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Abstract: <p>We construct a hidden variable model for the EPR correlations using a Restricted Boltzmann Machine. The model reproduces the
expected correlations and thus& nbsp;violates the Bell inequality, as required by Bell's theorem. Unlike most hidden-variable models, this model
does not violate the& nbsp;<em>locality</em>& nbsp;assumption in Bell's& nbsp;argument. Rather, it
violates& nbsp;<em>measurement& nbsp;independence</em>, abeit in a decidedly non-conspiratorial way.</p>
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Boltzmann Machines: Topology

Hidden Visible Hidden Visible
Figure: General Boltzmann
machine with 3 visible and 2
hidden units.

Figure: Restricted Boltzmann
Machine. Green is on, blue is off.
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Boltzmann Machines: Energy

Hidden Visible Hidden Visible

The total energy of a Boltzmann machine is the sum of the
self-energies of each unit and the interaction energies between
neighboring units:

E = —Zb;s;—ZW;jS;Sj.
i i<j
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Boltzmann Machines: Dynamics

The dynamics of a Boltzmann machine are stochastic and local.
The probability that a given unit i will turn (or remain) on is a
function of the difference in the total network energy resulting
from the unit's being on and off:

AE;‘ = Es,-=0 - Es,-:l

=b;+ZWij.
J

The update rule is

1

Pl =1 =1 eae
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Boltzmann Machines: Boltzmann distribution

The state of the entire network at a given moment is given by a
vector s. Given the energy function (Eq. 1) and update rule (Eq.
3), the probability that the network will be in configuration s is
given by the Boltzmann distribution

e—E(s)
Y e )

where the index k ranges over all possible states of the network.

P(s) =

(4)
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Boltzmann Machines: Visible units and Hidden units

For most purposes, we make a nominal distinction between visible
and hidden units, so that s = (v, h). The visible units represent
observed (or observable) properties of the objects of interest, and
the relative frequencies of 1s and Os on these units encode the
correlations in the world we are interested in. The hidden units
encode the structural properties behind these correlations,
structure that the machine learns so as to be able to generate and
predict the observed properties.
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Boltzmann Machines: Restricted Boltzmann Machine
(RBM)

We modeled the EPR correlations using a Restricted Boltzmann
Machine (RBM), a particular kind of Boltzmann machine in which
the m visible units and n hidden units form two layers, with no
intra-layer connections (see Figure 2). This is a bipartite,
undirected graph, and the energy function (Eq. 1) above takes the
form

E(v,h) = (Zc,v,+zdh +ZZWUV, ) (5)

i=1 j=1

where ¢; and d; are the biases for the visible and hidden units,
respectively.
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RBM: Conditional independence

The functional form of Eq. (5) implies that the units within each
layer are conditionally independent. The conditional probabilities
P(v|h) and P(h|v) take the simple product form

P(vlh) = _H P(vilh)

P(hlv) = H P(hjlv).
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Bell's theorem: EPR-Bohm setup

» Settings: a = {a,a’'} and B = {b, b'}.
» Measurement outcomes: x, = {+1,—1} and xg = {+1, —1}.

» A state A € A implies a joint probability distribution over «,
B, Xa, and xg.
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Bell's theorem: (Bell) Locality

» Bell locality (strong locality):
P(Xa, Xgloy, B, A) = P(Xa|a, ) P(x5|8, A).
» Measurement independence:

P(Ale, B) = P(A).
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Bell's theorem: CHSH-Bell inequality

The CHSH-Bell inequality is

S =|C(a b) + C(a, b)) + C(d,b) — C(d,b)| <2.  (10)

Taking the singlet state 1) = %(H——) — |—+)) as A and choosing

a=0,a =n/2, b=m/4, and b' = —m/4 radians as orientations
for the measuring apparatuses, QM predicts S = 2v/2 = 2.828.
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Bell's theorem: CHSH-Bell inequality

The Theory column gives the predicted values for the correlation

coefficients when the detector settings are a =0, a’ = /2,
b=mn/4, and b/ = —7 /4.

Theory Data  Model
C(a,b) | —0.707 -0.713 -0.711
C(a,b’) | —0.707 —-0.701 —0.699
C(a',b) | —0.707 —-0.714 -0.713
C(a', b') 0.707  0.709  0.704
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Learning

The RBM we constructed has four visible and four hidden units.
Units v; and v, represent the detector settings v and (3,
respectively, while v3 and v4 represent x, and x3, the measurement
outcomes.
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Learning

Consider the correlation between the outcomes with settings a and
b. The observed value of C(a, b) in our training data was —0.713,
which means that when the detectors were set to measure a and b,
the results were different around 85.7% of the time and the same
around 14.3% of the time. The goal is to reflect this as a
correlation between the on/off probabilities of the visible units

vi, V2, v3, v4 such that

P(v3 = va|(v1, v2) = (0,0)) ~ 0.143
P(v3 # va|(v1, v2) = (0,0)) ~ 0.857.
Training the machine involves initializing the network with random

weights and biases, and adjusting them in an iterative process so as
to bring the distribution on the visible units in line with the data,
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Learning

Because of the restricted topology of the network, the rule for
adjusting the weights is both simple and local. From the update
rule (3) and the Hamiltonian (5), it follows that

Olog p(v
;—PF) = <V;hj>data - <Vihj)mode1- (11)
Wij

As such, the weight update rule is of the form:

AWU = €(<V,’hj>data - <Vihj>model)s (12)

where € is a small, real-valued parameter colloquially known as the
learning rate. Note that the expectation value (v;h;) is simply the
probability that both components will have the value 1, i.e., that
they will both be on.
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Learning

No connections between units within a layer means

P(hj=1lv) = o(d;+ 3 viwy)
P(V,'=1|h) =J(CF+Zjhjwfj)=

where o(x) = 1/(1 + e™*). The training data from the simulation
gives us a distribution over visible vectors v. So we are able to
determine (v;h;)qdata in a straightforward fashion.

The determination of (v,-hj)mode; must be approximated for RBMs
with more than a small number of units. However, methods exist
for efficient approximation, and our results were obtained in this
manner.
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Results: Weights and Biases

Training the model on 100,000 trials yielded a Restricted
Boltzmann Machine with the following weights and biases:

hy ha hs
(-3.320) (—1.015) (—0.933)
(—5.026) 2.652 3.527 3.546
(—4.872)|  —2.664 3.575 3.585
(—3.467) 3.343  —5.587 5.578
(—3.464) 3.326 5577  —5.502
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Results: Correlation coefficients
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Results: Correlation coefficients
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Temperature

Our Boltzmann distribution has an implicit temperature parameter:

(15)

If we raise the temperature, keeping the energy landscape fixed,
what happens?
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Temperature

For T = 4, we have

C(a,b) —0.128
C(a, /) —0.121
c(a,b) —0.122
c(a,b) —0.049

This yields S &~ .322, which is nowhere near violating the Bell
inequality. It corresponds to nearly random, uncorrelated outcomes.
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Conclusion

Four binary hidden units means 2* = 16 hidden states.

Bell-locality is not violated; the visible units are conditionally
independent.

Not retrocausal: no dynamics to propagate changes from
future (visible units) to past (hidden units). Correlations: yes.
Causality: no.

The model is learned. We have a way of inferring them model
parameters from the data, given only a topology.
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Outlook

Many interesting questions present themselves:

What is the physical correlate of the temperature we
introduced?

What is the minimum number of hidden units?

How well does the model generalize to a greater variety of
detector settings?

The singlet state was tacitly assumed. How can one model a
variety of states?

What might we learn by exploring other machine learning
models, e.g. feedforward networks?

How, if at all, is the RBM model related to the path integral
formalism?
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