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Abstract: <p class="MsoNormal">Branch point twist fields play an important role in the study of measures of entanglement such as the RA©nyi
entropies and the Negativity. In 1+1 dimensions such measures can be written in terms of multi-point functions of branch point twist fields. For
1+1-dimensional integrable quantum field theories and also in conformal field theory much is known about how to compute correlation functions
and, with the help of the twist field, this knowledge can be exploited in order to gain new insights into the properties of various entanglement
measures. In thistalk | will review some of our main results in this context.</p>

<p class="MsoNormal">Il will then go on to introduce a new (related) class of fields we have recently named conical twist fields. These are fields
whose two-point functions have (surprisingly) been found to describe gluon amplitudes in the strong coupling limit of super Y ang-Mills theories and
therefore have featured in a completely different context from that of entanglement measures. Interestingly, at critical points, branch point and
conical twist fields have the same conformal dimension and beyond criticality they also have very similar form factors, however they are different in
many other respects.&nbsp; In my talk | will discuss and justify some of their similarities and differences.</p>
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Background:

Two good introductions to the topic of branch point twist fields
and their relationship with entanglement measures are:

John L. Cardy, O.C.-A. and Benjamin Doyon, Form factors of
branch-point twist fields in quantum integrable models and entan-

glement entropy, J. Stat. Phys. 130 (2008) 129-168, arXiv:0706.3384.

0.C.-A. and Benjamin Doyon, Bi-partite entanglement entropy in
massive 1+1 dimensional quantum field theories, J. Phys. A42

(2009) 504006, arXiv:0906.2946 (Review Article).

k
Today I will also be talking about very recent work on conical

twist fields, which we have introduced in our recent paper:

0.C.-A., Benjamin Doyon and Davide Fioravanti, Conical twist
fields and null polygonal Wilson loops, arXiv:1709.05980.
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Collaborators:

I would like to thank all my collaborators on this area of
research:

Davide Bianchini, Former PhD Student
Olivier Blondeau-Fournier, Université Laval (Québec)

John L. Cardy, University of California, Berkeley
Benjamin Doyon, King’s College London

Davide Fioravanti, Uniwversita di Bologna
Emanuele Levi, Former PhD Student

Francesco Ravanini, Universita di Bologna
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1. Entanglement in quantum mechanics

e A quantum system is in an entangled state if performing
a localised measurement (in space and time) may instanta-
neously affect local measurements far away.

A typical example: a pair of opposite-spin electrons:

_ L
V2

e What is special: Bell’s inequality says that this cannot be
described by local variables.

) ItLY+ L)) (A) = (W|AR)

o A situation that looks similar to 7)) but without entangle-
ment is a factorizable state:

B =S (T4 + L)+ 1)+ 114

LN () + 1))
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@ These examples are extremely simple but what happens in
extended many-body quantum systems?

e First of all, what provides a good measure of entanglement?
[Plenio & Virmani’05]
@ Entanglement monotone: no increase under LOCC
© Invariant under unitary transformations
© Zero for separable states
© Non-zero for non-separable states

e Among others, the bi-partite entanglement entropy and the
logarithmic negatiyity are good measures of entanglement
according to these properties.

e Today I will talk about the entanglement entropy in the
context of 141 dimensional QFT (at and near criticality).
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2. Bi-partite (von Neumann) Entanglement Entropy

Let us consider a spin chain of length N, subdivided into regions
A and A of lengths L and N — L [Bennett et al.’96]

® & & & ¢ oo o o o o
51X §i XS X RS0 Si4L
Lﬁ\/______g
A

then we define

Von Neumann Entanglement Entropy
S(L) = ~Tra(palog(pa) with pa =Tt 1(|¥)(¥)

|W) ground state and p4 the reduced density matrix.
Other entropies may also be defined such as

Rényi Entropies & Replica Trick

_ log(Tra(p}))
l1—n

. d n
= S(L) =-— nliﬁl+ %TTA(PA)

Sn(L)
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3. Replica Trick I

The object Tryp"’y with n integer is also a partition function
[Callan & Wilczek’93; Holzhey, Larsen & Wiczek’94; Calabrese
& Cardy’04]:
Zn
TTApz — )
2
but now it is defined on an n-sheeted Riemann surface:

Iy >
<Ol

Aldlpal)a ~ ' 74

Toalpl) ~ Z = o [dglae, exp [— /

n
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4. Replica Trick II

e However, when computing this limit we need to extend our
notion of “replica” ton > 1 and n € R.

e The analytic continuation problem is not solved in general
although existence and uniqueness are expected and may be
established under certain natural conditions (e.g. Carlson
Theorem).

e Note that this is only a difficult problem when trying to
obtain analytical results.
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At criticality (£ — 00):

Universal scaling:
[Holzhey, Larsen & Wilczek’94;
Vidal, Latorre, Rico & Ki-
taev’03; Calabrese & Cardy’04;
Bianchini,OC-A, Doyon, Levi &
Ravanini’15]:

k
Cet(n + 1) log é

Sn(f) ~ 6n

cof is the (effective) central
change which uniquely charac-
terises the CFT. € is a non-
universal cut-off.

0O.A. Castro-Alvaredo, City, University of London

5. Rényi Entropies at and near Critical Points

For more than one interval:
information about operator
content of CFT.

Near criticality (£ finite):

Universal saturation [Calabrese
& Cardy’04] and decay [Cardy,
OC-A & Doyon’08; Doyon’09;
Levi, OC-A & Doyon’11]

where m is the mass of the
lightest particle in the spectrum.

Similar corrections are found for
the LN [Blondeau-Fournier, OC-
A & Doyon’16]

Twist Fields in 141D QFT
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6. Branch Point Twist Fields I

e How are the results in the previous slide obtained? At crit-
icality, conformal invariance can be employed but near crit-
icality a different technique is needed.

In the context of entanglement, the idea of quantum fields
associated with branch points of the Riemann surfaces M,,
appeared first in [Calabrese & Cardy’04).

The interpretation of these fields as symmetry fields of a
QFT replica model was first given in [Cardy, OC-A & Doyon’08].

Let us define the replica model by writing its two-particle
scattering matrices*as

Sprpa(0) = (Sap(0))%%  with 1 = (a,4) and pg = (b, )

Here a,b=1,...,k label particle species and 7,5 = 1,...,n
label copy numbers. This represents n non-interacting copies
of a QFT with diagonal scattering.
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7. Branch Point Twist Fields II

e Branch Point Twist Fields are defined by the following
equal-time exchange relations

()T (z) = T(x)Pit1(y)
Qi(y)T(x) = T(x)Pi(y)

fori=1,...,n and n+ i =i. Similarly 7 = 71
implements the symmetry ¢ — ¢ — 1.

@l 10

NS

k

e Twist fields have a quantum spin chain counterpart [OC-A
& Doyon’11] as product of local operators on replica chains.

e Branch point twist fields were studied earlier in the context
of orbifold CFT [Knizhnik’87; Dixon et al.’87] and their

conformal dimension was known: A, = 7 (n — 1),
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8. Rényi Entropy vs Correlation Functions

Il of semi-infinite region. By
CTM  approach [Calabrese,
Cardy, Peschel, Bianchini, Er-
colessi, Franchini, Evangelisti,
Ravanini,...], Toplitz determi-
nants [Its, Jin & Korepin’04],
QFT techniques [Cardy, OC-A
& Doyon’08, Blondeau-Fournier
& Doyon’l6] or numerically
[Vidal et al.’03]

EE of finite interval. In
CFT |[Callan & Wilczek'93;
Holzhey et al.’94; Vidal et
al.’03;Calabrese & Cardy’04...].
In massive models [Cardy, OC-

A, Doyon, Levi, Bianchini...]
I of 2 disconnected regions

[Calabrese, Cardy, Tonni, Alba,

AN (T(0)T(8))n

Casini, Huerta, Furukawa, Igloi,

BAn ¥ 7
e ST (0)T (£1)T (€2)T (€3)) . Ty .
" Pasquier, Shiraishi, Caraglio,

Gliozzi, Peschel, Tagliacozzo,
Fagotti, Rajabpour, Datta...]
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9. Form Factors of Local Fields: Definition

o Let |01,...,0k) ..., & k-particle in-state. The particles
have rapidities #; > --- > 0 and quantum numbers p1 . . . pk.
Let O(0) be a local field located at the origin of space-time.
Let |0) = ((0])T be the ground state (vacuum).

Olu...
FOWte gy, 0) == (010(0)|01,- ., 0k} ur... s

0,

— y

e Form factors are the building blocks of correlation functions.
e For local fields in integrable QFT, FFs are solutions of a
Riemann-Hilbert problem and have been computed for many

models [Karowski & Weisz’78: Smirnov’90s
0.A. Castro-Alvaredo, City, University of London Twist Fields in 141D QFT
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10. Twist Field Watson’s Equations

Tleotbplpt e Tleeibbpl fopees
FT BRI (G Byt ) = Shpsips O ) EL P B, O

F’Z'|p1...uk (01 +27T?:,...,9k;) —_ F;'qu...ukﬁ,u (92a°"90k’91)

Su‘, p‘”‘(ep p+1)

ﬁl =(a1,j1+1)

g, O
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10. Twist Field Watson’s Equations

Tleotbplpt e Tleeibbpl fopees
FT BRI (G Byt ) = Shpsips O ) EL P B, O

F’Z'|p1...uk (01 +27T?:,...,9k;) —_ F;'qu...ukﬁ,u (92a°"90k’91)

Su‘, p‘”‘(ep p+1)
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11. Twist Field Kinematic Residue Equations

e For twist fields, the kinematic residue equation splits into
two equations:

§1im9 (6o — Go)Fﬂgmu---uk (Bo + im, 00,01, ...,0%) = g'F;'\m---uk (61,...,0k)
0—00

k
i (Bo—00) L 5H 1k (Botim, 00,01, ..., 0) = —i [ | Sap, G0i)F 4Pk (01, .., 0k)

0pg—6¢ j=1

] .

o N

[ 14 =4

Bou G Ok Ghw el Oy

@ There is an additional equation in the presence of bound
states.
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12. Branch Point Twist Fields Summary

e By systematically computing the form factors of branch point
twist fields we can compute their correlation functions and
learn about measures of entanglement.

In order to compute the von Neumann EE we can use the
replica trick and study the analytic continuation of these
correlation functions as n — 17,

Since we work on replica theories, where the number of par-
ticles in the spectrum is a multiple of n, this analytic con-
tinuation is quite tricky but can be done at least in some
cases, leading for instance to the universal Bessel function
decay described earlier.

0O.A. Castro-Alvaredo, City, University of London Twist Fields in 141D QFT
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13. Twist Fields and Pentagonal Amplitudes

e In [Basso, Sever & Vieira’l4| found a surprising result: in
their own words...
“we consider the collinear limit of gluon scattering amplitudes in
planar N' = 4 SYM theory at strong coupling. We argue that
in this limit scattering amplitudes map into correlators of twist
fields in the two dimensional non-linear O(6) sigma model, similar

to those appearing in recent studies of entanglement entropy”

FIG. 4. At strong coupling, the hexagon Wilson loop in the
collinear limit is given by a correlator of two twist operators
in the O(6) sigma model (on the left), corresponding to the
two pentagons in its decomposition (on the right).

0O.A. Castro-Alvaredo, City, University of London Twist Fields in 141D QFT
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14. Pentagonal Amplitudes

e In [Basso, Sever & Vieira’l4] it was observed that the “pic-
ture” above is translated into the OPE (at criticality)

og z B
ﬁbpen(o)qbpen(z) ~ (lf—/ggbhex(o)

where A = 4A% — ZA%, where A, = 5; (n — %) is the
same dimension as for the branch point twist field (this was
checked numerically also by [Bonini et al.’17]).

This provided strong support for the idea that these “poly-
gon” fields should be related to branch point twist fields.
The values of n associated to these polygonal Wilson loops
are generally fractional.

The value of n is related to the so-called “excess angle” with-
out connection to any notion of replica.

Despite this, the form factor expansion of the two point func-
tion of pentagonal fields has a similar structure as for branch
point twist fields.

0O.A. Castro-Alvaredo, City, University of London Twist Fields in 141D QFT
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15. Conical Twist Fields: Definition

@ The fields emerging in this context are not branch point
twist fields: they are not associated to an internal symmetry
of the theory and they do not live in a replica model.

e Instead, they are twist fields associated to an space-time
external symmetry. The symmetry in question is rotation
symmetry about a point.

e They are fields that induce a conical singularity of arbitrary
excess angle a = 2mw(n—1), where n is not necessarily integer.

0.A. Castro-Alvaredo, City, University of London Twist Fields in 141D QFT
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16. Conical Twist Fields: Explicit Expression

e In QFT such fields can (at least formally) be written in terms
of the corresponding Noether current, that is

dyt (s)

o0
Va(0,0) = 21_1;1'(1) e 28 exp [—a/g dsTSWR”(S)

€

where RY(s) is the rotations current and s parametrizes a
curve from (0,0) to infinity. € characterizes the regulariza-
tion scheme.

In CFT the rotation current R can be explicitly written and
it is possible to show that this field has indeed the correct
conformal dimension.
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0., (x)%

]

- -

@ Whereas branch point twist fields are defined for a particular
integer value of n, conical twist fields are characterized by
the excess angle o and it is possible to define OPEs and

correlators involving various fields with different values of a.

e Thus the conformal OPEs (in non-logarithmic CFT') of the
two types of fields are quite different. For instance:

Conformal OPEs

VQ(O)Var(Z, 2) ~ Ca-l-a" z|2Aa+a’_2Aa_2Aa’ va_i_a’(o)

aao
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18. Form Factors

e In the context of pentagonal amplitudes, the two-point func-
tion (Vo (0)Vy (7,2)) was computed for the (massive) O(6)
NLSM and its short distance behaviour was identified for
a=ao = % [Basso, Sever & Vieira’l4; Bonini, Piscaglia,
Rossi & Fioravanti’17].

By deriving form factor equations for the conical twist field,
it is possible to compute the two-point function for generic
values of & and o’ and study its short distance behaviour for

any QFT of our choosing.

o Let us represent the k-particle form factor of V, as:

0O.A. Castro-Alvaredo, City, University of London Twist Fields in 141D QFT
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20. Kinematic Residue Equations

Res FYe itk Gy 4 im, 00,01 ..., 0x) = i Fy @ FPe 0y, L 0y)
0=vo

k
Vo |y > . , , Vv Y
Res kag“‘ HL PR (G dom, 0g—icr, 0y ..., 0) = —i || Sup,; (Boi—ia)Fy albicbh (g 0k)
9o=0p i=1

Ostin
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21. Some Numerical Results

e These equations can be solved for particular theories and it
is not difficult to show that their solutions are identical as
those for a branch point twist field 7 where only particles
in one copy are considered and « = 27(n — 1).

For massive free theories with S(6) = £1 these form factors
are all known and so it is possible to compute

og (L2002

~ —Tao! log ‘.’L“
(Va)(Va) )mm|<<1

and study its short-distance behaviour.

For free theories this short-distance behaviour is accessible
exactly from form factors and we find for instance

. a=a'=2n(n-1) 0.08 pes t.erIﬂ(ln_—p:ur':lZIﬂ(l."ﬁn—l)
0.06 0.06
0.04 0.04

0,02 0,02

0,00 000
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Conclusions & Open Problems

e Twist fields provide a powerful tool for the computation of
partition functions/scattering amplitudes in non-trivial ge-
ometries. In my talk we have seen two applications: to mea-
sures of entanglement and to the study of scattering ampli-
tudes in SYM theory.

e There are many interesting open problems to be addressed
within both areas:

o On the entanglement side, we are currently looking at apply-

ing twist fields to the study of measures of entanglement in
excited states of massive QFT. We would also like to even-
tually generalizg the twist field idea to higher dimensions to
study measures of entanglement in 2+1 dimensions.
For conical twist fields we would like to reach a better un-
derstanding of their correlators and of how they may be ap-
plied to the study of other types of amplitudes, such as the
structure constants of single-trace operators in the N' = 4
SYM theory at large N which have been studied employing
“hexagonal form factors” [Basso, Komatsu & Vieira’l5].
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