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Going with the flow

By Marianne Freiberger and Rachel Thomas

4

Submitted by Marianne on March 27, 2014
In the last article we saw that asymptotic freedom allowed the strong force that binds nuclei together to be described
by a quantum field theory. But the perturbative calculations only worked at high energies when the strong coupling
constant becornes small. Similarly, it seemed that gquantum electrodynamics, the theory that described the interaction
of light anli matter, only worked at sufficiently low energies. If they did not work at all energy scales, how could these
be thought of as valid theories? What is a valid theory, anyway? It was clear that quantum field theory needed some
new Ideas.

Fractal physics

We are used to thinking of physics as happening at very distinct scales. Many of our most successful theories give
accurate predictions for a certain range of parameters, which equate to a particular length scale at which we are
observing the physical phenomenon. Newton's theory of gravity, and more generally, Newtonian mechanics, Is
incredibly successful at describing the everyday world around us, according to any observation in a range centred
roughly on a human scale. However, Newton's theories fail at the cosmological and relativistic scales, for very massive
objects and those moving close to the speed of light. Here Einstein's theory of general relativity provides an accurate
description of the phenomenon. And as for the smallest scales, at the subatomic level of particle physics, we are yet to
find a good theory for describing the effects of gravity. Not least because at this level the effects of gravity are
minuscule and the data is hard to get.

Although the same fundamental force is at play in all these scales, the phenomena we cbserve appear very different.
We are comfortable with using the theory that is most effective at a particular scale, ignoring the contributions that are
significantly at bigger or smaller scales.
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We are comfortable with using the theory that is most effective at a particular scale, ignoring the contributions that are gravitational waves. S

significantly at bigger or smaller scales.

Indeed the success of many of our theories depends on this isolation of the physics to just a
limited range of lengths. Usually, when you describe the motion of water at one scale, you can
ignore contributions from physics at much larger or smaller scales. "The interaction of two
adjacent water molecules Is much the same whether the molecules are in the Pacific Ocean or
in a teapot," said Physics Nobel laureate Kenneth Wilson in a 1979 Scientific American article.
"Equally Important, an ocean wave can be described quite accurately as a disturbance of a
continuous fluid, ignoring entirely the molecular structure of the liquid." If you had to take into
account the motion of every water molecule in the ocean, a theory of ocean waves would be
impossible.

Maths on a boat: Young
researchers at the
Heidelberg Laureate Forum

g 4 A N
Young researchers at this year's Heidelberg
Laureate Forum tell us about their work.

Phato @ Heidelberg Laureate Forum
Foundation / Muaeck - 2017.

However there are some phenomena where you have to remove such blinkers and consider the
physics from many scales at the same time. Indeed, these phenomena are exactly Kenneth Wilson. Rl e e
characterised by behaviour occurring at all these scales simultaneously. One example Is what envelopes problem

happens at a second order phase transition. The phase transitions we are used to — ice melting to liquid water, water
bolling to steam — are all first order phase transitions. There Is a dramatic difference In the density of the different
phases: in our example of water, any of us can easily tell the difference between ice, water and steam.

But when water and steam are at 374 degrees Celsius and at 218 atmospheres of pressure the distinction between the o v:“r.:':-rﬁq
phases becomes murky. "At this critical point the distinction between water and steam disappears, the whole boiling argument?
phenomenon vanishes," said Wilson in his Nobel Prize lecture in 1982, "One finds bubbles of steam and drops of water
intermixed at all size scales from macroscopic, visible sizes down to atomic scales.” The presence of drops and bubbles
near the micron sizes causes the water and steam to appear milky, leading to this phenomenon being called critical
opalescence. (You can see why in this movie.) At this point, larger bubbles of gas contain smaller drops of water, that

contain smaller bubbles of gas, that contain smaller drops of water, and so on. This self-similarity occurs no matter 3 { r‘u
how much you zoom In on the mixture (until you finally hit the atomic level) In an analogous way to the similarity you : ‘. o

find no matter how far you zoom in on a fractal image, like the Mandelbrot set below.
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Very similar behaviour can be seen in materials such as Iron, where the second order phase transition occurs at the |I B l";"”” T
Curle-temperature. -Above this temperature, 771-degrees Celsius, iron loses its inherent magnetism- As the-iron cools
below this temperature It will spontaneously become magnetic, the magnetic fleld It creates becoming stronger the
cooler tho matmal
Magnctic behaviour is due to the tiny magnetic fields produced by individual electrans in the material. It can be B W UNIVERSITY OF
modelled as follows. If you think of each electron in iron as arranged In a lattice, then the material Is magnetic If more QY CAMBRIDGE
than- half of the electron spins peinted the same way, either-up-or dewn. The-mere electrons point the same way, the
stronger the magnetic fleld. Electrons In Iron tend to align themselves with thelr nelghbours, creating a magnet, as
being similarly aligned takes less-energy. As the temperature-of the material increases, the electrons have more
energy to overcome this natural tendency. They jiggle about more, making them more likely to randomly flip in-
direction; explaining why-the-magnetism decreases as the temperature rises. (This trade-off between the low-energy
ordered state and the random jiggling at higher energies lies at the heart of statistical mechanics. You can read more
in Secret symmaetry and the Higgs b;:::nn.)
Laft: Schamatic daplction of the atoms in 3 ferromagnet. Laft: The symmetrical phase above
the Curie temperature whirs all the magretic felds of the atoms are randomly crented
Right: The asymmetrical phase b the Curie temperature where the magnatic fields of all
tha atoma are alignad in tha 53 action. Image: Mick Mea, taken from his Mus article
abput the Higgs ke
htps://plus.maths org/content/secrek- Sy mMmetR) SAG-hiGgs-BosoH-b: Joss of magn-tism with incmsod temperature. Howovor to undtrstand the sudden loss of o
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majority pointing the other way, and this swapping of polarity continues for smaller and smaller blocks all the way -

down to Individual electrons on the lattice. "Thus an ocean of spins that are mostly up may have within it an island of
spins that are mostly down, which in turn surrounds a lake of up spins with an islet of down spins,” as Wilson
poetically put it. "The progression continues to the smallest possible scale: a single spin."

The need to account for behaviour at so many different scales made a mathematical description of the physics in
second order phase transitions, also called critical points (such as critical opalescence and a ferromagnet's Curie
temperature) Incredibly complex, requiring a huge number of variables to characterise the state of the material. For
example, to describe the behaviour of iron at the Curie temperature, you apparently would need to know the direction
of the spin of every electron In the material.

In 1966 Leo Kadanoff, an American condensed matter physicist, suggested a very intuitive averaging process as a way
to overcome this difficulty. Kadanoff started with the lattice of electrons described above, with a spacing of, say, L=1
unit between the electrons. He then reduced the complexity of the problem by dividing the lattice into 3x3 blocks by
treating each group of 9 blocks as a single element. The spin of this element was defined to be the same as the
majority of spins of the electrons it contained. If the spin of the majority of the electrons in this block pointed up, then
the block would represented by single spin also pointing up, and vice versa, This defined a new lattice of spins, with
elements (the blocks) spaced L units apart. Then he defined larger blocks containing 3x3 of each of these elements in
the same way, producing a lattice of spins with elements L units apart. This process of using an increasingly coarse-
grained picture of the system could be repeated. If you think of the spacing of the lattice as analogous to the "degree
of resolution" on the microscope that you are using to observe the material, then Kadanoff's block spin process was
like zooming out, again and again.

Pirsa: 17100039 Page 8/118



' “Gaingwiththe flow | plus.m X \

{-v @ @ htipsy//plus maths.org/content/going-flow-0 {1 A = Q search * a ‘ "\'.

- B entropy | Special Issue. @ Home | Perimeter Insti... »

|8 Most visited E 0 - 1511.02536.,pdf ™ Gmail | HEP - INSPIRE-HEP @ Home | PSI Student P.. - Author Query Results H Welcome to the Perim.. €& epost - Your ONE onli.. @ The International Soci.
elements (the blocks) spaced L units apart. Then he defined larger blocks containing 3x3 ot each of these elements in
the same way, producing a lattice of spins with elements L units apart. This process of using an Increasingly coarse-
grained picture of the system could be repeated. If you think of the spacing of the |attice as analogous to the "degree

of resolution” on the microscope that you are using to observe the material, then Kadanoff's block spin process was
like zooming out, again and again.
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Curle temparature no direction of spin s dominant on any
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with the up spins (black squares) becoming dominant at
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For example, suppose we applied Kadanoff's approach to a plece of iron below the Curle temperature (the images
above on the left). Then, although there might be some differences in alignment at small scales (the top lattice), as we
zoom out (and L, the distance between the units in the lattice, grows) these differences will average out (the lower
lattices). For large values of L the spins of all these larger blocks will point in the same directions. If we instead use
this approach for a piece of iron that is above the Curle temperature (the images on the right), the differences in
alignment of the blocks will remain at every length scale, from individual electrons to the largest blocks. Kadanoff's
approach simplified the mathematics, so that it was finally possible to to predict the behaviour of these materials,
accurately matching the data measured in experiments.
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ISING MODEL.: ordering

At hot temperature the spins are randomly configured, at low temperature they are close to
an entirely ordered state, and at critical temperature they have a fractal configuration.
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At Tc: scale invariant (fractal) structure

https://brainnetworkdynamics.wordpress.com/research/criticality/
© Fiona McCarthy

See also: https://www.youtube.com/watch?v=kjwKgpQ-I1s
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Block Spin RG
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