouncing cosmologies

Bouncing cosmologies and the flatness problem

o,

m Simple models of bouncing universes such as matter-+
radiation closed FRW incorporated increasing radiation
entropy to increase expansion maxima from cycle to cycle

m Universe seemed to approach flatness

m Suitable candidate for the current day universe?

Would an anisotropic, bouncing cosmological model under similar
increasing radiation entropy from cycle to cycle undergo
isotropisation simultaneously with approach to flatness?
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I—Sc;l\,'ing the flatness problem within the framework of bouncing cosmologies

Present day flatness can perhaps be achieved by diluting the
curvature with increasing volume

Figure: Scale factor with increasing entropy of radiation in closed FRW
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J.D.Barrow, M.P.Dabrowski, MNRAS, 275, 850 862, 1005
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I—Sc;l\,'ing the flatness problem within the framework of bouncing cosmologies

The scale factors with increasing radiation entropy

Increasing entropy of radiation in Bianchi IX

Figure: Evolution of volume scale factor and individual scale factors
respectively
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I—Sc;l\.fing the flatness problem within the framework of bouncing cosmologies

Let's see how the shear and the 3-curvature behave

am

ty

Figure: Evolution of o2 and (3)R respectively
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I—Adcling a cosmological constant to the cocktail

A Adding a cosmological constant to the cocktail
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I—Adcling a cosmological constant to the cocktail

The scale factors with increasing radiation entropy
The volume scale factor and hence the individual scale factors
evolve through a series of oscillations with increasing maxima until

the cosmological constant starts to dominate and they expand
exponentially

Figure: Evolution of volume scale factor and individual Hubble rates from
left to right
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I—Adcling a cosmological constant to the cocktail

Let's see how the shear and the 3-curvature behave

Figure: Evolution of o and (®)R respectively
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I—Ccmt:lusit::ons

Conclusions
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I—Ccmt:lusit:ms

Summary |

om
e

m In the initially contracting Bianchi Class A models, in the
presence of ultra-stiff anisotropic stresses, FL is no longer an
attractor in the asymptotic past

m In the Bianchi IX equations, including an ultra stiff anisotropic

pressure field causes the scale factors to contract towards a
collapse near the singularity.
They bounce with only an isotropic ghost field present.

m T he shear remains small and nearly constant in the isotropic
case but increases without bound when the anisotropic
pressure field is included.
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I—Ccmx:lusicms

Summary |

am

L

m By future evolving the model, we find that with radiation
entropy increase, the height of the scale factor maxima
increases, but the shear and the curvature oscillate and do not
decrease to indicate isotropisation at any time.

On adding the cosmological constant to the analysis, at the
point of cosmological constant domination, the scale factors

stop oscillating and undergo exponential expansion.

The shear and the curvature tensors oscillate as before and
then under cosmological constant domination, they fall to
smaller and smaller values
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I—Ccmx:lusicms.

So the takeaway message...

Near the singularity...

Including anisotropic stress, does not always result in isotropisation
near the singularity, even if the anisotropic stress field is ultra-stiff
on average

On future-evolving the system..

On evolving the system into the future, isotropisation does not
occur as the shear keeps oscillating with the oscillations of the
volume scale factors. On adding a cosmological constant, the shear
and curvature fall to very small values
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I—Ccmx:lusicms.

The effect of non comoving velocities with entropy increase

o,

Figure: Evolution of the square of one of the spatial velocity components
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L Conclusions

The effect of non comoving velocities after cosmological
Constant domination

Figure: Evolution of the square of one of the spatial velocity components
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I—Ccmt:lusit:ms

The effect of non comoving velocities, in brief

am
{,

m On imposing momentum and angular momentum
conservation, the spatial components of the velocities fall to
smaller values with an increase in entropy density and vice
versa

m On addition of cosmological constant, bounces cease,
expansion tends to the quasi dS asymptote and velocities tend
to oscillate with a constant amplitude, while one of them
tends to a constant value.
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