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Abstract: <p>l will give an overview of the causal set approach to quantum gravity, and what makes this "fork in the road" distinct from other
approaches.& nbsp; Motivated by deep theorems in Lorentzian geometry, causal set theory (CST) posits that the underlying fabric of spacetime
is& nbsp; atomistic and encoded in a locally finite partially ordered set. In&nbsp; the continuumé& nbsp; approximation,& nbsp; the partial order
corresponds to the causal structure, and the cardinality to the conformal factor.&nbsp; Together, these give the approximate continuum
geometry.&nbsp; Lorentz invariance emerges as a consequence, but brings with it a certain&nbsp; "non-locality&e, which distinguishes
CST&nbsp; from other approaches in an essential way. It also makes the&nbsp; reconstruction of spacetime geometry from the causal set
particularly challenging.&nbsp; | will describe some of the progress we have made in this geometric reconstruction program. | will then describe a

particular formulation of CST dynamics inspired by the continuum path integral and discuss what we have learnt so far and where it is taking
us.& nbsp;</p>
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Qutline

» Order as an Essence of Lorentzian Geometry

» The Causal Set Hypothesis: Order + Number ~ Geometry
> Geometry from Order

> Different Routes to Dynamics

» Directions and Challenges
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Forks on the Road to Quantising Gravity:
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Forks on the Road to Quantising Gravity:
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First Fork in the Road: Lorentzian Geometry
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What is the essence of Lorentzian geometry?

» Is it merely a generalisation of Riemannian geometry?
> “Psuedo-Riemannian” geometry

5 ds® = —dt® 4 dxf b odxy + dx

W h

> Topology and Differentiable Structure: same as that in Riemannian geometry

Open set topology
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What is the essence of Lorentzian geometry?

» Orisit: (—,+,+.+) essentially different?

2 . .
> ds? — —dt? + cfxf + dxzz + dx§ can be positive, zero, or negative.

> Lightcones

\J

L

> Local causality: x < y if 3 a future directed causal curve v from x to y.
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What is the essence of Lorentzian geometry?

» Orisit: (—, 4+, +.+) essentially different?

> ds? = —dt? 4 dxf } dxj 4 dx_:f can be positive, zero, or negative.
> Lightcones

» Local causality: x < y if 3 a future directed causal curve ~ from x to y.

AN
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Causal Spaces — An Axiomatic Approach

Extract from (M, g) its causal essence:

1:2. The quadruple (X, <, €,—) will be called a causal space if X is a set and <,
£, - are three relations on X satisfying, for each z,y,zin X, the following conditions:

(I z<z;

(IT) fx<yandy <z, then xr <z;

(IIT) sf z <y and y <z, then z = y;

(IV) not z <€ x;

(V) ifz<ythenz <y,

(VI*) ifz <y and y <€ 2, then z <€ z;

(VI7) ife <y and y <z, then z < z;

(VII) z - yif and only if x <y and not x < y.

“To admit structures which can be very different from a manifold”
X
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The Causal Structure Poset

Causal essence: (M, <) C (M, g)

» M: the set of events.

> <

> Reflexive: x < x
» Acyclic: x < yvandy <x = x =y

> Transitive: x < yvandy <z = x <7z
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The Causal Structure Poset

ds® = —dt{ — dt5 + dx{ + dx3

t,

No future or past

There isxo causal structure poset for any other signature spacetime
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Causal Structure Hierarchy

» Globally Hyperbolic
» Causally Stable

» Causally Continuous

» Strong Causality : Alexandrov topology=Manifold topology

» Future and Past Distinguishable
y

» Acausal : No causal structure Poset
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How primitive is (M, <) ?
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How primitive is (M, <) ?

Causal Structure remains invariant under conformal rescaling: g,, = Q2%g.p.
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(M, 4<) determines the conformal class of the metric.

Let f: (My,g1) = (M2, g2) be a causal bijection

x1 <1 y1 € f(x) <2 f(x2)

1

Then f is a smooth conformal isometry: f and f ~1 are smooth and f.g1 = Q%g>.
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(M, <) determines the conformal class of the metric.

» “Causal structure is 9/10"" of the spacetime geometry.”

» Remaining 1/10'" is the volume element

e = Q" x J/gdx! A Adx"

| Spacetime geometry = Causal Structure + Volume
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The hypothesis of discreteness

» Cure for infinities: singularities, quantum field theory divergences, entanglement
entropy, etc.

» Volume element from discreteness: N ~ V/V,,.

2 =74

. Fork in the Road: Discreteness
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The hypothesis of discreteness

“To admit structures which can be very different from a manifold. The possibility
arises, for example, of a locally countable or discrete event-space equipped with causal
relations macroscopically similar to those of a space-time continuum. (Discrete models
of space-time have been suggested by a number of authors as a possible way of

avoiding the infinities of quantum field theory, etc. See, for instance, (12,
11,3,6,2,1).)"

P (1) AHMAVAARA, Y . The structure of space and the formalism of relativistic quantum theory. |. J. Math. Phys. 6 (1965), 87-03.

> (2) BOHM, D. A proposed topological formulation of the quantum theory. The scientist speculates [editor I. J. Good], pp
302-314. (Heinemann; London, 1962)

P (3) COXETER, H. S. M. and WHITROW, G. J. World-structure and non-Euclidean honeycombs. Proc. Roy. Sec. London Ser. A
201 (1950), 417-437.

P (6) HILL, E L. Relativistic theory of discrete momentum space and discrete space-time. Phys. Rev. 100 (1955), 1780-1783.

v

(11) SCHILD, A. Discrete space-time and integral Lorentz transformations. Canad. J. Math. 1 (1949), 20-47
> (12) SNYDER, H. S. Quantized space-time. Phys. Rev. 71 (1947), 38-41
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The Causal Set Hypothesis

Two fundamental building blocks:

» The Causal Structure Poset (M, <) C (M, g)

» Fundamental Spacetime Discreteness
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Continuum is an Approximation

T i |
| Spacetime geometry = Causal Structure + Volume |

Causal Structure —

Spacetime Volume —
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The Continuum Approximation

Riemann’s dilemma

» A discrete manifold has finite properties, whereas a continuous manifold does not.
Natural quantities are to be finite. The world must be discrete.

» A discrete manifold possesses natural internal metrical structure, whereas a
continuous manifold must have its metrical structure imposed from without.
Natural law is to be unified. The world must be discrete.

» A continuous manifold has continuous symmetries, whereas a discrete manifold
does not. Nature possesses continuous symmetries. | he world must be
continuous.
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The Continuum Approximation

» Regular lattice:

Does not preserve Number-Volume correspondence.
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The Continuum Approximation

» "“Random lattice” generated via a Poisson process

Pv(N) =

fé! exp ;:V(PV)N' < N >=pV

Can this resolve Riemann’'s dilemma? — Yes!
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The Continuum Approximation

» “Random lattice” generated via a Poisson process

Py(N) = srexp PV (pV)V, < N>=pV

Can this resolve Riemann's dilemma? — Yes!
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Lorentz Invariance of a Sprinkling —

» (2 : space of all sprinklings into M"

» Poisson process gives a measure ;. on  which is volume preserving and hence
Lorentz invariant.

» Set of all timelike directions forms a unit hyperboloid H C M”

» There is no measurable map D : Q@ — H which is equivariant, ie., DoA = Ao D.

(Proof: If such a map existed, then jup = 10 D! is a Lorentz invariant
probability measure on H which is not possible since H is non-compact.)
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CST: Framework

» (M. g) replaced by locally finite partially ordered sets C € Q2

z=Y" /'D[g] ensenldl 7% ensld)
&

cen

(<) (d) Typical Causal Set ~ 2 4

L
» Continuum can arise onl_y as an approximation not a limit

Pirsa: 17100065 Page 27/40



Geometric Reconstruction: Where is Spacetime Hidden in the Order?
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Geometric Reconstruction: Where is Spacetime Hidden in the Order?

Simplicial Decomposition of d dimensional spacetime (M. g)

» Triangulate with d-dimensional simplices.

» Fixed valency dual graph

» Dimension, topology easy to extract.

» Geometry: via the Regge Action
v

| Local |
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Geometric Reconstruction: Where is Spacetime Hidden in the Order?

» A causal set need not be a fixed valency graph.

» There can be an infinite number of nearest neighbours.

[ |
L Non-Local |
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Topology and Geometry From Order: (M, g) from C

» Spacetime Dimension:

(d+1)r ()

H e ¥ - . 2E
Myrheim-Myer Estimator: R = N (%)

R =[{(x.y)|x <y}

» Spatial Homology :
» Timelike Distance:
» Spacelike and Spatial Distance:

» D'Alembertian, Scalar Curvature and Action:
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Topology and Geometry From Order: (M, g) from C

\

Spacetime Dimension:

v

Spatial Homology :

v

Timelike Distance:

v

Spacelike and Spatial Distance:

v

D’Alembertian, Scalar Curvature and Action:

L

Benincasa-Dowker Action: }}S(C} — 4(1’\1 2Ny + 4N, 2N';) — recovers locality!
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Topology and Geometry From Order: (M, g) from C

» Spacetime Dimension:

» Spatial Homology :
» Timelike Distance:
» Spacelike and Spatial Distance:

» D’Alembertian, Scalar Curvature and Action:

» GHY boundary terms:

» Greens Functions for Scalar fields: ,

Pirsa: 17100065 Page 33/40



Observables or Beables

» Observables are Order Invariants: Label invariance ~ Covariance

» Observables are fundamentally spacetime in character

» No Cauchy hypersurfaces

Fork in the road: the Path Integral
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Causal Set Dynamics

» Sequential Growth Dynamics

» |nitial conditions are natural

» Observables or Beables correspond to properties of causal sets in an event algebra

(Q, 2A):

» Challenge to formulate a quantum dynamics
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Causal Set Dynamics

» Path Sum Approaches

Z = Zexphh(t)
cefl
» Suppression of Bilayer orders:

> (—set of all N-element causal sets

> (Q=set of all N element 2d-causal sets
Zs Z exp” R0

ceN

Analytic continuation of a parameter : i3 — —/3
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Causal Set Dynamics

» Sequential Growth Dynamics

> |nitial conditions are natural

> Observables or Beables correspond to properties of causal sets in an event algebra

(Q, 2):

» Challenge to formulate a quantum dynamics
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Directions

v

Extending Path Sum to Higher dimensions

» Geometric Reconstruction: spacetime topology, etc.

v

Quantum Field Theory on Causal Sets

» Quantum Sequential Growth Dynamics

v

Phenomenology: A, Non-locality, etc.
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