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Abstract: <p>Known N=4 theories in four dimensions are characterized by a choice of gauge group, and in some cases some "discrete theta angles’,
as classified by Aharony, Seiberg and Tachikawa. | will review how this data, for the theories with algebra su(N), is encoded in various familiar
realizations of the theory, in particular& nbsp;in the holographic AdS 5 \times S*5 dual and& nbsp;in the compactification of the (2,0) A_N theory
on T~2. | will then show how the resulting structure, given by a choice of polarization of an appropriate cohomology group, admits additional
choices that, unlike known theories, generically preserve SL(2,Z) invariance in four dimensions.</p>
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iimat defines an N = 4 QF [ inf4cite

» Classically, a Lie algebra (sum of commuting compact simple and u(1) subalgebras)

|
LC =1r (—ﬁ["/\ *1'14— B )
29° :

e Atthe quantum level, we need a Lie group, not just an algebra.

= E L ¢ labels the topological sector
i

* This might not be enough. Discrete theta angles (or line operators)

A — E a;z; a; are coefficients that depend on
i

Not every set of coefficients a; defines a consistent QFT.
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An example: su(2)
We may consider the following gauge groups:

 SU(2): The topological sectors are labeled by the instanton number.

: 0 1 ‘ :
Z3sy(2) = Z, = — tr ' A F
( 8= oy
vEL o

e SO(3): The different sectors are labeled by the instanton number

and the Stiefel-Whitney class (or ‘magnetic flux’) we € H*(M,Zs) .

¢« SOB)": apw, =1

i
Ny o W5 . o
* SO(3)”: Qyuw, = €xp (.27?-/.- 1 ) (no torsion in cohomology)
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An example: su(2)
We may consider the following gauge groups:

 SU(2): The topological sectors are labeled by the instanton number.

; 2““ , LA A
A}q(,’(g) = A,_, V=— L BCE
ST M
Ve i

 SO(3): The different sectors are labeled by the instanton number
and the Stiefel-Whitney class (or ‘magnetic flux’) we € H*(M,Zs) .

e SO apw, =1

£}
Sy LLWw3 _ -
e SO(3)": Quuw, = €Xp (3777- | ) (no torsion in cohomology)

These three theories transform as a triplet under SL(2,7)

'k ariin S O T o . None of these is invariant
: C 5U(2) SO(3) S0(3) Q S under the full SL(2,Z)
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Are there more possibilities?

It is natural to ask whether these are all the possibilities, or if there can
be other N' = 4 theories which do not fall into this classification.

* Argyres and Martone have proposed the

existence of a new N = 4 theory with algebra su(2) which is invariant
under SL(2,7Z).

» Inthis talk | will argue that such an SL(2,7Z)-invariant su(2) theory
exists (in fact su(N) for all N).
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A wrong argument

Type 1B on Q x C*/Zy is described at low energies by the (2,0)
theory of type An—_10n Q.

(Since H*(C?/Zy,Z) = Z®W -1 by (2,0) theory of type Ay _1, | mean the
theory that has N — 1 free tensors on its tensor branch. It is su(N), not u(N)).
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A wrong argument

Type 1B on Q x C*/Zy is described at low energies by the (2,0)
theory of type An—_10n Q.

(Since H*(C?*/Zyn,Z) = 2% ~1 by (2,0) theory of type Ay_1, | mean the
theory that has NV

e For Q=M xT? itflowsto N =4 SYMon M and SL(2,7) duality
comes from the large diffs of 7%

| free tensors on its tensor branch. Itis su(N), not u(N)).
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A wrong argument

Type 1B on Q x C*/Zy is described at low energies by the (2,0)
theory of type An—_10n Q.

(Since H*(C?/Zy,Z) = Z®W -1 by (2,0) theory of type Ay _1, | mean the

theory that has N — 1 free tensors on its tensor branch. It is su(N), not u(N)).

e For Q=M xT? itflowsto N =4 SYMon M and SL(2,7) duality
comes from the large diffs of 7%

e Since string theory is supposed to be invariant under large diffs,
then the 4d theory should be SL(2, Z)-invariant.
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A wrong argument

Type lIB on @ x (CE/EEJ.\] Is described at low energies by the (2,0)
theory of type An—_10n Q.

(Since H?(C?/Zy,Z) = Z®N -1 by (2,0) theory of type Ay_1, | mean the
theory that has N — 1 free tensors on its tensor branch. It is su(N), not u(N)).

e For Q=M xT? itflowsto N =4 SYMon M and SL(2,7) duality
comes from the large diffs of T2

* Since string theory is supposed to be invariant under large diffs,
then the 4d theory should be SL(2, Z)-invariant.

The problem with this argument is that Type |IB has a self-dual 4-form
Cy and it is not guaranteed that the quantization of this sector is
invariant under diffeomorphisms. (More on this at the end).
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Strategy and outline

Look at different ways to engineer N' = 4 SYM with gauge algebra su(N),
paying special attention to the origin of the global structure of the theory.

e Holography: Type IIB on X x S° with 90X = M .

« (2,0) of type Anx_j;0n M x T? for small T

o Type lIBon M x T? x C?/Zy for small T%.
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Holographic dual

» Roughly speaking, Type IIB on X x S° with N units of Fj flux, is dual
to N =4 SYMon M = 90X with gauge algebra su(N).
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Holographic dual

» Roughly speaking, Type IIB on X x S° with N units of Fj flux, is dual
to N =4 SYMon M = 90X with gauge algebra su(N).

* How can we distinguish the different variants (SU(N), SU(N)/Zy, etc)?

Boundary conditions for the fields on the gravity side.

A somewhat trivial illustration of this is the coupling constant. For fixed
global structure, the N’ = 4 theories are parametrized by 7. Likewise,
Type IIB on X x S°is parametrized by the asymptotic value of the
axiodilaton.

The same is true for the global structure, although the details are more
subtle.
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Boundary data

The different variants are really different when M is such that H*(M,Z) is
non-zero. In this case, we have to specify extra data to completely fix the
Type |IB theory.

elr) = 3 :
ap(o) /T : B and C are the NSNS and RR 2-form potentials

s o is an arbitrary surface in M (non-trivial in Hy (M, Z))
aolog)= [ (
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Boundary data

The different variants are really different when M is such that H*(M,Z) is
non-zero. In this case, we have to specify extra data to completely fix the
Type |IB theory.

(o) = 3 :
ap(o) /T ! B and C are the NSNS and RR 2-form potentials

s o is an arbitrary surface in M (non-trivial in Hy (M, Z))
aolog)= [ (

Naively, we would like to fix all of these quantities. Then, the partition
function would be a function of them.

However, this is not possible since they are canonically conjugate variables,

[r'l’;g y (l:(_'] i 0
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TQFT for the BC system

At low energies, the BC system is governed by the action

iy o
S;;(} = — B AdC where X ~R x M .
2T [y
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TQFT for the BC system

At low energies, the BC system is governed by the action

oy
SH(} = — B AdC where X ~R x M .
2T Jx

* Atthe classical level, the fields B and C are conjugate to each other.

®p(o) =)o ¢ (0)Pc(0")Pp' (0)DG' (o) = 27N

Po(o) = €'de© D (0) = B (o) = 1
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TQFT for the BC system

At low energies, the BC system is governed by the action

N _
S/;(_' = !— B AdC where X ~R x M .
21 Jx
* Atthe classical level, the fields B and C are conjugate to each other.

bp(o) =¢'lo P ©p(0)Pc(0')@5 (0)0 (o) = 27N

Po(o) = €'l @ (o) = B¢ (o) = 1
The operators ®g(0), Pc(0’) generate a symmetry group W,
0>Zny > W — Hy(M,ZNn) x Hy(M,Zyn) — 0

* In order to canonically quantize, we need to pick a polarization, i.e. a
maximal subgroup of commuting ®'s.

e (Given a polarization, we find a Hilbert space of states. Each state
corresponds to a particular boundary condition.
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Back to the gauge theory
Polarization q Global structure

Example & )H(_(TD : : ( )
) (P (o)) SO
(Pp(0)Pc(0)) SO(3)

This choice breaks SL(2,7Z) on both sides.
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Back to the gauge theory
Polarization q Global structure

D (c SU(2

Example <()”(_ﬁ)> _(' ( )
N =2 (P (o)) SO(3)™
(Pp(0)Pc(0)) SO(3)

This choice breaks SL(2,7Z) on both sides.

Boundary conditions . Background field for 1-form
(state in Hilbert space) global symmetry

The SU(2), SO(3)*and SO(3)™ have global 1-form Z, symmetries,

which can be coupled to a background 2-form in H*(M,Z,) .
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Example

A polarization determines a specific N' = 4 theory with algebra su(N).
So in order to find new theories, we need to look for new polarizations.

Let's consider a simple example first: N =2 and M = S* x S*.
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Example
A polarization determines a specific N' = 4 theory with algebra su(N).
So in order to find new theories, we need to look for new polarizations.
Let's consider a simple example first: N =2 and M = S* x S*.

The relevant homology group to Iook atis Ho(M,Zs) = Zo & Zo, With
Intersection product o -0 =1, =¢g°=0.

The symmetry group W is generated by &g, &5, &, &~ with relations

| -1 - 2 _ -
PpPcd, ¢ =-1,Pp°=1,...
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Example

A polarization determines a specific N' = 4 theory with algebra su(N).
So in order to find new theories, we need to look for new polarizations.

Let's consider a simple example first: N =2 and M = S* x S*.

The relevant homology group to Iook atis Ho(M,Zs) = Zo & Zo, With
Intersection product o -0 =1, =¢g°=0.

The symmetry group W is generated by &g, &5, &, &~ with relations

1

o - 2 _ -
PpPcd, ¢ =-1,Pp°=1,...

<(I)H:‘I)l>’> ((])(-_,\ (])(,> ((])J,),([)(,? ([)”([)(__.>

Usual polarizations: o _
& SU(2) SO(3)° SO(3)"
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Example

A polarization determines a specific N' = 4 theory with algebra su(N).
So in order to find new theories, we need to look for new polarizations.

Let's consider a simple example first: N =2 and M = S° x S°.

The relevant homology group to look at is Ho(M, Zs) = Zo & Zs, With
intersection product ¢ -0 =1, 0° = ¢% = 0.

The symmetry group W is generated by &g, &g, &, &~ with relations

(])”(])(.m])!,l([);I = -1, ([)HZ =1,...
L nslanizatio <([)“: o !)’> ((])(- P > ((])“(I)( ' ([)”([)(__,>
uc ariZatlons: I N 28
p SU(2) SO(3)" SO(3)
But there are more! (Pp, Do) (Pp, Do) (Pplp, Pcde)
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New polarizations

The reason we found other polarizations in the previous example is
that H,(S? x 5%, Z,) contains a maximal isotropic subspace 4, i.e. a
maximal subgroup such that its elements do not intersect each other.

For A C Hy(M,Zy) maximal isotropic, then (®Pg(o), Po(0))seca IS a
polarization of W'.

0= Zy = W — Ho(M,Zn) x Ho(M,Zn) = 0
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New polarizations

The reason we found other polarizations in the previous example is
that H,(S? x 5%, Z,) contains a maximal isotropic subspace 4, i.e. a
maximal subgroup such that its elements do not intersect each other.

For A C Hy(M,Zy) maximal isotropic, then (®Pg(o), Po(0))seca IS a
polarization of W'.

0 =>Zn > W — Hy(M,Zn) X Hy(M,Zn) — 0

For every compact, smooth, orientable, spin manifold M (without
torsion), Hy (M, Zy) has a maximal isotropic subspace.”

*We have a proof for every prime N and for low values of N.

Pirsa: 17100050 Page 27/65



Intersection form

For every compact, smooth, orientable, spin manifold M (without

torsion) the intersection form on Hy(M,Z) is

i R C(Eg) is the Eg Cartan form
Q = (=C(Es))*™ & H®" (0 )
S

Pirsa: 17100050 Page 28/65



Intersection form

For every compact, smooth, orientable, spin manifold M (without

torsion) the intersection form on Hy(M,Z) is

| | C(Es) is the Eg Cartan form
Q = (—C(Es))®°™ @ H®" g
e ( 1 0 )
e In general, Ho(M,Z) has no maximal isotropic subspace, since C(Eg)
IS negative definite.

Pirsa: 17100050 Page 29/65



Intersection form

For every compact, smooth, orientable, spin manifold M (without

torsion) the intersection form on Hy(M,Z) is

C(Eg) is the Eg Cartan form
e,

= ( 1 0 )

e In general, H2(M,Z) has no maximal isotropic subspace, since C(Fs)
IS negative definite.

(2 — (_C’(EH))H}“: ‘\‘\‘ f_r‘h“‘

* However, Hy(M,Zy) does have one for every N.* In fact, over Zy,
the intersection form is

Qzy = H® lm+n)

So, if we work over Zy, every M behaves essentially like S? x S2
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Partition function

We would like to compute the partition function of the theory

associated to the polarization (®Pg(o), Pc(0))seca and show that it is
invariant under SL(2,Z).

For a theory with gauge group G, the partition function is roughly

Z(1) Z a; Zi(T)

bundles of ¢
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Partition function

We would like to compute the partition function of the theory

associated to the polarization (Pg(o), Pc(0))seca and show that it is
invariant under SL(2,7Z).

For a theory with gauge group G, the partition function is roughly

Z(7) Z a; Z;(7)

bundles of &

We want to find the analogous formula for the polarization associated to
the maximal isotropic subspace of Hy(M,Zy ).

The result shows that there is not really a notion of gauge group.
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Partition function of SU (V)

For SU(N), we pick the polarization (®p(0))qem,m,zy)- 1he different
boundary conditions are eigenstates of this maximal set of commuting
observables,
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Partition function of SU (V)

For SU(N), we pick the polarization (®p(0))qem,m,zy)- 1he different
boundary conditions are eigenstates of this maximal set of commuting
observables,

bp(o)w) =™ loP|w)  we H(M,Zy)
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Partition function of SU (V)

For SU(N), we pick the polarization (®p(0))qem,m,zy)- 1he different
boundary conditions are eigenstates of this maximal set of commuting
observables,

bp(o)w) =™ loP|w)  we H(M,Zy)

(I')(_'(I(]')"((O — |”_! —+ ([}(_r> Ws = I)l)[(TJ
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Partition function of SU (V)

For SU(N), we pick the polarization (®p(0))qem,m,zy)- 1he different
boundary conditions are eigenstates of this maximal set of commuting
observables,

bp(o)w) =™ loP|w)  we H(M,Zy)

(I')(_'(I(]')"((O — |”_! —+ ([}(_r> Ws = I)l)[(TJ

To each eigenstate, we associate a partition function Z,,(7). This is

computed (on the field theory side) by summing over all SU(N)/Zxn
bundles with ‘magnetic flux’ w € H*(M,Zy)

Page 36/65



Pirsa: 17100050

Partition function of SU (V)

For SU(N), we pick the polarization (®p(0)) e m,m,zy)- 1he different
boundary conditions are eigenstates of this maxmal Set of commuting
observables,

27

boou) = F L) we HAM,Za)
Do (o) |w) = |w+ wy) w, = PD[o]

To each eigenstate, we associate a partition function Z,,(7). This is
computed (on the field theory side) by summing over all SU(N)/Zx
bundles with ‘magnetic flux' w € H*(M, Zy).

For the special case w = 0, we recover the usual SU(N) partition
function. For other values, we are coupling the 1-form global Z
symmetry to a background 2-form field By, = w.
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Partition function of SU(N)/Zn

For any other polarization, we find other partition functions, depending
on the boundary conditions in AdS (or background fields in the CFT).

Let us take the pO|ari7aJ[‘|Oﬂ of HU(‘N)/:J\ which is <‘l’(?(0)>n(_”3([\[‘_;;N) }
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Partition function of SU(N)/Zn

For any other polarization, we find other partition functions, depending
on the boundary conditions in AdS (or background fields in the CFT).

Let us take the pO|ari7aJ[‘|Oﬂ of HU(‘N)/:J\ which is <‘l’(?(0)>n(_”3([\[‘_;;N) }

In order to find the partition function (without background fields), we
need to find the invariant vector |Qsy(ny/z,) under all the ¢¢ (o).
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Partition function of SU(N)/Zn

For any other polarization, we find other partition functions, depending
on the boundary conditions in AdS (or background fields in the CFT).

Let us take the pO|ari7aJ[‘|Oﬂ of HU(‘N)/:J\ which is <‘l’(?(0)>n(_”3([\[‘_;;N) }

In order to find the partition function (without background fields), we
need to find the invariant vector |Qsy(ny/z,) under all the ¢¢ (o).

|32g[{ :.‘\;' )/’\ > = X (l‘.”,|“.’>

weE [f‘:f M % N }
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Partition function of SU(N)/Zn

For any other polarization, we find other partition functions, depending
on the boundary conditions in AdS (or background fields in the CFT).

Let us take the pOlari7aJ[‘|Oﬂ of HUU\/’)/:J\ which is <‘l’(?(0)>n(__”3([\[‘_;;N) }

In order to find the partition function (without background fields), we
need to find the invariant vector |Qsy(ny/z,) under all the ¢¢ (o).

|32g[{ ‘.‘\;' )/’\ > = X (}'.”,|“.’>

weH2(M,Zx)

|
(I-"(_'((.T)‘SZ)s.,'(‘-‘(\j\.-')/g;::\,> — Z (l-”.‘ll’ | "H’(_,> = |$2_s.;(."(_‘.-\.-')If'_g:;,\,> = Xy, = (g = ]

we H e \ A fr;l\f )
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Partition function of SU (V)

For SU(N), we pick the polarization (®p(0))qem,m,zy)- 1he different
boundary conditions are eigenstates of this maximal set of commuting
observables,

bp(o)w) =™ loP|w)  we H(M,Zy)

(I')(_'(I(]')"((O — |”_! —+ ([}(_r> Ws = I)l)[(TJ
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Partition function of SU(N)/Zn

For any other polarization, we find other partition functions, depending
on the boundary conditions in AdS (or background fields in the CFT).

Let us take the pOlari7aJ[‘|Oﬂ of HUU\/’)/:J\ which is <‘l’(?(0)>n(__”3([\[‘_;;N) }

In order to find the partition function (without background fields), we
need to find the invariant vector |Qsy(ny/z,) under all the ¢¢ (o).

|32g[{ ‘.‘\;' )/’\ > = X (}'.”,|“.’>

weH2(M,Zx)

|
(I-"(_'((.T)‘SZ)s.,'(‘-‘(\j\.-')/g;::\,> — Z (l-”.‘ll’ | "H’(_,> = |$2_s.;(."(_‘.-\.-')If'_g:;,\,> = Xy, = (g = ]

we H e \ A fr;l\f )
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Partition function of the new variant

For the polarization (Pg(0), Po(0))seca, With A @ maximal isotropic

subspace of Hy(M, Zy ), the invariant vector is

1Qe) = 2: |w)

we A*

so the corresponding partition function is

A* is the dual space of A.
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Partition function of the new variant

For the polarization (Pg(0), Po(0))seca, With A @ maximal isotropic

subspace of Hy(M,Zy), the invariant vector is

e} = 2: |w)

we A

so the corresponding partition function is

A* is the dual space of A.

Notice that the polarization (®g(o), P (0))sca is invariant under SL(2,7Z).

We expect that Z,(7) is also SL(2,7Z) invariant.
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SL(2,7)invariance of the partition function

The behavior of the functions Z,,(7) under SL(2,7Z) is

Zw(T + 1) = 238 Z,,(7)
Z“(—I/T) = j,:\.r—i_::/ﬁ X ({%H-H-‘ZN(T)

weH2(M,ZN)
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SL(2,7)invariance of the partition function

The behavior of the functions Z,,(7) under SL(2,7Z) is

Zw(T + 1) = 238 Z,,(7)
Z“(—I/T) i j,:\,r—i_az/ﬁ X ({%N-N!ZH(T)

weH2(M,ZN)

We see that Z,(7) is invariant under SL(2,7):

Ze(T A 1) Z.(T) (if w® =0 mod 2N VYw e A )
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SL(2,7)invariance of the partition function

The behavior of the functions Z,,(7) under SL(2,7Z) is

Zw(T+1) (-.'EW’%Z.”,(T)
Z,,(—I/T) - /\’;—1_13/2 Z (T%“_“’Z”(T)

ueH2(M,ZN)

We see that Z,(7) is invariant under SL(2,7Z)

Zo(T+1)=Zo(1) (if w? =0 mod 2N VYw ¢ A*)

Zo(-1jr)= N2 % ( 2 ) Zu(7) = Zo(7)

ucH2(M,Z ) \weA*

274 ) a0 Nb2/2 g e A*
where we used that E e n = : g Ak
: 0 U gé A

we At
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Partition function on K3

Typically, it is hard to compute the functions Z,, (7). For K3, these are
Known . In that case, one can check explicitly that the
partition function Z,(7) Is invariant under SL(2, Z).
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Partition function on K3

Typically, it is hard to compute the functions Z,, (7). For K3, these are

Known . In that case, one can check explicitly that the
partition function Z, () is invariant under SL(2, Z).

For N = 2, there are three different blocks:
7[] = 2G(c ( ) [(}*(:q'/g)‘wL G(—¢'?)] if w=0 .
= ¢ 2. L[ “_7 FG(=q/?)] if w#0,w?=0 mod 4
H . 1/2)] if w? =2 mod 4
with G(q) = n(q)™**, q = exp 2mir.
In this case, since w* =0 mod 4 forall w € A* ¢ H*(K3,7Z,) we find
Zo(T) = Zo(T) + (2" = 1) Z.(7)

This is indeed (the unique combination) invariant under SL(2, Z).
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SL(2,7) and diffeomorphisms

The maximal isotropic subspace of Hy(M,Zy) leads to an N = 4
theory with algebra su(/N) which is invariant under SL(2,7Z). However,

we do not expect an arbitrary diffeomorphism of M to leave the
Isotropic subspace invariant.
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SL(2,7) and diffeomorphisms

The maximal isotropic subspace of Hy(M,Zy) leads to an N = 4

theory with algebra su(/N) which is invariant under SL(2,7Z). However,

we do not expect an arbitrary diffeomorphism of M to leave the
Isotropic subspace invariant.

The price to pay for having an SL(2, Z)-invariant theory is that it breaks
invariance under large diffeomorphisms.
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SL(2,7Z) and diffeomorphisms

The maximal isotropic subspace of Hy(M,Zy) leads to an N = 4
theory with algebra su(/N) which is invariant under SL(2,7Z). However,
we do not expect an arbitrary diffeomorphism of M to leave the
Isotropic subspace invariant.

The price to pay for having an SL(2, Z)-invariant theory is that it breaks
invariance under large diffeomorphisms.

The link between SL(2,7) and large diffs of the 4d space M becomes
even more clear in the Type IIB and (2,0) constructions that we sketch
In the following.
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(2,0) of Type Ay

It is believed that the (2,0) theory in six dimensions of type Ay on M x T*
flows to N/ = 4 SYM of type su(N) on M, when T#is small.

By looking at the holographic dual (M-theory on' Y x §%), we arrive at a
similar conclusion as before:
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(2,0) of Type Ay

It is believed that the (2,0) theory in six dimensions of type Ay on M x T*
flows to N/ = 4 SYM of type su(N) on M, when T#is small.

By looking at the holographic dual (M-theory on' Y x §%), we arrive at a
similar conclusion as before:

e When @ = 9Y has H3(Q,Z) # 0, we have to specify the boundary
value of
O(X) =e'lsC C' is the M-theory 3-form
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(2,0) of Type Ay

It is believed that the (2,0) theory in six dimensions of type Ay on M x T°
flows to N' =4 SYM of type su(N) on M, when T?is small.

By looking at the holographic dual (M-theory on' Y x §%), we arrive at a
similar conclusion as before:

« When @ = dY has H3(Q,Z) # 0, we have to specify the boundary
value of
O(X) =e'sC C is the M-theory 3-form

* Not all of them can be specified at the same time,

SN / CAdC C.C] 40 Polarization of W
JY 0>Zny > W > H3(Q,ZNn) — 0
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(2,0) of Type Ay

The choice of polarization, or maximal isotropic subspace of H3(Q,Zn)
breaks invariance under diffeomorphisms (that act at infinity) generically.
(Small diffs are also broken anyway )

When Q = M x T we have that (assuming H, (M) = 0 and no torsion)

H3(Q,Zn) = Ha(M,Zn) @ Hi(T*,Zy)
= Hy(M,Zn) & Hy(M,Zy)

We recover the same picture as before:

There exist polarizations that preserve invariance
under the diffs of M. This reproduces

* The self-dual polarization is also possible, which generically breaks
Invariance under large diffs of M.
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Type | |B QR CQ/ZN (work in progress)

Consider Type IIB on Q x C*/Zy, which is described at low energies
by the (2,0) theory of type Ax_;.
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Type | |B QR CQ/ZN (work in progress)

Consider Type IIB on Q x C*/Zy, which is described at low energies
by the (2,0) theory of type Ax_;.

How do we see the different variants here? Boundary conditions
for the self-dual field C}.
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Consider Type IIB on Q x C*/Zy, which is described at low energies
by the (2,0) theory of type Ax_;.

How do we see the different variants here? Boundary conditions
for the self-dual field C}.

* The boundary is @ x Ly, With Ly = S /Zy.
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Type | |B QR CQ/ZN (work in progress)

Consider Type IIB on Q x C*/Zy, which is described at low energies
by the (2,0) theory of type Ax_;.

How do we see the different variants here? Boundary conditions
for the self-dual field C}.

* The boundary is @ x Ly, With Ly = S /Zy.

« The value of Fy at infinity lives is H>(Q x Ln,Z)iors = H*(Q,Zn).
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Type | |B QR CQ/ZN (work in progress)

Consider Type IIB on Q x C*/Zy, which is described at low energies
by the (2,0) theory of type Ax_;.

How do we see the different variants here? Boundary conditions
for the self-dual field C}.

* The boundary is @ x Ly, With Ly = S /Zy.
« The value of Fy at infinity lives is H>(Q x Ln,Z)iors = H*(Q,Zn).

e As shown in . RR torsion fluxes do not
commute. We find again the Heisenberg extension,

0>Zny > W > H3(Q,Zn) — 0
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Type ”B on CZ/ZN (work in progress)

Consider Type IIB on Q x C*/Zy, which is described at low energies
by the (2,0) theory of type Anx_1.

How do we see the different variants here? Boundary conditions
for the self-dual field C}.

* The boundary is @ x Ly, With Ly = S /Zy.
e The value of Fj at infinity lives is H°(Q x Lx,Z)tors = H*(Q,Zn).

e As shown in , RR torsion fluxes do not
commute. We find again the Heisenberg extension,

0>Zny > W > H3(Q,Zn) > 0

* |n order to specify boundary conditions, we first need to pick a
polarization of V. This breaks invariance under large
diffeomorphisms acting at infinity.

Pirsa: 17100050 Page 63/65



Pirsa: 17100050

Summary

We typically think of an N = 4 theory to be defined by a choice of
gauge group (plus some additional discrete theta angles).

We have argued, by looking at the holographic dual as well as the
(2,0) theory on 7% and Type IIB on M x T? x C?/Zy, that it might be
better to think of the global data required to define an N = 4 theory as
a Lie algebra + polarization.

For su(N), this reproduces the known N = 4 theories (AST). By taking
different polarizations we may construct new theories.

In particular, we have shown that there is a global version of the su(N)
theory that is invariant under SL(2, Z) (but not invariant under large
diffeomorphisms). This follows from the fact that Hy (M, Zy ) always
has a maximal isotropic subspace.
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Open questions
Prove that the maximal isotropic subspace of Hy (M, Zy) actually
exists for every N,
Classification of all the possible variants (polarizations).
* Include torsion in Hy (M, Z).
» (Generalization to other algebras.

e (Generalization to class S.

Understand the gluing axiom better for the (2,0) theory. The
anomaly theory has appeared recently

Despite being non-invertible, the anomaly theory obeys the gluing axioms.
We would like to understand this better.
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