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Abstract: <p>The hydrodynamic approximation is an extremely powerful tool to describe the behavior of many-body systems such as gases. At the
Euler scale (that is, when variations of densities and currents occur only on large space-time scales), the approximation is based on the idea of local
thermodynamic equilibrium: locally, within fluid cells, the system isin a Galilean or relativistic boost of a Gibbs equilibrium state. This is expected
to arise in conventional gases thanksto ergodicity and Gibbs thermalization, which in the quantum case is embodied by the eigenstate thermalization
hypothesis. However, integrable systems are well known not to thermalize in the standard fashion. The presence of infinitely-many conservation
laws preclude Gibbs thermalization, and instead generalized Gibbs ensembles emerge. In this talk | will introduce the associated theory of
generalized hydrodynamics (GHD), which applies the hydrodynamic ideas to systems with infinitely-many conservation laws. It describes the
dynamics from inhomogeneous states and in inhomogeneous force fields, and is valid both for quantum systems such as experimentally realized
one-dimensional interacting Bose gases and quantum Heisenberg chains, and classical ones such as soliton gases and classical field theory. | will
give an overview of what GHD is, how its main equations are derived, its relation to quantum and classical integrable systems, and some geometry
that lies at its core. | will then explain how it reproduces the effects seen in the famous quantum Newton cradle experiment, and how it leads to
exact results in transport problems such as Drude weights and non-equilibrium currents.</p>

<p>This is based on various collaborations with Alvise Bastianello, Olalla Castro Alvaredo, Jean-SA©bastien Caux, JA©rA me Dubail, Robert

Konik, Herbert Spohn, Gerard Watts and my student Takato Y oshimura, and strongly inspired by previous collaborations with Denis Bernard, M.
Joe Bhaseen, Andrew L ucas and Koenraad Schalm.</p>
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Main papers

O. A. Castro-Alvaredo, B. Doyon, T. Yoshimura, Emergent hydrodynamics in integrable
quantum systems out of equilibrium, Phys. Rev. X 6, 041065 (2016)

B. Bertini, M. Collura, J. De Nardis, M. Fagotti, Transport in Out-of-Equilibrium XXZ Chains:
Exact Profiles of Charges and Currents, Phys. Rev. Lett. 117, 207201 (2016)

Both selected for a Viewpoint in Physics written by Jérdbme Dubail
(http://physics.aps.org/articles/v9/153#cl)

Advertisement:
Les Houches summer school on Integrability in atomic physics and condensed matter
August 2017
(org.: J.-S. Caux, K. Kitanine, A. Kluemper, R. Konik)
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/ 1. The problem: inhomogeneous dynamics of many-body integrable systems \

Effects of integrability in the famous “Quantum Newton Cradle” experiment:

[Kinoshita, Wenger, Weiss 2006]

Position (um)
500 0 500

“Our results are probably explainable
by the well-known fact that a homoge-
neous 1D Bose gas with point-like colli-
sional interactions is integrable”

“Until now, however, the time evolution
of out-of-equilibrium 1D Bose gases
has been a theoretically unsettled is-
sue, as practical factors such as har-
monic trapping and imperfectly point-

like interactions may compromise inte-

grability”
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/ 1. The problem: inhomogeneous dynamics of many-body integrable systems \

As an example consider the Lieb-Liniger model, which describes point-like interactions of

Galilean invariant Bose gases. Its Hamiltonian is

H:/d:ch)(m):/dm L 5,00, v+ Sututuw ).
2m 2

It admits local conserved quantities ();:

3= /.d:::qi(:z:).
For instance, the number of particle /N, the momentum P and the energy H:
e the particle densityis qo(z) = n(z) = Ui (z)¥(z);
e the momentum density is q,(z) = p(z) = ¥ (2)0,¥(z) + h.c.;

e the energy density is q2(z) = h(z).

N P
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/ 1. The problem: inhomogeneous dynamics of many-body integrable systems \

We can describe theoretically (a simplification of) the problem as follows. The initial state is
an equilibrium state with a inhomogeneous potential

Ty iniA
ﬁ, Pini = €Xp [—ﬁ (II g /dﬂ? vqm(ﬁj)n(m))] :

Then the evolution occurs with the Hamiltonian in a different inhomogeneous potential

(4) =

(A(t)) = (eHevet Ae™Hevot)  Hevo = H + f dz Vevo(z)n().

\ J
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/ 1. The problem: inhomogeneous dynamics of many-body integrable systems \

How can we compute the evolution of such a gas?
Can we reproduce the effects seen in the quantum Newton cradle experiment?

What general theory would allow us to do so in a simple enough fashion, without using

advanced computational techniques for one-dimensional quantum systems?

What are the general principles?
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/ 2. From Gibbs ensembles to conventional hydrodynamics \

Hydrodynamics is the natural framework to describe inhomogeneous phenomena in
many-body systems, for instance waves in water. The main idea behind hydrodynamics is
what is usually referred to as “local thermodyanamic equilibrium”.

It says that locally and on very short time scales (in fluid cells), the many-body system
“equilibrates” or relaxes. This means (naively) that locally we observe Gibbs states. Since
things can be moving, then in general these will be boosted by the local fluid velocity. Thus,
at every point z, t, the density matrix is

PGE(-’L', t) — e_fi(:r,t)(H—;L(ﬂ:,t)N—u(;}:,t)P)

and the hydrodynamic approximation is

v e Tr (pGE(:r’t)O(OaO))
(O(Iat))ini o TI'pGE(.’L',t) .

For instance: s 5
pini — C*B(II“FI dz "ini(:r)n{m)) = PGE(I,O) — C*ﬁ(II+‘izli($)N).

. /
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/ 2. From Gibbs ensembles to conventional hydrodynamics \

The same holds with the momentum current j,, and the particle current j,, = p (equal to the
momentum density in Galilean systems), giving the macroscopic conservation laws:

Oh(z,t) + Oz ju(z,2) =0
atp("l": t) A 81?.]?('1:: t) =0
on(z,t) + 0.p(z,t) = 0.

But also, since there are only three parameters L, I/, 3 to determine a boosted Gibbs state,
there must be two relations:

jh — F(h,p,n), jp = G(hs P, n)'

These are the equations of state of the gas (which are highly model-dependent), and
combined with the above give the hydrodynamic equations for h, p, n.

Note thath, p, n fix the potentials 3, ., v. Thus hydrodynamics fixes the local space-time

\dependent state. /
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/ 2. From Gibbs ensembles to conventional hydrodynamics \

Remarks:

e This is valid at the Euler scale: all variations in space and time must be very smooth.
Beyond this scale, there are higher derivative corrections, such as viscosity terms. But at
large scales, such higher derivative terms are scaled out.

e These equations can be re-written in standard hydrodynamic form. Defining a velocity v

via p = nv, the n and p conservation laws imply
1
Ov + vOv = — =0, P
n

where the pressure is P = jp — nv?. This is the usual Euler equation. Combined with
Oin + 0z (vn) = 0 these are the usual hydrodynamic equations (without viscosity).

e The pressure P in a boosted Gibbs state can be evaluated in the Lieb-Liniger model
using Bethe ansatz. This Lieb-Liniger conventional hydrodynamics has been used, with

K partial success. /
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/ 2. From Gibbs ensembles to conventional hydrodynamics \

The same holds with the momentum current jp and the particle current j,, = p (equal to the

momentum density in Galilean systems), giving the macroscopic conservation laws:
Oh(z,t) + Oz ju(z,t) =0
op(z,t) + Oz jp(2,t) =0
on(z,t) + 0.p(z,t) = 0.

But also, since there are only three parameters L, I/, 3 to determine a boosted Gibbs state,
there must be two relations:

jh = F(h,p,n), jp — G(hs P, n)'

These are the equations of state of the gas (which are highly model-dependent), and
combined with the above give the hydrodynamic equations for h, p, n.

Note thath, p, n fix the potentials 3, ., v. Thus hydrodynamics fixes the local space-time

Kdependent state. /
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/ 2. From Gibbs ensembles to conventional hydrodynamics \

Thus there is an unambiguous procedure to go from homogeneous, stationary states to

inhomogeneous, dynamical states, describing the large (Euler) scale space-time variations.

homogeneous inhomogeneous
stationary dynamical
(boosted) Gibbs ensembles hydrodynamics

e~ P(H—uN—vP)
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/ 3. From Gibbs ensembles to Generalized Gibbs ensembles (GGES) \

But the Lieb-Liniger model is integrable. Integrable models possess an infinite number of

local conserved quantities
A= /d:r q:(), 0:q; + O0zji = 0, i =0,1,2,3,... unboundedly.

Because of the presence of all these conserved quantities, integrable models do not

generically relax to Gibbs ensembles.

N /
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/ 3. From Gibbs ensembles to Generalized Gibbs ensembles (GGESs) \
Let us explain what replaces Gibbs ensembles using the following “quench protocol”.

A system is in some homogeneous initial state p;,i. Then this state is evolved with a
homogeneous Hamiltonian H.... Consider a local observable O (:L) in the evolved state:

(O(z,t))ini = (eiﬂwufo(ﬂ;)c—mmt)ini.

What is the limit  1imy_, o0 (O(2, t))ini?

Although the state of a closed quantum system itself cannot relax as a whole, it does from

the viewpoint of local observables in infinite volume.

Pini

L Local regi
. Local region

D)
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/ 3. From Gibbs ensembles to Generalized Gibbs ensembles (GGES) \

Remarks

e The set of conserved charges {Q; } and the infinite series ), 3;Q; must be defined
carefully. The correct definition is that of pseudolocal charges, which form a Hilbert
space in which Za (3:;Q; is interpreted as a basis decomposition. The space of all GGEs
with respect to a given integrable H is infinite-dimensional. It is probably an
infinite-dimensional Riemannian manifold 8D 2017).

e According to standard results of the operator algebra approach to quantum statistical
mechanics, any extremal H,,)-stationary state is a Gibbs state (or
Kubo-Martin-Schwinger (KMS) state) with respect to a conserved “Hamiltonian” H;,
(not necessarily local, but generating a one-parameter group of unitaries).

e There is the related eigenstate thermalization hypothesis: in the large-volume limit, for
generic quantum lattices, (E|O|E) = Tr (e ?# O) /Tre . This is generalized to
integrable systems with the replacement e PH y ¢= 20:BiQ: /
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/ Combining: inhomogeneous dynamics of integrable systems: \

Tr [pcce(2, t) 9i, )i
Tr pcae(z,t)

6tq‘i+8:rji:0) unz: ) ?::0,1,2,...
This is generalized hydrodynamics (GHD).

e The hydrodynamic principle is the emergence of local entropy maximization with respect

to all available conserved charges, valid when variation lengths are large enough.

e Local averages are fixed by space-time dependent (generalized) Gibbs ensembles,

Tr [pccE(z,t) O]
O “:t ini ~
(O(z,1)) e

e There are equations of states: j; = F;({q;}), and a bijective relation q; <> f3;.

e Equations of conservations give dynamical equations determining the space-time

\ dependent (generalized) Gibbs ensembles. /
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/ 3. From Gibbs ensembles to Generalized Gibbs ensembles (GGES)

Thus there is an unambiguous procedure to construct homogeneous, stationary states of

integrable models: a “generalization” to infinitely-many conservation laws.

(boosted) Gibbs ensembles

finite number
o—B(H—uN~-vP)

of conservation laws

“genera.lization” generalized
Gibbs ensembles (GGEs)
infinite number e~ TiZo AiQ:

of conservation laws

\
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/ 4. GGEs via quasi-particles \

Gibbs ensembles and generalized Gibbs ensembles can be described, in Bethe ansatz

integrable models, by using the (generalized) thermodynamic Bethe ansatz.

This is based on the fact that there emerge quasi-particles. The set of their momenta and
other quantum numbers is preserved under scattering, thus giving good quantum numbers
used to describe GGEs.

These quantum numbers are gathered into a spectral parameter ¢ characterizing the
quasi-particle, and we imagine states to be of the form

817027 ):

A model is fully defined by giving the space of spectral parameters, the momentum p(#) and
energy F(0) functions, and the differential scattering phase ¢ (9, 6).

N /
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/ 4. GGEs via quasi-particles \

For instance, in many models with a single-particle spectrum we may take ¢ € IR and
e with Galilean invariance p(#) = mé, E() = m#?/2
e with relativistic invariance p(6) = msinh(#), E(6) = m cosh6

with in both case (6 — 6’) = —idlog S(6 — 0")/df where S(0 — €') is the two-particle
scattering amplitude.

Pirsa: 17090056 Page 22/36



/ 4. GGEs via quasi-particles \

Each quasi-particle € carry a quantity h;(f) of the conserved charge (;. That is, conserved
charges act as

Qi|91592;---) - (E h;(gk)) |91,92,...).
k

A GGE can be seen as a single state with infinitely-many quasi-particles of a given density. It
is fully characterized by the number Lp,,(6)d6 of quasiparticles in the element [0, § + d6)
(where L is the infinite volume).

In a GGE (where integral symbol includes sum over quasi-particle species),

i Tr [pGGE i) _ 1 Tr [pccE Qi) .
TroGGE L Trpgge

Qi /dﬂ hi(0)pp(6).

The set of functions hi(()) is assumed to be “complete” in some sense.

Thus the set {q; } and the function p, () are both complete characterization of a GGE.

7
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/ 4. GGEs via quasi-particles \

Each quasi-particle € carry a quantity h;(f) of the conserved charge (;. That is, conserved
charges act as

Qi|91192;---) = (Z h;(gk)) |91,92,...).
k

A GGE can be seen as a single state with infinitely-many quasi-particles of a given density. It
is fully characterized by the number Lp,,(6)d6 of quasiparticles in the element [0, § + d6)
(where L is the infinite volume).

In a GGE (where integral symbol includes sum over quasi-particle species),

o= casEalil L AGcE Qe o f d6 hi(6)py (6).

Trpcge L  Trpace

The set of functions hi(()) is assumed to be “complete” in some sense.

Thus the set {q; } and the function p, () are both complete characterization of a GGE.

.
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/ 4. GGEs via quasi-particles \

The relation to the Lagrange parameters [3; is obtained as follows. Here we use fermionic
statistics, for instance as used for the quasi-particles of the Lieb-Liniger model.

Average of local conserved densities are evaluated using a free energy:

0

dB; #

Q¢ = =

where
F= fdp((?) log(1 + e <(9)
with pseudo-energy

(6) = Y piha(8) — [ 5o (6, )log(1 + &),
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/ 5. GGE equations of states

For GHD, we need the GGE equations of state: the expressions of the currents.

Since p,, fully determines the GGE, one can always write, for some v (§) = vﬁi] (9),

= f 49 h; (6)v°7(8) py ().

Using crossing symmetry in relativistic QFT, checking with form factor expansions of GGE
averages, and with numerical verifications in the XXZ chain, one finds

,Ueff(tr)) = % L /d()f 90(97;72;;?(&) (,Ueﬁ'(a) _,Ueﬁ(e))

This can be seen as the GGE equations of state.
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/ 5. GGE equations of states

Define the occupation function:

n(f) = Z:((g;, 2mps(6) =p’(9)+/daw(9=a)pp(a)-

Here pg as the interpretation as a density of states: the “availabilities” for quasi-particles.

Define the all-important “dressing” operation:

h4*(0) = h(6) + f g—itp(ﬁ,a)n(a)hdr(a).

Then 2mps = (p')47(0) where p’(0) = dp(6)/d6.

The mapping n(#) <> p,(0) is a change of coordinate in the space of GGEs.
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/ 6. GHD in the quasi-particle language \

We now make GGEs space-time dependent. This means we promote
pp(0) — pp(z,t;0)  orequivalently  n(f) — n(z,t;8).

The quantity p,,(z, t; @)dzd@ is the number of quasi-particles in the “phase-space” element

6,0 + df] x [z,z + dz|.

We use
iz )= /dfv’ (@)ool :0),  Jiz,2) = /df? hi(0)v°% (0)p, (2, t; 0)
and completeness of {h;(f)} inside the fundamental GHD equations

8tqz' 25 63:.]1 = 0.

N .
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/ 6. GHD in the quasi-particle language

This gives

8:pp(,;6) + 0 [v*" (2, £; 6)pp(x, ; 6)] = 0.

These are the GHD equations in the quasi-particle language.

.
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/ 6. GHD in the quasi-particle language \

All of this generalizes to the presence of force fields, temperature fields, etc.

It is the energy function that controls the time evolution. Assume that it is explicitly space
dependent E/(0) = E(z; ). For instance in the repulsive Lieb-Liniger model,

Hove = H + /d:z: Vao(Z)(z) = E(z;0) = mh?/2 + Vooo().

Then the two following equivalent equations hold (here suppressing z, t; f dependence):

0epp + 0 [v™" pp] + B9 [a*" py] =

on + veﬁazn + aEHE)g?z =)

where the effective acceleration is

dr
a°f = i F=-8,E.

()™

\ P
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/ 6. GHD in the quasi-particle language \

Remarks:

e This is the full Euler-scale hydrodynamics with force or external fields. It is valid
assuming both that the fluid variables and the external fields vary only on large distances.

Beyond the Euler scale, there are higher-derivative terms (such as viscosity).

e The equations look a little bit like Boltzmann equations if we interpret veff

as giving rise
to collision terms. However, they are not of Boltxmann type. The GHD equations are
rather Euler-type hydrodynamic equations: they are time-reversal invariant, and their
validity necessitates the assumption of local entropy maximization, which Boltzmann

equations are not / do not.
e The state density p; satisfies the same equation 0; ps + 0 [fueﬁ Ps] + G [aeﬁ ps} = 0.

e The Yang-Yang entropy of thermodynamic Bethe ansatz is also conserved.

N /
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/

6. GHD in the quasi-particle language \

Since external space-dependent fields generically break integrability, in their presence,
beyond the Euler scale, there are also integrability-breaking terms. These will eventually
cause the system to relax towards the Gibbs ensemble of the evolution Hamiltonian.
Writing E(z; 0) = > . hi(6)Vi(x), at very large times, after corrections to Euler
hydrodynamics accumulate, the system relaxes to the Gibbs state of the corresponding

Hamiltonian, exp [—3 Y, [ dz Vi(z)qi(z)]. In the hydrodynamic approximation, this

exp [-ﬁz / dz Vi(:ﬂ)‘]i(m)] = exp [-ﬁ ZVi(m)Qi] :

One can show that this is a stationary solution of the GHD equation in the external

is

inhomogeneous fields.
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/ 7. An example: quantum Newton cradle-like setups \

Bragg pulse

Bty Vharmo

L}
a?

Another way of initializing would be by representing the Bragg pulse used in experiment.
Here we calculate p,, () associated to e ~A(H+Vharme V) "and then set, as the effect of the
Bragg pulse followed by fast local entropy maximization,

1
pp(ﬂ:, 0; 9) — 5 [Pp(9 o gBragg) = pp(a =5 gBragg)] :
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7. An example: quantum Newton cradle-like setups
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/ Some open questions \

Most important question of all: higher-derivative corrections. This includes viscosity
terms and associated diffusive effects (analyzed in an extensive numerical study in XXZ
[Ljubotina, Znidaric, Prosen (2017)]), and integrability terms when force field is present. Time
scale of integrablity breaking?

Second most important question of all: large deviation theory of charge transfer,
fluctuation relations, macroscopic fluctuation theory. Our result for
[ dt (3;(0,t)j;(0,0))€ is the first “second cumulant” in any nontrivial integrable

quantum model, but we need infinitely many more...
Proving emergence of hydrodynamics using integrability techniques?

Generalizing to time-dependent external field, GHD of classical field theory, ... (works in
progress by various people).
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