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Abstract: <p>We first summarize background on the quantum capacity of a quantum channel, and explain why we know very little about this
fundamental quantity, even for the qubit depolarizing channel (the qguantum analogue of the binary symmetric channel) despite 20 years of effort by
the community.<br>

<br>

Then, we focus on low-noise quantum channels, and present recent results on the quantum capacity to leading order in the noise parameter. Thisin
particular solves the quantum capacity problem (to leading order) for the qubit depolarizing channel, and provides a structure theorem for the
capacity achieving codes. For low-noise channels, degenerate codes provide negligible superadditivity effect.<br>

<br>

Analoguous results on the private capacity will be presented. Our results imply that for low-noise channels, there is negligible difference between
coherence and privacy, and a key rate approaching the capacity can aready be obtained using classical error correction and privacy
amplification.<br>

<br>

Joint work with Felix Leditzky and Graeme Smith</p>
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Punchline

Capacities of quantum channels are fun but complicated.

But everything is simple in the low noise regime.
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Qutline

* Background

Quantum channel & capacities

*

The quantum don't-knows

Superadditivity, superactivity, Q # P

%

The quantum knows

Degradable channels, continuity, approx degradability

*

Application to low noise channels

* Consequences
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Quantum data & quantum channel (DMQC)

input from output to
sender Alice receiver Bob
Al N Bl
.
f"n N Dn
A " B, > As n — oo, )
| o) v\, output state ~ |¢)
n uses
R Capacity Q(N) =
>/ sup (#qubits / n)

reference to the input
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Useful concepts and notations

input from
sender Alice

[ W)l

Complementary

Pirsa: 17100071

L ™ N(P) " channel N< from A to E
o — Uv | -N(p) Channel N from A to B
A B
F e Uy (Jw){w])
J o =
R Channel N split input

between receiver Bob
and environment E
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The Lloyd-Shor-Devetak theorem

: N<(p) Complementary
input from E, channel N¢ from A to E
sender Alice '
P/ Uv | -N(p) Channel N from A to B
B
7 1@ Uy ()
W) (vl
lizati
= o normalization

Q(N) = Q(N) := max,, % [I(R:B) - I(R:E)]

1—5hot/ / \

coherent S(R)+S(B)-S(BR) info leaked
info of N S(-): von Neuman entropy  to the env
of reduced state of -
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The quantum don't-knows

1. 3N s.t. QU(Ner) > r, QII(N)
2. 3N s.t. Q(Ner) > 0, QU(N) =0
* sup,, needed

* no algorithm to determine if Q(N) = 0

* even simple channels exhibit superadditivity
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The LSD theorem

Complementary
channel N¢ from A to E

input from E _ —N<p)

sender Alice
0 Uy | -N(p) Channel N from A to B
A B >
| w) (v I @ Uy (Jwi(w])
R o

Q(N) > Q(N) := max,,, % [I(R:B) - I(R:E)]

W

Q(N) > Q'U(N®") / n

Q(N) < sup, QP(N®") / n  (Schmacher & Westmoreland)
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The quantum don't-knows

1. 3N s.t. QU(Ner) >r, Q(N)

2. 3N s.t. QU(Ner) > 0, QU(N) =0

DiVincenzo-Shor-Smolin 97:

"2." holds for r = 5 and some qubit depolarizing channel.
N,(p) =(1-p) p+p/3XpX+p/3YpY+p/3ZpZ

=(1-n)p+nl/2 (n = 4p/3, quantum BSC)

QW(N,) = 0 for p > 0.1894, but Q¥(N,*") > 0 for p < 0.1904.

Pirsa: 17100071
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The quantum don't-knows

1. 3N s.t. QU(Ner) >r, Q(N)

2. 3N s.t. QU(Ner) > 0, QU(N) =0

DiVincenzo-Shor-Smolin 97:

"2." holds for r = 5 and some qubit depolarizing channel.
N,(p) =(1-p) p+p/3XpX+p/3YpY+p/3ZpZ

=(1-n)p+nl/2 (n = 4p/3, quantum BSC)

QW(N,) = 0 for p > 0.1894, but Q¥(N,*") > 0 for p < 0.1904.

Still known after 20 years:

What is Q(N) for 0 < p < %? 1s Q(N,) =0 for p € [0.1904,0.25]7
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The quantum don't-knows
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The quantum don't-knows

1. 3N s.t. QU(Ner) >r, Q(N)

2. 3N s.t. QIV(Ne®) >0, QU(N) =0

DiVincenzo-Shor-Smolin 97:

QW(N,) := max, ¥2 [I(R:B) - I(R:E)] =0
QW(N,*%) > %2 [I(R:By --- Bs) - I(R:E; - E5)] > 0
A completely non-classical effect:

Encode one qubit into 5 using a degenerate code whose
entanglement makes different errors act identically on
the code space, and heavily suppresses I (R:E; -+ Es)
while not so heavily suppresses I(R:B; --- Bs).

NB. More recent results have r = 2, and simple channels.
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The quantum don't-knows

1. 3N s.t. Q(Ner) > r, QU(N)
2. 3N s.t. QI(Ner) > 0, QU(N) =0

3.Vr, 3N QI(Ner) = 0 but Q(N) > 0.

Cubitt, Elkouss, Matthews, Ozols, Peres-Garcia, Strelchuk 14

We do not know whether

the problem "determine Q(N) = 0 or > 0"
is decidable or not.
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The quantum don't-knows

4. 3Ny, N, s.t. Q(N;) = Q(N,) =0, QU(N1 ® N,) > 0

Superactivation of quantum capacity. Smith and Yard, 2009.

4'. 3N;, N, s.t. Q(N;) =0, Q(N,) <2, QI(N1 ® N,) ~ ¥ log d,,

Extensive non-additivity of Q. Smith and Smolin, 2009.
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The quantum don't-knows

5.3 Ns.t. Q(N) =0, P(N) >0

where P(N) = private capacity of N (best rate of classical data
transmission that is unknown to the DMC environment)

Karol, Michal, and Pawel Horodecki + Oppenheim 2003

5. 3N s.t. Q(N) < 1, P(N) = log d,,

Privacy without coherence. Leung, Li, Smith and Smolin, 2014.
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The little
Degradable channels we know ...

Definition.
N is degradable if 3 another channel M s.t. N = M o N.

input from E Degradable means:
sender Alice . .
U E' v |y) final state is
—] A 57 Uy, " invariant under
T swapping E and E'

| W)l

Pirsa: 17100071
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The little
Capacities for degradable channels — Weknow ..

Theorem [Devetak-Shor 04]
If N is degradable then Q(N) = Q)(N).

Proof (a few slides later).

Pirsa: 17100071
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The little
Continuity for channel capacities we know ...

Theorem [L, Smith 09]

If|[| N-M]||, <e,

then | Q(N) - Q(M) | < 8c¢log |B| +4 h(e) =~ -4 ¢loge
where h(x) = -x log x - (1-x) log (1-x)

(binary entropy function)

[l N-M[], = max, [[ I @ (N-M) (Jy){y]) ||,

(diamond norm distance, best bias to discriminate N from M)

Pirsa: 17100071
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An idea that doesn't work well enough ...

Continuity bound from degradable channels:
For any N, Q(N) ~ Q®X)(M) + 8 ¢ log |B| + 4 h(g)
for any degradable M with || N-M ||, < ¢

Correct, but ...

* Hard to minimize e.

* 8 ¢log |B| + 4 h(e) =~ -4 ¢ log ¢ which vanishes with g,
but slope infinite at ¢ = 0.

* For low noise channels, upper bound is trivial, as the
obvious M is the identity channel & Q1)(M) trivially big.

Pirsa: 17100071
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The little
A nice twist we know ...

Definition [approx degradable channel, Sutter et al 14]
N is n-degradable if 3 channel M s.t. |[N€- MoN ||, <.
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The little

A nice twist we know ...

Definition [approx degradable channel, Sutter et al 14]
N is n-degradable if 3 channel M s.t. |[N€- MoN ||, <.

When n = 0, N is degradable.

Extend the Devetak-Shor proof for degradable channel
having Q(N) = Q™ (N) via a continuity argument.
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The little

A nice twist we know ...

Definition [approx degradable channel, Sutter et al 14]
N is n-degradable if 3 channel M s.t. |[N€- MoN ||, <.

Theorem [Sutter, Scholz, Winter, Renner 14]
If N is n-degradable,
then | Q(N) - Q(N) | < -nlogn + O(n)

Advantage:
- M and n can be numerically minimized as an SDP

Remaining problem:
- the gap is still O(-n log n) which has infinite slope wrt n
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The little
The Devetak-Shor-Sutter-et-al proof Weknow ...

Consider any input, any channel N followed by channel M:

E
U B
A B | Um
|w) (vl F
R
L [I(R:B) - I(R:E)] < Q1) is the max of this
= S(B) - S(E) (by expanding the mutual info)
= S(E'F) - S(E) (unitary does not change evals)
= S(E'F) - S(E') + S(E') - S(E)
e o A \ ~ /
— S(FIE") + h(n/2) + O(n) if N n-degradable, S(E')~S(E)

A\
subadditive hope: similarly controllable for n-uses of N

Page 25/37

Pirsa: 17100071



Crestron Electronics, Inc. 36"
HDM-1

Pirsa: 17100071

The Devetak-Shor-Sutter-et-al proof Weknow ...

The little

For any channel N: - E.
U _E.
% [I(R:B) - I(R:E)] &l U
AP . B|“M|l—
= S(F|E') + S(E') - S(E) | ) (y| < F
R
For N®n: (still just one R)
2 [I(R:B;---B,) - I(R:E;---E,)]
= S(F,--- F,|E;"+- E;') + S(E;' -+ E') = S(E; -+ S,)
< Xi=1" S(F,|E') + S(E;' --- E.') - S(E; --- S,)
e g 2

<-0O(nnlogn)

by continity argument applied to
N<and MoN if N is n degradable

(as in LS09, or tighter results in Sutter et al)
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The little
The Devetak-Shor-Sutter-et-al proof Weknow ...

For any channel N: - E.
El
Y2 [I(R:B) - I(R:E)] A U 8] Unl__.
= S(F|E') + S(E') - S(E) | ) (y| < F
R

For N®n: (still just one R)

Y [1(R:B;---B,) - I(R:E;---E,)]

= S(F,- F |E,"+ E.') + S(E," -+ E') = S(E; -+ S,)
< T " S(FIE') + S(Ey' -+ Ep) - S(Ey - Sp)
g /
Sy
\ <-0O(nn log n)

<QW(N) + O(n log n)
from 2 slides ago
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The little

The Devetak-Shor-Sutter-et-al proof Weknow ...
For any channel N: -E.
Y2 [I(R:B) - I(R:E U s

2 [ﬁ(_._'. _)_‘— (R:E)] A 51 Unl__.

= SIFEY) + S(E') - S(E) |\|,'><1|,'| F

R

For N®n: (still just one R)
5 [1(R: B1 B ) (R:El---En)]

= S(F.sis F.|E, % E.Y) + S(E ' n') S(E1 5 5.)

Sn[Ql(N) + O(n |09n)]

Q(N) = sup, , . 1/n max;,, ¥2 [I(R:B;---B,)) - I(R:E;---E)]
< QM(N) + O(n log n)
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After Sutter's talk in July 2015, | asked about the implications

for the depolarizing channel N,, and he shared the following
(arXiv replacement) and the data.

Pirsa: 17100071

The new upper bound
on Q(N,) is very close
to Q(N,) but insuff
data to determine if
|Q(N,)-QM(N)]| is
sublinear in p or not ...

Earlier this year, Felix
got convincing data

| Q(N,)-QM(N,)|~O(p?).
< O(-n log n) 53

Qn: isn ~ O(p?)?

1

0.9

0.8

0.7

0.6

0.5

0.4

- == upper bound (29)
new upper bound (30)

Q(N,)

0.04 0.06 0.08

P

How to prove it? What M, degrades N, so well?
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Theorem: Let a = 8/3.

|| No€ = Npyap2©o No ||, < 8/9 (64V2) p2 + O(p3)
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Theorem: Let a = 8/3.

|| No€ = Npyap2©o No ||, < 8/9 (64V2) p2 + O(p3)

| =
v

take this n, plug it in
Sutter et al upper bound

Theorem:
1—h(p)—plog3 < Q(N,)
1
< 1—-h(p) —plog3— 36(6 +2) p*logp + O(p?)
e

S

Y

Q(l)(Np)
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Theorem: Let a = 8/3.

|| No€ = Npyap2©o No ||, < 8/9 (64V2) p2 + O(p3)

Why N, ..2° is a good degrading map:

Tomin n =
||NpC'MONp||o E .
Second try: Us; E
A R~ 3
B HE
| w) (v E
R
for small p,

B is close to, but
slightly worse than
the input from A !!

Pirsa: 17100071

Page 32/37



Crestron Electronics, Inc. 36"
HDM-1

Theorem: Let a = 8/3.

|| No€ = Npyap2©o No ||, < 8/9 (64V2) p2 + O(p3)

Why N, ..2° is a good degrading map:

To min n= E has a little info from A
| |Npc } MONp b E Goal:
] } make
Second try: Uy _E' | these
A P B 1?7 . similar
|w) (v “ F
R Take M = N, > for a>0

so E' has a little more of B,

for small p, to compensate for the fact

B is close to, but that B is a "slightly lesser"

slightly worse than  arsion of A. Adjust a, and

. I
the input from A !! see what's optimal ...

Pirsa: 17100071 Page 33/37



Crestron Electronics, Inc. 36"
HDM-1

Pirsa: 17100071

Extensions:

Similar results hold for the Pauli channel:

N(p) =(1-pg) p+ P XpX+pP,YpY+p3ZpZ
There are more features in N¢ to model, but we have
more parameters in the degrading map to play with ..

Similar results hold for higher dimensional Pauli channels

Similar headache, and similar results hold for the private
classical capacity of these channels. Some of these
channels in the low-noise regime are crucial for quantum
key distribution.
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Theorem: If || N- 1 ]|, <e¢, then|[N¢- N%N ||, <23

Theorem:

For low noise channels, with ||V — [|[, <€,
QN) = QW(N) + O(e'® loge)

P(N) = QU(N) + O(e!® log €)
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Outline

* Background
Quantum channel & capacities
* The quantum don't-knows

Superadditivity, superactivity, Q = P

* The quantum knows
Degradable channels, continuity, approx degradability
Low noise channels

* Consequences - no point to work too hard to optimize

various communication tasks for low-noise channels
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