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Abstract: <p>The observed deviations from the laws of gravity of Newton and Einstein in galaxies and clusters can logically speaking be either due
to the presence of unseen dark matter particles or due to a change in the way gravity works in these situations. Until recently there was little reason
to doubt that general relativity correctly describes gravity in all circumstances. In the past few years insights from black hole physics and string
theory have lead to a new theoretical framework in which the gravitational laws are derived from the quantum entanglement of the microscopic
information that is underlying space-time. An essentia ingredient in the derivation is of the Einstein equations is that the vacuum entanglement
obeys an area law, a condition that is known to hold in Anti-de Sitter space due to the work of Ryu and Takayanagi. We will argue that in de Sitter
space due to the positive dark energy, that the microscopic entanglement entropy also contains also a volume law contribution in addition to the area
law. This volume law contribution is related to the thermal properties of de Sitter space and leads to a total entropy that precisely matches the
Bekenstein-Hawking formula for the cosmological horizon. We study the effect of this extra contribution on the emergent laws of gravity, and argue
that it leads to a modification compared to Einstein gravity. We provide evidence for the fact that this modification explains the observed
phenomenain galaxies and clusters currently attributed to dark matter.</p>
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de Sitter Space cosmological horizon
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Black Hole Thermodynamics

The Laws of Gravity d E o T d S

take the form of the
Laws of Thermodynamcics

1st Law S el kB

g dA

dM =
2m 4G




Bekenstein bound

Maximum entropy associated

with mass m inside box of size R:

mcR
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Cosmological ; _ ¢
Horizon Ho

Total Entropy

A(L)c?

Entropy and Temperature are due to positive dark energy.
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Black hole horizon Bekenstein-Hawking Entropy

A
5 = 4G h
Hawking temperature
h
7=
2T

xk = surface gravity

Two possible interpretations

S = log(# black hole microstates)

S = entanglement entropy of spacetime vacuum
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EPR=ER: fortwo-sided horizon

AV

Microscopic state:

Ei>He—5E-i/2

1
IUU’C)BH — ﬁ ZL: IE??>L

Entanglement < Connectivity of spacetime:

A

S _— Van Raamsdonk
ent —

4G—h Maldacena-Susskind

Pirsa: 17100067 Page 12/68



EPR=ER: for one-sided horizon

C
B

Maldacena horizon of physical black hole:
Susskind Thermalization => long range
Entanglement.

Pirsa: 17100067 Page 13/68



(Anti-) de Sitter space

dR?
1+ R?/L?

ds* = —(1 + R*/L?)dt* + + R%d)?

cosmological
horizon

h—g

jitt
de Sitter space anti-de Sitter space —

conformal
boundary

“~

cosmological
horizon
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Entanglement entropy

pa=tr, (|¥){(¥|)

“P) Sa —tr,HA(pA log pa)

The entanglement entropy measures the number of
“entangled Bell pairs” that connect the regions A en B.
One has

Sa =SB
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Minimal Surface

6 Area
{//’ ent — 4Gh
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Anti-de Sitter space
Entanglement entropy equals
area of minimal surface.

Ryu, Takanayagi
van Raamsdonk
Myers, Casini etal.
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Entanglement entropy and Modular Hamiltonian

pa=tr, (|¥N(¥|)
Sa = —tr(palogpa)

K =Modular Hamiltonian

1st law of entanglement entropy

95— (516 (6K) = tr(pK)

irsa: 17100067 Page 18/68



Modular Hamiltonian for a ball shaped region
with radius r

K = / nT,

Here 5 is a conformal Killing vector

On the t=0 slice it takes the form

- ‘CB‘Q Casini.
n
K = / TOO ((/L‘) n=d—1

2T

Generates time flow in causal diamond constructed
on the ball shaped region.
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General Relativity from Area law of Entanglement

h A 1 '
— G = _ . }er:b
2T I8rG  8n( / Vb

hor

(0K / £4nP( Tuy)

Imposing the first law QE(SS = (0K)
™

implies the linearised (vacuum) Einstein
equations for pertrubations around
the vacuum AdS background.

Page 20/68






Bit threads: describe flow of entanglement

—— Freedman& Headrick

T TR \
-~ m(A) ~ |

Bottle neck

Max flow- min cut
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RT-formula from bit threads

Freedman& Headrick

m(A)
Max flow- min cut
=> Minimal area

1/N corrections: bit threads that leave the space.
A

m(A)
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AdS-BH versus dS

Microscopic state:

1 _BE,
vac) = 7= D 1B, | Bidue P57

Entanglement entropy: Sy = A
ent ——

What is its interpretation?
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For any ball shaped region in a maximally symmetric space
the modular Hamiltonian is given by

ré — |zl
K= [d"x
/ L( or )

in conformally flat coordinates.
Here r determines the area A of the ball.
The Einstein equations are equivalent to the following

1st law
5Ay
8rG

Here the volume V is kept fixed under the variation

0K = —

Jacobson
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For any ball shaped region in a maximally symmetric space
consider the modular Hamiltonian given by

. . . 7.2 . ‘;13‘2 o
\ = d"x 9 ()()(.I,)

in conformally flat coordinates.
Here r determines the area A of the ball.

Using the Hollands-Wald formalism one shows that
alternatively

0K

Manus Visser,

r 87TG (to appear)

B d— 9 5V|A Jacobson,

Here the area A is kept fixed under the variation
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For any ball shaped region in a maximally symmetric space
consider the modular Hamiltonian given by

K . ré — || T (o
\ = d"x 9 ()()(.I,)

in conformally flat coordinates.
Here r determines the area A of the ball.
More generally the Einsteins equations imply

O A d — 2 0V e ser
(5K —_— e — to appear
87TG I | |

when both the area A and volume V are varied.
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In terms of the modular Hamiltonian

I A i A T
\ = d"x 9 ()()(.I,)

the added volume due a mass equals

SrGr .
Vj\[(’l') — i — 2 .K
It obeys ‘
d S7Gr
I’I'VA[(,) =5 M (r)
where

A[(f) = /dn.’lf T’()()(.’I,‘)

Is the enclosed mass inside the ball of radius r
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For any ball shaped region in a maximally symmetric space
consider the modular Hamiltonian given by

K — ré — || T (o
\ = d"x 9 ()()(.I,)

in conformally flat coordinates.
Here r determines the area A of the ball.
More generally the Einsteins equations imply

O A d — 2 0V .
(5K — e — to appear
87TG I | |

when both the area A and volume V are varied.
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In terms of the modular Hamiltonian

I A i A T
\ = d"x 9 ()()(.I,)

the added volume due a mass equals

SrGr .
Vj\[(’l') — l — 2 [X
It obeys ‘
d S7Gr
E’.VM(I) = 2]\-[(1)
where

A[(f) — /dn.’l,' T‘()()(.’Ii)

Is the enclosed mass inside the ball of radius r
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The volume increase

d SrGr
—‘V]\,[(’T) — d ~ 9

M(r)

Interpreted as an increase of the complexity’ due to
the extra ‘bit threads’ associated with the mass M =>
geometrically this causes the curvature due to matter.
In AdS and flat space this continues till infinity.
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The same can be done for the static patch of de Sitter space.

o R? 5 d R? 5 1m®
ds® = — (1 - F) dt® + TR + R=dS)”
In this case the conformal killing vector is

Ea 8(1 —_ Laf

Hence the Einstein equations imply
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The bit threads must exit the de Sitter spacetime inside
the static patch => A thermal state with entropy equal to
h g ALY d—1V(L)
-~ Ment — —
or " 4G L 4G
describes the entanglement accros the horizon as well
the thermal entropy in the bulk.
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Area law entanglement

Ground state with
short range entanglement

Volume law entanglement

Quantum state with
long range entanglement

Area+volume law entanglement

Quantum state with mostly short
but also long range entanglement
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de Sitter entropy + temperature
are due to positive dark energy.

The entanglement entropy contains
volume law contribution

A(R) R

AGh L
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d StGr

FJ?VM( =T

M (r)

The volume occupied by the dark energy excitations
that are entangled with the mass M obeys approximately

d G L
(hVDE( r) ~ 5

M (r)

This leads to an elastic strain and stress that can be
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d SrGr

?J?VM( =T

M (r)

The volume occupied by the dark energy excitations
that are entangled with the mass M obeys approximately

d G L
(hVDE( r) ~ 5

M (r)

This leads to an elastic strain and stress that can be
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Matter influences the growth
of the Area as a function of the
geodesic distance.

dr
V14 2P

Mass <=> Area deficit

ds =

M#0 d [ A(r) 27 M
=2 \Gan ) =

M =0 dr

d (A(r)
ds \ 4Gh

Interpretation: Matter reduces the entanglement by an amount

2w Mr (ZSM(‘I') _Qﬂ']\[

Su(r) =~ =
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De Sitter-

Schwarzschild:
f(r)=1— ] + 20 (r)
dr?

ds? = — f(r)dt? + —— + 12dQ? (r)

r

Mass reduces horizon area

I d A(L)
L — L+ u(L) “%uhm)
uw(L) = ®(L)L Area
A -
4Gh
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The entropy density of DE equals Dark Energy as

?H, Elastic Medium
S =
2Gh
Mass reduces the entropy by AS = sAV
2nMcR
AS =
h
and removes a corresponding
volume from the medium
4rGMR
AV =
cH

This creates an elastic response
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d StGr

FJ?VM( =T

M (r)

The volume occupied by the dark energy excitations
that are entangled with the mass M obeys approximately

d G L
(hVDE( r) ~ 5

M(r)

This leads to an elastic strain and stress that can be
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The entropy density of DE equals Dark Energy as

?H, Elastic Medium
S =
2Gh
Mass reduces the entropy by AS = sAV
2nMcR
AS =
h
and removes a corresponding
volume from the medium
4rGMR
AV =
cH

This creates an elastic response
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De Sitter-

Schwarzschild:
fr 1 - 2P (r
" _!) T I ]JZ + ol (f)

2 i 0 dr? 2 12 - STtGM
ds* = —f(r)dt® + ) + r“dS) b(r) =20, , 3
Mass reduces horizon area

r d ([ A(L) 2w ML
L — L+ u(L) RSl ( l(:h) h
u(L) = ®(L)L A Area 2 M L
4G h h
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Matter influences the growth
of the Area as a function of the
geodesic distance.

dr
V14 2P

Mass <=> Area deficit

ds =

ekt d [ A(r) 27 M
= \qan) = "

M =0 dr

d [ Ar)
ds \ 4Gh

Interpretation: Matter reduces the entanglement by an amount

2 Mr (ZSM(‘I') _Qﬂ']\[

S]\[((’.) - A dr - A
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Matter entangles with Dark Energy

The empirical fact

"h S 4Gh

implies that DM-effects appear when

The left hand side is the entanglement entropy of matter.

The right hand side represents the entropy contained in DE.
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#

effects appear when

-
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for |arge r:

ggbs (I) ~ Gbar (7')(,’.H()/6

(McGaugh 2005)
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Mass discrepancy-
acceleration relation

McGaugh, Lelli, Schombert (2016)
(see also Navarro, Frenk, etal.)

for large r :

Yobs ( r )

r<

2693 points
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Mass => change in de Sitter entropy

| — % 4 2B(r) = 0
STtGM

b(r) = —
(I) ((f—Q)Q([_g'I'd_";

* Adding mass to de Sitter
space reduces its horizon

entropy by an amount » The cosmological horizon

s displaced by
AA  27ML

AGh —  h w;(L) = ®(L)Ln,
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Removing information/entropy from a volume
leads to an elastic respons.
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If you're to scale the history of the earth to a
single year, humans wouldn’t appear till

December 31, 11.58 pm on New Year’s Eve!

On that same timescale we have observed
the Universe for only a fraction of a second.
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At very long times the material behaves like
a liquid spreading out onto a flat surface

At moderate times the Silly Putty™
stretches like a plastic solid

At short times the Silly Putty™
bounces like an elastic solid

Increasing Deborah Number

-

De = Amaterial
t,

Jiow

At very short umes (the impact of a bullet)
the Silly Putty™ shatters (courtesy MIT
Edgerton Strobe Laboratories)
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Polymer Melts

eptation Model

the entanglement net.

Pirsa: 17100067

Pierre-Gilles de Gennes

Collége de France, Pars

for discovering that methods developed for d

A 1 eSS
r Of ANAOHS

The maste

\
\
)
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c\

FIG. 1. As chain A reptates out of its tube, the neighbori
chains B and C move into the region and partially recover t
memory left by the chain A4 in the form of elastic distortions
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Memory Effects in Entangled Polymer Melts

FIG. 1. As chain A reptates out of its tube, the neighboring Michael Rubinstein

chains B and € move into the region and partially recover the . py 1 ahorarories, Eastman Kodak Company, Rochester, New York 14650-2110

memory left by the chmin A in the form of elastic distortions of

the entanglement net

S. P. Obukhov

A simple estimate of the energy of elastic deformation
of an entanglement network with modulus G ~k7T/N_.vg
due to displacement of NV, monomers from one end of the
tube to the other can be made. Here N, is the degree of
polymerization between entanglements and vg 1s the
volume of a monomer. The extra volume V, appearing at
the end of the tube is proportional to the number N, of
displaced monomers V,=N_.vo. This results in the dis-
placement ér, of elastic media distance r away from the
tube end &r. = V./4nr?, leading to the strain & in the
neighborhood of the tube end of the order of e
=8(8r.)/8r = —V./2xr’. The elastic energy can be es-
timated as

E.= f((;s,?/: )d’r = GVZi/a’=kTvoN./a’. (1)

PHYSICAL REVIEW LETTERS 20 SEPTEMBER 1993
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Removing entropy from the volume law
entanglement entropy leads to an elastic respons.

['&'-dAzAV

Standard theory of elasticity relates the elastic energy to
the removed volume => determined by removed entropy

de AL L
C
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Gravitational quantity

Elastic quantity

Pirsa: 17100067

Newtonian potential b displacement field  wu;
gravitational acceleration ¢; || strain tensor Eij
surface mass density >.; || stress tensor T
mass density p || body force b;
point mass m || point force fi
Correspondence
b T, —  aopuy
gi / apg = &Ny
Z,j ao =  O4iNy
pn; = bi/ag
mn; = fi/ag




Removing entropy from the volume law
entanglement entropy leads to an elastic respons.

/'&'-dAzAV

Standard theory of elasticity relates the elastic energy to
the removed volume => determined by removed entropy

RN L L
C
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Gravitational quantity

Elastic quantity

Pirsa: 17100067

Newtonian potential ¢ || displacement field  wu;
gravitational acceleration ¢; | strain tensor Eij
surface mass density >.; || stress tensor T
mass density p || body force b,
point mass m || point force fi
Correspondence
b 7 —  aopuy
gilag = €ijny
Z,j ao =  O45Ny
pn; = b;/ag
mn; = fi/ag
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Universal formula for equivalent dark matter density

5o (R SHOR
ﬁ%(R) 4+ ap(R)




Planck

Combined Ts
TwMAP

0,00
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Planck

Combined 4&.
TWMAP

003

0.15 0.20

Q. [in (h,./h)?]
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Coma Cluster

log(radius) (kpc)

However, problems do arise when one attempts to ap-
ply MOND to the large clusters of galaxies. The and White
(1988) first noted that, to successfully account for the dis-
crepancy between the observed mass and the traditional
virial mass in the Coma Cluster, the MOND acceleration pa-

sedly a universal constant, should be about a
than the value implied by galaxy rota-

log(radius) (kpc)
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