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Abstract: <p>With the groundbreaking gravitational wave detections from LIGO/VIRGO, we have entered the era where we can actually observe
the action of strongly curved spacetime originaly predicted by Einstein.&nbsp; Going hand in hand with this, there has been a renaissance in the
theoretical and computational tools we use to understand and interpret the dynamics of gravity and matter in this regime.&nbsp; | will describe some
of the rich behavior exhibited by sources of gravitational waves such as the mergers of black holes and neutron stars. | will also discuss some of the
open questions, and what these events could teach us, not only about the extremes of gravity, but about the behavior of matter at nuclear densities,
the solution of astrophysical mysteries, and even the existence of new particles.</p>
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September 14, 2015 Event
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@ 1.3 billion light years
away

@ Two black holes, each
about 30 M., merged

@ Completely consistent
with Einstein’s theory
(100 years after it was
proposed)
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More binary black hole mergers
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A neutron star merger multimessenger signal

IR Gravitational-wave time-frequency map
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LIGO/VIRGO Collaboration et al, (2017)
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A neutron star merger multimessenger signal

Mg Gravitational-wave time-frequency map
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A neutron star merger multimessenger signal
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A neutron star merger multimessenger signal
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A neutron star merger multimessenger signal
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Future is bright

Advanced LIGO

1

Early (201516, 4080 Mpc)
B Mid (201617, 80120 Mpe)
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LIGO/VIRGO Collaboration (2016)

Still expect ~ x2 increase in sensitivity in next couple years
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Future is bright

Operational
Under Construction

Planned

Caltech/MIT/LIGO Lab
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Exploring the Dynamics of Spacetime

@ How are gravitational waves created?
@ How can we maximize what we learn from them?

@ What new questions do observations of gravitational waves
raise?
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Going from. ..

Carroll (2004)

His result, the Kerr metric, is given by the following mess:

2GMr 2GMar sin® @
= t* 5 (drdg + de dr)
p* P

7

Pt s 5.y Bl
—dr® + p*dfi* =
A P

0’ 5 3.3 5 y 5
3 [(r"- +a%)* —a*A \i:l’r'i] dg”,
p*
(6.70)

A(r) =r? - 2GMr +a* ‘ (6.71)

r SIS )
{.'EU'. 8) = r? +a® cos? 0. (6.72)

I'he two constants M and a parameterize the possible solutions, To verify that the
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XS Project
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XS Project

Pirsa: 17100058 Page 15/71




What will LIGO see?

Primary sources are mergers of compact objects:
@ Black hole-black hole mergers (Seen at least four so far!)

@ Neutron star-neutron mergers (Seen one. .. probably)
@ Black hole-neutron star mergers

Other possible sources:

@ Stars collapsing and going supernova
@ Stochastic gravitational waves, from early universe or

otherwise
@ ...Surprises!

L1GO CHECRLIST
B O CHECKLIST

1 BINARY SYSTEM L'_]‘g’________._

ZOLACK HOLES

N LUTRon STARS B BINARY SYSTEM

@it EM COUNTERPARTS i

CIBH-NS 1o g’rsua. HOLES
{0 SuptRuovAE d @NEUTRON STARS
) PULSARS @W1TH EM COUNTERS
:I STOCHASTLC & D GH'NS

M [ suecrnovae

4 ] PULSARS
71 STECHASTIC

ANTIMETTERWE BCOMLLS . COM

Pirsa: 17100058 Page 16/71



How do we know what gravitational wave signals to
expect/look for?

Need to solve Einstein equations for orbiting/merging strongly
gravitating systems

@ Solutions for individual black holes/stars are easy

@ Various approximations when things aren’t moving too fast,
etc.

@ At merger, these all breakdown. Need to solve full
nonlinear equations.

Essential to making and testing predictions for gravitational
wave sources.
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Why the problem is hard

@ Einstein field equations are a complex, nonlinear system of
partial differential equations

@ Have both elliptic (constraint) and hyperbolic (evolution)
equations

@ Range of length scales: individual compact objects to
orbital scale to wave zone

@ When coupling to matter, want include lots of physics:
hydrodynamics, magnetic fields, radiation transport, etc.
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Three types of compact object mergers

@ Black hole-black hole mergers (and using black holes as
particle detectors through superradiance)

@ Neutron star-neutron mergers
@ Black hole-neutron star mergers
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Black hole-black hole mergers

[
Inspiral

A A AN
L\J/ \\ / F

1 — Numerical relativity
Reconstructed (template)

8

L

|
|

|

I

T
Merger Ring-
down

T

T

|| — Black hole separation '
=== Black hole relative velocity

|

0.30

September 14th event from LSC/VIRGO 2016

0.35

Time (s)

Separation (Rg)

Page 20/71



Black holes superradiance

@ For a black hole with an impinging wave (electromagnetic,
gravitational, etc.) with frequency w

dArea o< OMpu(1 — mQpp/w)

@ Black hole thermodynamics:

d0Area o< 0Entropy > 0
Hence Mgy < 0 when w < mQgh.

@ Rotational energy of black holes can be liberated: up to
29% of black hole’s mass for maximally spinning!
(Emt =M - Mir)
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Black holes superradiance

Incoming wave is blue, outgoing wave is red; 120% efficient

East, Ramazanoglu, Pretorius (2013); Visualization: Ralf Kahler
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Black holes superradiance

Incoming wave is blue, outgoing wave is red; 120% efficient

East, Ramazanoglu, Pretorius (2013); Visualization: Ralf Kahler
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Black holes superradiance

Incoming wave is blue, outgoing wave is red; 120% efficient

East, Ramazanoglu, Pretorius (2013); Visualization: Ralf Kahler
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Liberating energy/angular momentum from a black
hole
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Black hole bomb

Massless particles (photons, gravitons, etc.) only interact once.
But surround a black hole with a mirror. . .

... create a black hole bomb. (Press & Teukolosky 1972)

O
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Superradiant instability: realizing the black hole bomb

@ Massive bosons can form bound states, when frequency
w < My grow exponentially in time.

@ Search for new ultralight bosonic particles (axions, dark
massive “photons," etc.) with Compton wavelength
comparable to black hole radius (Arvanitaki et al.)
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Massive vector field energy density

t/(10°My) =0. 1
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Massive vector field energy density

t/(10°My) = 41.2
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Superradiant instability: spinning down a black hole

Black hole with initial spin a = 0.99.
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East & Pretorius (2017)

Vector boson mass: ~ 10712 eV (ji/0.25)(30M., /Mzy)

Pirsa: 17100058 Page 30/71



Superradiant instability: spinning down a black hole

Black hole with initial spin a = 0.99.
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East & Pretorius (2017)

Vector boson mass: ~ 102 eV (ji/0.25)(30M., / Mgy)
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Boson clouds emit gravitational waves

@ Monochromatic with
fGW ~ 650 Hz
x(j1/0.3)(30M, /Mgy ).
Look for either stochastic
or resolved sources with
LIGO (Baryakthar et al.
2017; Brito et al. 2017)

Indirect probe: Use black
hole spin measurements
from GWs or accretion
disks (Arvanitaki et al.
2015, 2017)

East (2017)
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Neutron star mergers

With matter things get even more interesting.
@ Neutron stars are suspected to be responsible for a host of
electromagnetic signals
@ Gravitational waves could be the “sound" to go with the
light (radio, optical, X-ray, gamma-ray observations. .. ).
Concurrent observations with range of telescopes.
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The mystery of short gamma-ray bursts

NASA/DOE/Fermi LAT Collaboration

@ Are neutron star mergers the source of gamma-ray bursts
seen by telescopes?

@ Viability depends on details of merger

@ Simultaneous detection of gravitational wave is “smoking
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Coincident detection of gamma ray burst and
gravitational wave

@ Are binary neutron star
mergers a source or
the source?

‘ @ What causes the 1.7
e bl el Al a0 second delay?

ann
by 1. gy \Jvl/L j-r YT [T"H IUI 1 LYYk

n Ferma /GBM (650 - 300 keV)

@ Why haven't we seen a
sGRB this close
before?

LIGO/VIRGO Collaboration et al. (2017)
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Coincident detection of gamma ray burst and
gravitational wave

NASA

@ Why is the sGRB so weak?
@ What is the underlying mechanism of the burst?
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Learning Nuclear Physics

@ Neutron stars have incredible densities: ~ 10'° g/cm?®

@ The (unknown) behavior of matter at these densities—the
equation of state—impacts the dynamics and outcome of
neutron star mergers
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Collapse to black hole versus forming a hypermassive
neutron star

East et al. (2016)
Depends on size, spin, unknown nuclear physics, etc.
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Collapse to black hole versus forming a hypermassive
neutron star

1.0e+09 gricm*3 L0e+15 griem*3 ‘v

East et al. (2016)

Depends on size, spin, unknown nuclear physics, etc.

Pirsa: 17100058 Page 39/71



Collapse to black hole versus forming a hypermassive
neutron star

L0e+15 griem 3 j
S

Depends on size, spin, unknown nuclear physics, etc.

East et al. (2016)
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Neutron Star Mergers: Unbound material

Roughly 1072 to 10~3 M., but varies with mass-ratio, neutron
star radius, spin, ...
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East & Pretorius (2012); East et al. (2016)
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Kilonovae
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Kasen et al. (2017)

@ Larger than expected ejected mass?

@ Dynamically ejected versus material from wind from
post-merger accretion disk?
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Neutron Star Mergers = Gold?

Pirsa: 17100058 Page 43/71



Neutron stars merge

East et al. (2016)
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Neutron stars merge

East et al. (2016)
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Neutron stars merge

East et al. (2016)
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Neutron stars merge

East et al. (2016)
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Neutron stars merge

East et al. (2016)
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Gravitational waves from hypermassive neutron stars
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Gravitational waves from hypermassive neutron stars

Black hole
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Gravitational waves from hypermassive neutron stars
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East, Paschalidis & Pretorius (2016)

For tumns &~ 10 ms; Encodes information about equation of
state.
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Black hole-neutron star mergers

@ Can also form black hole
accretion disks and eject
material

@ Depends if star is
disrupted outside
innermost stable orbit of
black hole

@ More variation (with
mass-ratio, spin, equation
of state, etc.)
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Black hole-neutron star mergers

=525 ms

1.00e+09 1.00e 15 gm/fem”3

East, Stephens & Pretorius (2012)

Tidal disruption in action.
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Black hole-neutron star mergers

t=8.52 ms

| —— |
1.00e115 gm/em”"3

East, Stephens & Pretorius (2012)

Tidal disruption in action.
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Black hole-neutron star mergers

t=17.98 ms

East, Stephens & Pretorius (2012)
Tidal disruption in action.
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Black hole-neutron star mergers

t=23.74 ms

East, Stephens & Pretorius (2012)
Tidal disruption in action.
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Binary neutron star merger or black hole-neutron star
merger

@ Question: how do know an event is a binary neutron star
merger and not a black hole-neutron star merger?

@ Can we rule out an exotic population of low mass
(1 — 3 M) black holes?
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Distinguishing low mass black holes in neutron star
mergers

xmistis T feem TN | @ Leading araer hioal
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Yang, East & Lehner (2017)
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Challenges in age of multimessenger astronomy

@ Tell complete story connecting millisecond time scale of
dynamics of merger with seconds to weeks

@ Messy astrophysics: magnetic fields, neutrino
winds/cooling, etc.

@ But with multimessenger astronomy we get to see the
opening credits
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With multimessenger astronomy we get to see the
opening credits

A long time ago in a galaxy far,

far away. ...
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With multimessenger astronomy we get to see the
opening credits
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Beyond compact object mergers
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Beyond compact object mergers

When do black holes
form from ultrarelativistic
collisions?

East & Pretorius (2013)
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Beyond compact object mergers

When do black holes
form from ultrarelativistic
collisions?

East & Pretorius (2013)
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Beyond compact object mergers

When do black holes What happens in a very

form from ultrarelativistic ~ Inhomogeneous
collisions? universe?

L57¢102

East & Pretorius (2013) East ot al. (2016)
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Beyond compact object mergers

When do black holes What happens in a very

form from ultrarelativistic ~ Inhomogeneous
collisions? universe?

L57¢102

East & Pretorius (2013) East ot al. (2016)

Page 66/71



Pirsa: 17100058

Beyond compact object mergers

When do black holes What happens in a very Could the Higgs Boson
form from ultrarelativistic iInhomogeneous have spelled doom for
collisions? universe’? the early universe?

” ” .

East & Pretorius (2013) East et al. (2016)

East et al. (2017)

And many other questions. ..
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Beyond compact object mergers

When do black holes What happens in a very

form from ultrarelativistic ~ Inhomogeneous
collisions? universe?

L57¢102

East & Pretorius (2013) East ot al. (2016)
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Beyond compact object mergers

When do black holes What happens in a very Could the Higgs Boson
form from ultrarelativistic iInhomogeneous have spelled doom for
collisions? universe? the early universe?

East & Pretorius (2013) East et al. (2016) East et al. (2017)

And many other questions. ..
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Beyond compact object mergers

When do black holes What happens in a very Could the Higgs Boson
form from ultrarelativistic iInhomogeneous have spelled doom for
collisions? universe’? the early universe?

(1]

Ff H iy 4
1c"
w0t
0?
1’

East & Pretorius (2013) East et al. (2016)

East et al. (2017)

And many other questions. ..
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Conclusion

The age of multimessenger gravitational wave astronomy has
begun, allowing us to explore the extremes of spacetime!

Things to look out for:
@ Many more black hole and neutron star mergers.

@ More exotic merger scenarios: orbital eccentricity, high
black hole or neutron star spin, etc.

@ The unknown unknowns.
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