Title: Self-dual N=4 theories in four dimensions

Date: Oct 24, 2017 02:30 PM

URL: http://pirsa.org/17100050

Abstract: Known N=4 theories in four dimensions are characterized by a choice of gauge group, and in some cases some "discrete theta angles", as classified by Aharony, Seiberg and Tachikawa. I will review how this data, for the theories with algebra su(N), is encoded in various familiar realizations of the theory, in particular in the holographic AdS_5 \times S^5 dual and in the compactification of the (2,0) A_N theory on T^2. I will then show how the resulting structure, given by a choice of polarization of an appropriate cohomology group, admits additional choices that, unlike known theories, generically preserve SL(2,Z) invariance in four dimensions.

Pirsa: 17100050 Page 1/65

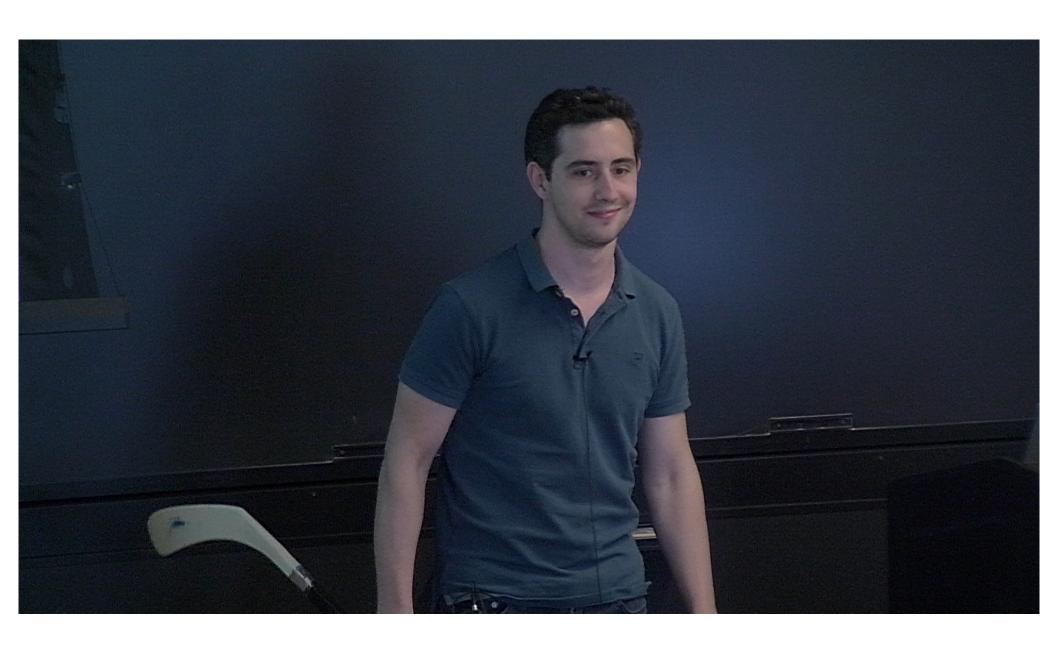
Self-dual $\mathcal{N}=4$ theories in four dimensions

Diego Regalado

Perimeter Institute, October 2017

Based on work in progress with I. García-Etxebarria and B. Heidenreich

Pirsa: 17100050 Page 2/65



What defines an $\mathcal{N}=4$ QFT in 4d?

Classically, a Lie algebra (sum of commuting compact simple and u(1) subalgebras)

$$\mathcal{L} = \operatorname{tr}\left(-\frac{1}{2g^2}F \wedge *F + \dots\right)$$

At the quantum level, we need a Lie group, not just an algebra.

$$Z = \sum_{i} Z_{i}$$
 i labels the topological sector

• This might not be enough. Discrete theta angles (or line operators)

[Aharony, Seiberg, Tachikawa '13]

$$Z = \sum_i a_i Z_i$$
 a_i are coefficients that depend on i

Not every set of coefficients a_i defines a consistent QFT.

An example: $\mathfrak{su}(2)$

We may consider the following gauge groups:

• SU(2): The topological sectors are labeled by the instanton number.

$$Z_{SU(2)} = \sum_{\nu \in \mathbb{Z}} Z_{\nu}$$

$$\nu = \frac{1}{8\pi^2} \int_M \operatorname{tr} F \wedge F$$

- SO(3): The different sectors are labeled by the instanton number and the Stiefel-Whitney class (or 'magnetic flux') $w_2 \in H^2(M, \mathbb{Z}_2)$.
 - $SO(3)^+$: $a_{\nu,w_2}=1$

• $SO(3)^-$: $a_{\nu,w_2} = \exp\left(2\pi i \frac{w_2^2}{4}\right)$

[Aharony, Seiberg, Tachikawa '13]

(no torsion in cohomology)

An example: $\mathfrak{su}(2)$

We may consider the following gauge groups:

• SU(2): The topological sectors are labeled by the instanton number.

$$Z_{SU(2)} = \sum_{\nu \in \mathbb{Z}} Z_{\nu}$$

$$\nu = \frac{1}{8\pi^2} \int_M \operatorname{tr} F \wedge F$$

- SO(3): The different sectors are labeled by the instanton number and the Stiefel-Whitney class (or 'magnetic flux') $w_2 \in H^2(M, \mathbb{Z}_2)$.
 - $SO(3)^+$: $a_{\nu,w_2}=1$

[Aharony, Seiberg, Tachikawa '13]

• $SO(3)^-$: $a_{\nu,w_2}=\exp\left(2\pi i\frac{w_2^2}{4}\right)$ (no torsion in cohomology)

These three theories transform as a triplet under $SL(2,\mathbb{Z})$

$$T \longrightarrow SU(2) \xrightarrow{S} SO(3)^+ \xrightarrow{T} SO(3)^- \longrightarrow S$$
 None of these is invariant under the full $SL(2,\mathbb{Z})$

Are there more possibilities?

It is natural to ask whether these are all the possibilities, or if there can be other $\mathcal{N}=4$ theories which do not fall into this classification.

• Argyres and Martone have proposed [Argyres, Martone '16] the existence of a new $\mathcal{N}=4$ theory with algebra $\mathfrak{su}(2)$ which is invariant under $SL(2,\mathbb{Z})$.

• In this talk I will argue that such an $SL(2,\mathbb{Z})$ -invariant $\mathfrak{su}(2)$ theory exists (in fact $\mathfrak{su}(N)$ for all N).

Pirsa: 17100050 Page 7/65

Type IIB on $Q \times \mathbb{C}^2/\mathbb{Z}_N$ is described at low energies by the (2,0) theory of type A_{N-1} on Q. [Witten '95]

(Since $H^2(\mathbb{C}^2/\mathbb{Z}_N,\mathbb{Z})=\mathbb{Z}^{\oplus (N-1)}$, by (2,0) theory of type A_{N-1} , I mean the theory that has N-1 free tensors on its tensor branch. It is $\mathfrak{su}(N)$, not $\mathfrak{u}(N)$).

Pirsa: 17100050 Page 8/65

Type IIB on $Q \times \mathbb{C}^2/\mathbb{Z}_N$ is described at low energies by the (2,0) theory of type A_{N-1} on Q. [Witten '95]

(Since $H^2(\mathbb{C}^2/\mathbb{Z}_N,\mathbb{Z})=\mathbb{Z}^{\oplus (N-1)}$, by (2,0) theory of type A_{N-1} , I mean the theory that has N-1 free tensors on its tensor branch. It is $\mathfrak{su}(N)$, not $\mathfrak{u}(N)$).

• For $Q = M \times T^2$, it flows to $\mathcal{N} = 4$ SYM on M and $SL(2, \mathbb{Z})$ duality comes from the large diffs of T^2 .

Pirsa: 17100050 Page 9/65

Type IIB on $Q \times \mathbb{C}^2/\mathbb{Z}_N$ is described at low energies by the (2,0) theory of type A_{N-1} on Q. [Witten '95]

(Since $H^2(\mathbb{C}^2/\mathbb{Z}_N,\mathbb{Z})=\mathbb{Z}^{\oplus (N-1)}$, by (2,0) theory of type A_{N-1} , I mean the theory that has N-1 free tensors on its tensor branch. It is $\mathfrak{su}(N)$, not $\mathfrak{u}(N)$).

- For $Q=M\times T^2$, it flows to $\mathcal{N}=4$ SYM on M and $SL(2,\mathbb{Z})$ duality comes from the large diffs of T^2 .
- Since string theory is supposed to be invariant under large diffs, then the 4d theory should be $SL(2,\mathbb{Z})$ -invariant.

Pirsa: 17100050 Page 10/65

Type IIB on $Q \times \mathbb{C}^2/\mathbb{Z}_N$ is described at low energies by the (2,0) theory of type A_{N-1} on Q. [Witten '95]

(Since $H^2(\mathbb{C}^2/\mathbb{Z}_N,\mathbb{Z})=\mathbb{Z}^{\oplus (N-1)}$, by (2,0) theory of type A_{N-1} , I mean the theory that has N-1 free tensors on its tensor branch. It is $\mathfrak{su}(N)$, not $\mathfrak{u}(N)$).

- For $Q = M \times T^2$, it flows to $\mathcal{N} = 4$ SYM on M and $SL(2, \mathbb{Z})$ duality comes from the large diffs of T^2 .
- Since string theory is supposed to be invariant under large diffs, then the 4d theory should be $SL(2,\mathbb{Z})$ -invariant.

The problem with this argument is that Type IIB has a **self-dual** 4-form C_4 and it is not guaranteed that the quantization of this sector is invariant under diffeomorphisms. (More on this at the end).

Pirsa: 17100050 Page 11/65

Strategy and outline

Look at different ways to engineer $\mathcal{N}=4$ SYM with gauge algebra $\mathfrak{su}(N)$, paying special attention to the origin of the global structure of the theory.

- Holography: Type IIB on $X \times S^5$ with $\partial X = M$. [Witten '98]
- (2,0) of type A_{N-1} on $M \times T^2$ for small T^2 . [Witten '98] [Tachikawa '14]
- Type IIB on $M \times T^2 \times \mathbb{C}^2/\mathbb{Z}_N$ for small T^2 .

Pirsa: 17100050 Page 12/65

Holographic dual

[Witten '98]

• Roughly speaking, Type IIB on $X \times S^5$, with N units of F_5 flux, is dual to $\mathcal{N}=4$ SYM on $M=\partial X$ with gauge algebra $\mathfrak{su}(N)$.

Pirsa: 17100050 Page 13/65

Holographic dual

[Witten '98]

- Roughly speaking, Type IIB on $X \times S^5$, with N units of F_5 flux, is dual to $\mathcal{N}=4$ SYM on $M=\partial X$ with gauge algebra $\mathfrak{su}(N)$.
- How can we distinguish the different variants $(SU(N), SU(N)/\mathbb{Z}_N, \text{ etc})$?

 Boundary conditions for the fields on the gravity side.

A somewhat trivial illustration of this is the coupling constant. For fixed global structure, the $\mathcal{N}=4$ theories are parametrized by τ . Likewise, Type IIB on $X\times S^5$ is parametrized by the asymptotic value of the axiodilaton.

The same is true for the global structure, although the details are more subtle.

Pirsa: 17100050 Page 14/65

Boundary data

[Witten '98]

The different variants are really different when M is such that $H^2(M, \mathbb{Z})$ is non-zero. In this case, we have to specify extra data to completely fix the Type IIB theory.

$$lpha_B(\sigma) = \int_{\sigma} B$$
 $B ext{ and } C ext{ are the NSNS and RR 2-form potentials}$ $\sigma ext{ is an arbitrary surface in } M ext{ (non-trivial in } H_2(M, \mathbb{Z}) ext{)}$

Boundary data

[Witten '98]

The different variants are really different when M is such that $H^2(M, \mathbb{Z})$ is non-zero. In this case, we have to specify extra data to completely fix the Type IIB theory.

$$\alpha_B(\sigma) = \int_{\sigma} B$$
 B and C are the NSNS and RR 2-form potentials $\alpha_C(\sigma) = \int_{\sigma} C$ σ is an arbitrary surface in M (non-trivial in $H_2(M,\mathbb{Z})$)

Naively, we would like to fix all of these quantities. Then, the partition function would be a function of them.

However, this is not possible since they are canonically conjugate variables,

$$[\alpha_B, \alpha_C] \neq 0$$

TQFT for the BC system [Witten '98]

At low energies, the BC system is governed by the action

$$S_{BC} = rac{iN}{2\pi} \int_X B \wedge dC$$
 where $X \simeq \mathbb{R} \times M$.

Pirsa: 17100050 Page 17/65

TQFT for the BC system [Witten '98]

At low energies, the BC system is governed by the action

$$S_{BC} = \frac{iN}{2\pi} \int_X B \wedge dC$$
 where $X \simeq \mathbb{R} \times M$.

At the classical level, the fields B and C are conjugate to each other.

$$\Phi_B(\sigma) = e^{i \int_{\sigma} B} \qquad \Phi_B(\sigma) \Phi_C(\sigma') \Phi_B^{-1}(\sigma) \Phi_C^{-1}(\sigma') = e^{2\pi i (\sigma \cdot \sigma')/N}$$

$$\Phi_C(\sigma) = e^{i \int_{\sigma} C} \qquad \Phi_B^N(\sigma) = \Phi_C^N(\sigma) = 1$$

TQFT for the BC system [Witten '98]

At low energies, the BC system is governed by the action

$$S_{BC} = \frac{iN}{2\pi} \int_X B \wedge dC$$
 where $X \simeq \mathbb{R} \times M$.

At the classical level, the fields B and C are conjugate to each other.

$$\Phi_B(\sigma) = e^{i \int_{\sigma} B} \qquad \Phi_B(\sigma) \Phi_C(\sigma') \Phi_B^{-1}(\sigma) \Phi_C^{-1}(\sigma') = e^{2\pi i (\sigma \cdot \sigma')/N}$$

$$\Phi_C(\sigma) = e^{i \int_{\sigma} C} \qquad \Phi_B^N(\sigma) = \Phi_C^N(\sigma) = 1$$

The operators $\Phi_B(\sigma)$, $\Phi_C(\sigma')$ generate a symmetry group W,

$$0 \to \mathbb{Z}_N \to W \to H_2(M, \mathbb{Z}_N) \times H_2(M, \mathbb{Z}_N) \to 0$$

- In order to canonically quantize, we need to pick a **polarization**, i.e. a maximal subgroup of commuting Φ 's.
- Given a polarization, we find a Hilbert space of states. Each state corresponds to a particular boundary condition.

Back to the gauge theory

Polarization

Global structure

Example N=2

$$\langle \Phi_B(\sigma) \rangle$$

 $\langle \Phi_C(\sigma) \rangle$
 $\langle \Phi_B(\sigma) \Phi_C(\sigma) \rangle$

SU(2)

 $SO(3)^{+}$

 $SO(3)^{-}$

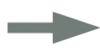
This choice breaks $SL(2,\mathbb{Z})$ on both sides.

Pirsa: 17100050 Page 20/65

Back to the gauge theory

This choice breaks $SL(2,\mathbb{Z})$ on both sides.

Boundary conditions (state in Hilbert space)



Background field for 1-form global symmetry

The SU(2), $SO(3)^+$ and $SO(3)^-$ have global 1-form \mathbb{Z}_2 symmetries, which can be coupled to a background 2-form in $H^2(M,\mathbb{Z}_2)$.

[Gaiotto, Kapustin, Seiberg, Willet' 15]

A polarization determines a specific $\mathcal{N}=4$ theory with algebra $\mathfrak{su}(N)$. So in order to find new theories, we need to look for new polarizations.

Let's consider a simple example first: N=2 and $M=S^2\times S^2$.

Pirsa: 17100050 Page 22/65

A polarization determines a specific $\mathcal{N}=4$ theory with algebra $\mathfrak{su}(N)$. So in order to find new theories, we need to look for new polarizations.

Let's consider a simple example first: N=2 and $M=S^2\times S^2$.

The relevant homology group to look at is $H_2(M, \mathbb{Z}_2) = \mathbb{Z}_2 \oplus \mathbb{Z}_2$, with intersection product $\sigma \cdot \sigma = 1$, $\sigma^2 = \sigma^2 = 0$.

The symmetry group W is generated by Φ_B , Φ_B , Φ_C , Φ_C with relations

$$\Phi_B \Phi_C \Phi_B^{-1} \Phi_C^{-1} = -1, \ \Phi_B^{\ 2} = 1, \dots$$

Pirsa: 17100050 Page 23/65

A polarization determines a specific $\mathcal{N}=4$ theory with algebra $\mathfrak{su}(N)$. So in order to find new theories, we need to look for new polarizations.

Let's consider a simple example first: N=2 and $M=S^2\times S^2$.

The relevant homology group to look at is $H_2(M, \mathbb{Z}_2) = \mathbb{Z}_2 \oplus \mathbb{Z}_2$, with intersection product $\sigma \cdot \sigma = 1$, $\sigma^2 = \sigma^2 = 0$.

The symmetry group W is generated by Φ_B , Φ_B , Φ_C , Φ_C with relations

$$\Phi_B \Phi_C \Phi_B^{-1} \Phi_C^{-1} = -1, \ \Phi_B^{\ 2} = 1, \dots$$

A polarization determines a specific $\mathcal{N}=4$ theory with algebra $\mathfrak{su}(N)$. So in order to find new theories, we need to look for new polarizations.

Let's consider a simple example first: N=2 and $M=S^2\times S^2$.

The relevant homology group to look at is $H_2(M, \mathbb{Z}_2) = \mathbb{Z}_2 \oplus \mathbb{Z}_2$, with intersection product $\sigma \cdot \sigma = 1$, $\sigma^2 = \sigma^2 = 0$.

The symmetry group W is generated by Φ_B , Φ_B , Φ_C , Φ_C with relations

$$\Phi_B \Phi_C \Phi_B^{-1} \Phi_C^{-1} = -1, \ \Phi_B^2 = 1, \dots$$

Usual polarizations:
$$\langle \Phi_B, \Phi_B \rangle \qquad \langle \Phi_C, \Phi_C \rangle \qquad \langle \Phi_B \Phi_C, \Phi_B \Phi_C \rangle \\ SU(2) \qquad SO(3)^+ \qquad SO(3)^-$$

But there are more!
$$\langle \Phi_B, \Phi_C \rangle$$
 $\langle \Phi_B, \Phi_C \rangle$ $\langle \Phi_B \Phi_B, \Phi_C \Phi_C \rangle$

New polarizations

The reason we found other polarizations in the previous example is that $H_2(S^2 \times S^2, \mathbb{Z}_2)$ contains a **maximal isotropic** subspace A, i.e. a maximal subgroup such that its elements do not intersect each other.

For $A \subset H_2(M, \mathbb{Z}_N)$ maximal isotropic, then $\langle \Phi_B(\sigma), \Phi_C(\sigma) \rangle_{\sigma \in A}$ is a polarization of W.

$$0 \to \mathbb{Z}_N \to W \to H_2(M, \mathbb{Z}_N) \times H_2(M, \mathbb{Z}_N) \to 0$$

Pirsa: 17100050 Page 26/65

New polarizations

The reason we found other polarizations in the previous example is that $H_2(S^2 \times S^2, \mathbb{Z}_2)$ contains a **maximal isotropic** subspace A, i.e. a maximal subgroup such that its elements do not intersect each other.

For $A \subset H_2(M, \mathbb{Z}_N)$ maximal isotropic, then $\langle \Phi_B(\sigma), \Phi_C(\sigma) \rangle_{\sigma \in A}$ is a polarization of W.

$$0 \to \mathbb{Z}_N \to W \to H_2(M, \mathbb{Z}_N) \times H_2(M, \mathbb{Z}_N) \to 0$$

For every compact, smooth, orientable, spin manifold M (without torsion), $H_2(M, \mathbb{Z}_N)$ has a maximal isotropic subspace.*

*We have a proof for every prime N and for low values of N.

Pirsa: 17100050 Page 27/65

Intersection form

For every compact, smooth, orientable, spin manifold M (without torsion) the intersection form on $H_2(M,\mathbb{Z})$ is [Donaldson '83, '87]

$$Q = (-\mathcal{C}(E_8))^{\oplus m} \oplus H^{\oplus n}$$

$$\mathcal{C}(E_8)$$
 is the E_8 Cartan form

Page 28/65

$$H = \left(\begin{array}{cc} 0 & 1\\ 1 & 0 \end{array}\right)$$

Intersection form

For every compact, smooth, orientable, spin manifold M (without torsion) the intersection form on $H_2(M, \mathbb{Z})$ is [Donaldson '83, '87]

$$Q=(-\mathcal{C}(E_8))^{\oplus m}\oplus H^{\oplus n}$$
 $\mathcal{C}(E_8)$ is the E_8 Cartan form $H=\left(egin{array}{cc} 0 & 1 \ 1 & 0 \end{array}
ight)$

• In general, $H_2(M, \mathbb{Z})$ has no maximal isotropic subspace, since $\mathcal{C}(E_8)$ is negative definite.

Page 29/65

Intersection form

For every compact, smooth, orientable, spin manifold M (without torsion) the intersection form on $H_2(M, \mathbb{Z})$ is [Donaldson '83, '87]

$$Q=(-\mathcal{C}(E_8))^{\oplus m}\oplus H^{\oplus n}$$
 $\mathcal{C}(E_8)$ is the E_8 Cartan form $H=\left(egin{array}{cc}0&1\1&0\end{array}
ight)$

- In general, $H_2(M, \mathbb{Z})$ has no maximal isotropic subspace, since $C(E_8)$ is negative definite.
- However, $H_2(M, \mathbb{Z}_N)$ does have one for every N.* In fact, over \mathbb{Z}_N , the intersection form is

$$Q_{\mathbb{Z}_N} = H^{\oplus (4m+n)}$$

So, if we work over \mathbb{Z}_N , every M behaves essentially like $S^2 \times S^2$.

Partition function

We would like to compute the partition function of the theory associated to the polarization $\langle \Phi_B(\sigma), \Phi_C(\sigma) \rangle_{\sigma \in A}$ and show that it is invariant under $SL(2,\mathbb{Z})$.

For a theory with gauge group G, the partition function is roughly

$$Z(\tau) = \sum_{\text{bundles of } G} a_i \, Z_i(\tau)$$

Pirsa: 17100050 Page 31/65

Partition function

We would like to compute the partition function of the theory associated to the polarization $\langle \Phi_B(\sigma), \Phi_C(\sigma) \rangle_{\sigma \in A}$ and show that it is invariant under $SL(2,\mathbb{Z})$.

For a theory with gauge group G, the partition function is roughly

$$Z(\tau) = \sum_{\text{bundles of } G} a_i \, Z_i(\tau)$$

We want to find the analogous formula for the polarization associated to the maximal isotropic subspace of $H_2(M, \mathbb{Z}_N)$.

The result shows that there is not really a notion of gauge group.

Pirsa: 17100050 Page 32/65

For SU(N), we pick the polarization $\langle \Phi_B(\sigma) \rangle_{\sigma \in H_2(M, \mathbb{Z}_N)}$. The different boundary conditions are eigenstates of this maximal set of commuting observables,

Pirsa: 17100050 Page 33/65

For SU(N), we pick the polarization $\langle \Phi_B(\sigma) \rangle_{\sigma \in H_2(M, \mathbb{Z}_N)}$. The different boundary conditions are eigenstates of this maximal set of commuting observables,

$$\Phi_B(\sigma)|w\rangle = e^{\frac{2\pi i}{N}\int_{\sigma}w}|w\rangle \qquad w \in H^2(M,\mathbb{Z}_N)$$

Pirsa: 17100050 Page 34/65

For SU(N), we pick the polarization $\langle \Phi_B(\sigma) \rangle_{\sigma \in H_2(M,\mathbb{Z}_N)}$. The different boundary conditions are eigenstates of this maximal set of commuting observables,

$$\Phi_B(\sigma)|w\rangle = e^{\frac{2\pi i}{N}\int_{\sigma}w}|w\rangle \qquad w \in H^2(M,\mathbb{Z}_N)$$

$$\Phi_C(\sigma)|w\rangle = |w + w_\sigma\rangle$$
 $w_\sigma = PD[\sigma]$

Pirsa: 17100050 Page 35/65

For SU(N), we pick the polarization $\langle \Phi_B(\sigma) \rangle_{\sigma \in H_2(M,\mathbb{Z}_N)}$. The different boundary conditions are eigenstates of this maximal set of commuting observables,

$$\Phi_B(\sigma)|w\rangle = e^{\frac{2\pi i}{N} \int_{\sigma} w} |w\rangle \qquad w \in H^2(M, \mathbb{Z}_N)$$

$$\Phi_C(\sigma)|w\rangle = |w + w_{\sigma}\rangle \qquad w_{\sigma} = PD[\sigma]$$

To each eigenstate, we associate a partition function $Z_w(\tau)$. This is computed (on the field theory side) by summing over all $SU(N)/\mathbb{Z}_N$ bundles with 'magnetic flux' $w \in H^2(M, \mathbb{Z}_N)$.

[Gaiotto, Kapustin, Seiberg, Willet' I 5]

Pirsa: 17100050 Page 36/65

Partition function of SU(N)

For SU(N), we pick the polarization $\langle \Phi_B(\sigma) \rangle_{\sigma \in H_2(M, \mathbb{Z}_N)}$. The different boundary conditions are eigenstates of this maximal set of commuting observables,

$$\Phi_B(\sigma)|w\rangle = e^{\frac{2\pi i}{N} \int_{\sigma} w} |w\rangle \qquad w \in H^2(M, \mathbb{Z}_N)$$

$$\Phi_C(\sigma)|w\rangle = |w + w_{\sigma}\rangle \qquad w_{\sigma} = PD[\sigma]$$

To each eigenstate, we associate a partition function $Z_w(\tau)$. This is computed (on the field theory side) by summing over all $SU(N)/\mathbb{Z}_N$ bundles with 'magnetic flux' $w \in H^2(M, \mathbb{Z}_N)$.

[Gaiotto, Kapustin, Seiberg, Willet' I 5]

For the special case w=0, we recover the usual SU(N) partition function. For other values, we are coupling the 1-form global \mathbb{Z}_N symmetry to a background 2-form field $B_{bq}=w$.

Pirsa: 17100050 Page 37/65

For any other polarization, we find other partition functions, depending on the boundary conditions in AdS (or background fields in the CFT).

Let us take the polarization of $SU(N)/\mathbb{Z}_N$ which is $\langle \Phi_C(\sigma) \rangle_{\sigma \in H_2(M,\mathbb{Z}_N)}$.

Pirsa: 17100050 Page 38/65

For any other polarization, we find other partition functions, depending on the boundary conditions in AdS (or background fields in the CFT).

Let us take the polarization of $SU(N)/\mathbb{Z}_N$ which is $\langle \Phi_C(\sigma) \rangle_{\sigma \in H_2(M,\mathbb{Z}_N)}$.

In order to find the partition function (without background fields), we need to find the invariant vector $|\Omega_{SU(N)/\mathbb{Z}_N}\rangle$ under all the $\Phi_C(\sigma)$.

Pirsa: 17100050 Page 39/65

For any other polarization, we find other partition functions, depending on the boundary conditions in AdS (or background fields in the CFT).

Let us take the polarization of $SU(N)/\mathbb{Z}_N$ which is $\langle \Phi_C(\sigma) \rangle_{\sigma \in H_2(M,\mathbb{Z}_N)}$.

In order to find the partition function (without background fields), we need to find the invariant vector $|\Omega_{SU(N)/\mathbb{Z}_N}\rangle$ under all the $\Phi_C(\sigma)$.

$$|\Omega_{SU(N)/\mathbb{Z}_N}\rangle = \sum_{w \in H^2(M,\mathbb{Z}_N)} \alpha_w |w\rangle$$

Pirsa: 17100050 Page 40/65

For any other polarization, we find other partition functions, depending on the boundary conditions in AdS (or background fields in the CFT).

Let us take the polarization of $SU(N)/\mathbb{Z}_N$ which is $\langle \Phi_C(\sigma) \rangle_{\sigma \in H_2(M,\mathbb{Z}_N)}$.

In order to find the partition function (without background fields), we need to find the invariant vector $|\Omega_{SU(N)/\mathbb{Z}_N}\rangle$ under all the $\Phi_C(\sigma)$.

$$|\Omega_{SU(N)/\mathbb{Z}_N}\rangle = \sum_{w \in H^2(M,\mathbb{Z}_N)} \alpha_w |w\rangle$$

$$\Phi_C(\sigma)|\Omega_{SU(N)/\mathbb{Z}_N}\rangle = \sum_{w \in H^2(M,\mathbb{Z}_N)} \alpha_w |w + w_\sigma\rangle \stackrel{!}{=} |\Omega_{SU(N)/\mathbb{Z}_N}\rangle \Longrightarrow \alpha_w = \alpha_0 = 1$$

Pirsa: 17100050 Page 41/65

Partition function of SU(N)

For SU(N), we pick the polarization $\langle \Phi_B(\sigma) \rangle_{\sigma \in H_2(M, \mathbb{Z}_N)}$. The different boundary conditions are eigenstates of this maximal set of commuting observables,

$$\Phi_B(\sigma)|w\rangle = e^{\frac{2\pi i}{N}\int_{\sigma}w}|w\rangle \qquad w \in H^2(M,\mathbb{Z}_N)$$

$$\Phi_C(\sigma)|w\rangle = |w + w_\sigma\rangle$$
 $w_\sigma = PD[\sigma]$

Pirsa: 17100050 Page 42/65

For any other polarization, we find other partition functions, depending on the boundary conditions in AdS (or background fields in the CFT).

Let us take the polarization of $SU(N)/\mathbb{Z}_N$ which is $\langle \Phi_C(\sigma) \rangle_{\sigma \in H_2(M,\mathbb{Z}_N)}$.

In order to find the partition function (without background fields), we need to find the invariant vector $|\Omega_{SU(N)/\mathbb{Z}_N}\rangle$ under all the $\Phi_C(\sigma)$.

$$|\Omega_{SU(N)/\mathbb{Z}_N}\rangle = \sum_{w \in H^2(M,\mathbb{Z}_N)} \alpha_w |w\rangle$$

$$\Phi_C(\sigma)|\Omega_{SU(N)/\mathbb{Z}_N}\rangle = \sum_{w \in H^2(M,\mathbb{Z}_N)} \alpha_w |w + w_\sigma\rangle \stackrel{!}{=} |\Omega_{SU(N)/\mathbb{Z}_N}\rangle \Longrightarrow \alpha_w = \alpha_0 = 1$$

Pirsa: 17100050 Page 43/65

Partition function of the new variant

For the polarization $\langle \Phi_B(\sigma), \Phi_C(\sigma) \rangle_{\sigma \in A}$, with A a maximal isotropic subspace of $H_2(M, \mathbb{Z}_N)$, the invariant vector is

$$|\Omega_{\bullet}\rangle = \sum_{w \in A^*} |w\rangle$$

so the corresponding partition function is

$$Z_{\bullet}(\tau) = \sum_{w \in A^*} Z_w(\tau)$$

 A^* is the dual space of A.

Pirsa: 17100050 Page 44/65

Partition function of the new variant

For the polarization $\langle \Phi_B(\sigma), \Phi_C(\sigma) \rangle_{\sigma \in A}$, with A a maximal isotropic subspace of $H_2(M, \mathbb{Z}_N)$, the invariant vector is

$$|\Omega_{\bullet}\rangle = \sum_{w \in A^*} |w\rangle$$

so the corresponding partition function is

$$Z_{\bullet}(\tau) = \sum_{w \in A^*} Z_w(\tau)$$

 A^* is the dual space of A.

Notice that the polarization $\langle \Phi_B(\sigma), \Phi_C(\sigma) \rangle_{\sigma \in A}$ is invariant under $SL(2, \mathbb{Z})$. We expect that $Z_{\bullet}(\tau)$ is also $SL(2, \mathbb{Z})$ invariant.

Pirsa: 17100050 Page 45/65

$SL(2,\mathbb{Z})$ invariance of the partition function

The behavior of the functions $Z_w(\tau)$ under $SL(2,\mathbb{Z})$ is [Vafa, Witten '94]

$$Z_w(\tau + 1) = e^{2\pi i \frac{w^2}{2N}} Z_w(\tau)$$

$$Z_w(-1/\tau) = N^{-b_2/2} \sum_{u \in H^2(M, \mathbb{Z}_N)} e^{\frac{2\pi i}{N} u \cdot w} Z_u(\tau)$$

Pirsa: 17100050 Page 46/65

$SL(2,\mathbb{Z})$ invariance of the partition function

The behavior of the functions $Z_w(\tau)$ under $SL(2,\mathbb{Z})$ is [Vafa, Witten '94]

$$Z_w(\tau + 1) = e^{2\pi i \frac{w^2}{2N}} Z_w(\tau)$$

$$Z_w(-1/\tau) = N^{-b_2/2} \sum_{u \in H^2(M, \mathbb{Z}_N)} e^{\frac{2\pi i}{N} u \cdot w} Z_u(\tau)$$

We see that $Z_{\bullet}(\tau)$ is invariant under $SL(2,\mathbb{Z})$:

$$Z_{\bullet}(\tau+1) = Z_{\bullet}(\tau)$$
 (if $w^2 = 0 \mod 2N \quad \forall w \in A^*$)

Pirsa: 17100050 Page 47/65

$SL(2,\mathbb{Z})$ invariance of the partition function

The behavior of the functions $Z_w(\tau)$ under $SL(2,\mathbb{Z})$ is [Vafa, Witten '94]

$$Z_w(\tau + 1) = e^{2\pi i \frac{w^2}{2N}} Z_w(\tau)$$

$$Z_w(-1/\tau) = N^{-b_2/2} \sum_{u \in H^2(M, \mathbb{Z}_N)} e^{\frac{2\pi i}{N} u \cdot w} Z_u(\tau)$$

We see that $Z_{\bullet}(\tau)$ is invariant under $SL(2,\mathbb{Z})$:

$$Z_{\bullet}(\tau+1) = Z_{\bullet}(\tau)$$
 (if $w^2 = 0 \mod 2N \quad \forall w \in A^*$)

$$Z_{\bullet}(-1/\tau) = N^{-b_2/2} \sum_{u \in H^2(M, \mathbb{Z}_N)} \left(\sum_{w \in A^*} e^{\frac{2\pi i}{N} u \cdot w} \right) Z_u(\tau) = Z_{\bullet}(\tau)$$

where we used that
$$\sum_{w\in A^*}e^{\frac{2\pi i}{N}u\cdot w}=\left\{\begin{array}{ll}N^{b_2/2} & u\in A^*\\0 & u\notin A^*\end{array}\right.$$

Pirsa: 17100050

Partition function on K3

Typically, it is hard to compute the functions $Z_w(\tau)$. For K3, these are known [Vafa Witten '94]. In that case, one can check explicitly that the partition function $Z_{\bullet}(\tau)$ is invariant under $SL(2,\mathbb{Z})$.

Pirsa: 17100050 Page 49/65

Partition function on K3

Typically, it is hard to compute the functions $Z_w(\tau)$. For K3, these are known [Vafa Witten '94]. In that case, one can check explicitly that the partition function $Z_{\bullet}(\tau)$ is invariant under $SL(2,\mathbb{Z})$.

For N=2, there are three different blocks:

$$Z_w(\tau) = \begin{cases} Z_0 = \frac{1}{4}G(q^2) + \frac{1}{2}[G(q^{1/2}) + G(-q^{1/2})] & \text{if } w = 0\\ Z_e = \frac{1}{2}[G(q^{1/2}) + G(-q^{1/2})] & \text{if } w \neq 0, w^2 = 0 \mod 4\\ Z_o = \frac{1}{2}[G(q^{1/2}) - G(-q^{1/2})] & \text{if } w^2 = 2 \mod 4 \end{cases}$$

with $G(q) \equiv \eta(q)^{-24}$, $q = \exp 2\pi i \tau$.

In this case, since $w^2 = 0 \mod 4$ for all $w \in A^* \subset H^2(K3, \mathbb{Z}_2)$ we find

$$Z_{\bullet}(\tau) = Z_0(\tau) + (2^{11} - 1)Z_e(\tau)$$

This is indeed (the unique combination) invariant under $SL(2,\mathbb{Z})$.

Pirsa: 17100050 Page 50/65

$SL(2,\mathbb{Z})$ and diffeomorphisms

The maximal isotropic subspace of $H_2(M, \mathbb{Z}_N)$ leads to an $\mathcal{N}=4$ theory with algebra $\mathfrak{su}(N)$ which is invariant under $SL(2,\mathbb{Z})$. However, we do not expect an arbitrary diffeomorphism of M to leave the isotropic subspace invariant.

Pirsa: 17100050 Page 51/65

$SL(2,\mathbb{Z})$ and diffeomorphisms

The maximal isotropic subspace of $H_2(M, \mathbb{Z}_N)$ leads to an $\mathcal{N}=4$ theory with algebra $\mathfrak{su}(N)$ which is invariant under $SL(2,\mathbb{Z})$. However, we do not expect an arbitrary diffeomorphism of M to leave the isotropic subspace invariant.

The price to pay for having an $SL(2,\mathbb{Z})$ -invariant theory is that it breaks invariance under large diffeomorphisms.

Pirsa: 17100050 Page 52/65

$SL(2,\mathbb{Z})$ and diffeomorphisms

The maximal isotropic subspace of $H_2(M, \mathbb{Z}_N)$ leads to an $\mathcal{N}=4$ theory with algebra $\mathfrak{su}(N)$ which is invariant under $SL(2,\mathbb{Z})$. However, we do not expect an arbitrary diffeomorphism of M to leave the isotropic subspace invariant.

The price to pay for having an $SL(2,\mathbb{Z})$ -invariant theory is that it breaks invariance under large diffeomorphisms.

The link between $SL(2,\mathbb{Z})$ and large diffs of the 4d space M becomes even more clear in the Type IIB and (2,0) constructions that we sketch in the following.

Pirsa: 17100050 Page 53/65

It is believed that the (2,0) theory in six dimensions of type A_N on $M \times T^2$ flows to $\mathcal{N}=4$ SYM of type $\mathfrak{su}(N)$ on M, when T^2 is small.

By looking at the holographic dual (M-theory on $Y \times S^4$), we arrive at a similar conclusion as before:

Pirsa: 17100050 Page 54/65

It is believed that the (2,0) theory in six dimensions of type A_N on $M \times T^2$ flows to $\mathcal{N}=4$ SYM of type $\mathfrak{su}(N)$ on M, when T^2 is small.

By looking at the holographic dual (M-theory on $Y \times S^4$), we arrive at a similar conclusion as before:

• When $Q = \partial Y$ has $H_3(Q, \mathbb{Z}) \neq 0$, we have to specify the boundary value of

$$\Phi(\Sigma) = e^{i\int_{\Sigma}C} \qquad \qquad C \text{ is the M-theory 3-form}$$

Pirsa: 17100050

It is believed that the (2,0) theory in six dimensions of type A_N on $M \times T^2$ flows to $\mathcal{N}=4$ SYM of type $\mathfrak{su}(N)$ on M, when T^2 is small.

By looking at the holographic dual (M-theory on $Y \times S^4$), we arrive at a similar conclusion as before:

• When $Q = \partial Y$ has $H_3(Q, \mathbb{Z}) \neq 0$, we have to specify the boundary value of

$$\Phi(\Sigma) = e^{i\int_{\Sigma}C} \qquad \qquad C \text{ is the M-theory 3-form}$$

Not all of them can be specified at the same time,

$$S \sim N \int_Y C \wedge dC \longrightarrow [C, C] \neq 0 \longrightarrow \begin{array}{c} \textbf{Polarization of } W \\ 0 \rightarrow \mathbb{Z}_N \rightarrow W \rightarrow H_3(Q, \mathbb{Z}_N) \rightarrow 0 \end{array}$$

Pirsa: 17100050

The choice of polarization, or maximal isotropic subspace of $H_3(Q, \mathbb{Z}_N)$ breaks invariance under diffeomorphisms (that act at infinity) generically. (Small diffs are also broken anyway [Kraus, Larsen '05][Solodukhin '05])

When $Q = M \times T^2$, we have that (assuming $H_1(M) = 0$ and no torsion)

$$H_3(Q, \mathbb{Z}_N) = H_2(M, \mathbb{Z}_N) \otimes H_1(T^2, \mathbb{Z}_N)$$
$$= H_2(M, \mathbb{Z}_N) \oplus H_2(M, \mathbb{Z}_N)$$

We recover the same picture as before:

- [Tachikawa '14] There exist polarizations that preserve invariance under the diffs of M. This reproduces [Aharony, Seiberg, Tachikawa '13].
- The self-dual polarization is also possible, which generically breaks invariance under large diffs of M.

Pirsa: 17100050 Page 57/65

(work in progress)

Consider Type IIB on $Q \times \mathbb{C}^2/\mathbb{Z}_N$, which is described at low energies by the (2,0) theory of type A_{N-1} .

Pirsa: 17100050 Page 58/65

(work in progress)

Consider Type IIB on $Q \times \mathbb{C}^2/\mathbb{Z}_N$, which is described at low energies by the (2,0) theory of type A_{N-1} .

How do we see the different variants here? Boundary conditions for the **self-dual** field C_4 .

Pirsa: 17100050 Page 59/65

(work in progress)

Consider Type IIB on $Q \times \mathbb{C}^2/\mathbb{Z}_N$, which is described at low energies by the (2,0) theory of type A_{N-1} .

How do we see the different variants here? Boundary conditions for the **self-dual** field C_4 .

• The boundary is $Q \times L_N$, with $L_N = S^3/\mathbb{Z}_N$.

Pirsa: 17100050 Page 60/65

(work in progress)

Consider Type IIB on $Q \times \mathbb{C}^2/\mathbb{Z}_N$, which is described at low energies by the (2,0) theory of type A_{N-1} .

How do we see the different variants here? **Boundary conditions** for the **self-dual** field C_4 .

- The boundary is $Q \times L_N$, with $L_N = S^3/\mathbb{Z}_N$.
- The value of F_5 at infinity lives is $H^5(Q \times L_N, \mathbb{Z})_{tors} = H^3(Q, \mathbb{Z}_N)$.

Pirsa: 17100050 Page 61/65

(work in progress)

Consider Type IIB on $Q \times \mathbb{C}^2/\mathbb{Z}_N$, which is described at low energies by the (2,0) theory of type A_{N-1} .

How do we see the different variants here? Boundary conditions for the **self-dual** field C_4 .

- The boundary is $Q \times L_N$, with $L_N = S^3/\mathbb{Z}_N$.
- The value of F_5 at infinity lives is $H^5(Q \times L_N, \mathbb{Z})_{tors} = H^3(Q, \mathbb{Z}_N)$.
- As shown in [Freed, Moore, Segal '06], RR torsion fluxes do not commute. We find again the Heisenberg extension,

$$0 \to \mathbb{Z}_N \to W \to H_3(Q, \mathbb{Z}_N) \to 0$$

Pirsa: 17100050 Page 62/65

(work in progress)

Consider Type IIB on $Q \times \mathbb{C}^2/\mathbb{Z}_N$, which is described at low energies by the (2,0) theory of type A_{N-1} .

How do we see the different variants here? Boundary conditions for the **self-dual** field C_4 .

- The boundary is $Q \times L_N$, with $L_N = S^3/\mathbb{Z}_N$.
- The value of F_5 at infinity lives is $H^5(Q \times L_N, \mathbb{Z})_{tors} = H^3(Q, \mathbb{Z}_N)$.
- As shown in [Freed, Moore, Segal '06], RR torsion fluxes do not commute. We find again the Heisenberg extension,

$$0 \to \mathbb{Z}_N \to W \to H_3(Q, \mathbb{Z}_N) \to 0$$

In order to specify boundary conditions, we first need to pick a
 polarization of W. This breaks invariance under large
 diffeomorphisms acting at infinity.

Pirsa: 17100050

Summary

We typically think of an $\mathcal{N}=4$ theory to be defined by a choice of gauge group (plus some additional discrete theta angles).

We have argued, by looking at the holographic dual as well as the (2,0) theory on T^2 and Type IIB on $M \times T^2 \times \mathbb{C}^2/\mathbb{Z}_N$, that it might be better to think of the global data required to define an $\mathcal{N}=4$ theory as a **Lie algebra + polarization**.

For $\mathfrak{su}(N)$, this reproduces the known $\mathcal{N}=4$ theories (AST). By taking different polarizations we may construct **new theories**.

In particular, we have shown that there is a global version of the $\mathfrak{su}(N)$ theory that is invariant under $SL(2,\mathbb{Z})$ (but not invariant under large diffeomorphisms). This follows from the fact that $H_2(M,\mathbb{Z}_N)$ always has a **maximal isotropic subspace**.

Pirsa: 17100050 Page 64/65

Open questions

- Prove that the maximal isotropic subspace of $H_2(M, \mathbb{Z}_N)$ actually exists for every N.
- Classification of all the possible variants (polarizations).
- Include torsion in $H_2(M, \mathbb{Z})$.
- Generalization to other algebras.
- Generalization to class S.
- Understand the gluing axiom better for the (2,0) theory. The
 anomaly theory has appeared recently [Monnier '16], [Monnier '17].
 Despite being non-invertible, the anomaly theory obeys the gluing axioms.
 We would like to understand this better.

Pirsa: 17100050 Page 65/65