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Abstract: <p>In gquantum theory, there can exist correlations between subsystems of a new kind that are absent in classical systems. These
correlations are nowadays called "entanglement”.</p>

<p>An entanglement measure is a functional on states quantifying the amount of entanglement across two subsystems (i.e. causally digoint regions
in the context of quantum field theory). A reasonable measure should satisfy certain general properties: for example, it should assign zero
entanglement to separable states, and be monotonic under separable, completely positive maps ("L OCC-operations'). The v. Neumann entropy of
the "reduced state" (to one of the subsystems) is one such measure if the state for the total system is pure. But for mixed states, it is not, and one has
to consider other measures. In particular, one has to consider other measures if the subsystems have afinite non-zero distance.</p>

<p>In this talk | will present several good measures, and in particular analyze the A« relative entanglement entropy”, $E_R$, defined as the
"distance" of the given state to the set of separable states, where "distance” is defined using Araki's relative entropy. | will show severa features of
this measure for instance: (i) charged states, where the relative entanglement entropy is related to the quantum dimension of the charge, (ii) vacuum
states in 1+1 dimensional integrable models, (iii) general upper bounds for certain specia regions in general CFTs in d dimensions, (iv) area law
type bounds. | will also explain the relationship between $E_R$ and other entanglement measures, such as distillable entropy.</p>

<p>[Based on joint work with Jacobus Sanders.]</p>
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What entanglement is not

Entanglement # correlations

Entanglement is different in general from correlations between A and B
which can exist with or without entanglement!

Example of correlations: We prepare an ensemble of pairs of cards. For
each pair, both cards are either black or both are white. One card of each
pair goes to A, the other to B. A knows that if he uncovers one of his cards
at random, he will get black with probability p and white with probaility

1 — p. But he knows with probability | that if the card uncovered is white,
then so is the corresponding card of B! Ensembles of A and B are maximally
correlated but not entangled!

= “Classical correlations” but no entanglement
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What is entanglement?

Standard “grammar” of quantum theory (w/o dynamics="semantics”):

» observables: operators a on Hilbert space H
states: w <> statistical operator, w(a) = Tr(pa) = expectation value

» pure state: p = |Q2)(Q|. Cannot be written as convex combination of
other states, otherwise mixed.

independent systems A and B: H 4 ® H p, observables for A:
a ® 1p, observables for B: 14 ® b

measurement: possible outcomes of a are its eigenvalues A,,.
pn, = Probability of measuring A\, = Tr(P,pP,)

Here P, = eigenprojection of a corresponding to A,. Immediately
afterwards, state — 1n]—‘}:’,,,,pF’,,,,.
T

Separable states:

Convex combinations of product states (statistical operators p4 @ pg).
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What is entanglement?

Classically: State on bipartite system <> probability density on phase space
I' 4 x I'g. Always separable! This motivates:

Entangled states

A state is called “entangled” if it is not separable.

Example: H 4 = Hp = C? spin-1/2 systems, Bell state p = |Q)(Q))
2) < |0) ®[0) +[1) @ [1).

is (maximally) entangled.

Example: n dimensions Hy = Hp = C™

Q) Z 7) ® |7)

Example: oo dimensions:
Q) Y ¢liy@1f), ¢ 0
J
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Classically: State on bipartite system <> probability density on phase space
I' 4 x I'g. Always separable! This motivates:

Entangled states

A state is called “entangled” if it is not separable.

Example: H 4 = Hp = C? spin-1/2 systems, Bell state p = |Q)(Q))
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How to distinguish entangled states?

w entangled (across A and B) = w correlated: There is a and b from the
subsystems such that

w(ab) # w(a)w(d).

But converse is not usually true: Intuitively: correlations can have entirely
“classical” origin, i.e. no relation with entanglement! Better measure:

Bell correlation:

If Eg(w) > 2 = w entangled. Here

Ep(w) := max{w(ai(by + b2) + az(by — b2))} (N

maximum over all self-adjoint elements a; (system A), b; (system B) such
that

—15(1,%'51, —1Sbi§1- (2)

Idea: CIaSSical cort EIationS “Ca| ICEI Out" in E - [Bell 1964, Clauser, Horne, Shimony, Holt 1969,
B
Tsirelson 1980]
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What to do with entangled states?

Now and then:

Then: EPR say (1935) Entanglement = “spooky action-at-a-distance”
Now: Entanglement = resource for doing new things!

Example: Teleportation of a state |3) = cos g|0) + €' sin g]]) from A to

B . [Bennett, Brassard, Crepeau, Jozsa, Perez, Wootters 1993].

can transmit
00, 0/, 10, \"

Figure: Teleportation of one g-bit.
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Quantum teleportation

How it works: Choose “Bell-basis” of H4 @ Hp,

Woo) o |0) ®|0) + 1) ® [1),  [¥10) x |0) @ 1) + [1) ®0)
V1) x [0) @]0) = [1) @[1),  [¥o1) x|0) @ [1) —[1) @10)

|. The state |3)c ® |Q2) 4 for the combined system ABC' is prepared.

2. Local operation (measurement) in AC: Some given observable of
AC with four Bell-eigenstates is measured (by A). Afterwards, system is
in one of the four states U;|3) g ® |¥;) ac with ¢ € {00,01, 10,11}, and
U, = unitaries from system B.

. Local operation (unitary) + classical communication: A
communicates (classically) to B which of the four possibilities
it € {00,01,10,11} occurred (= two classical bits of info), and,
forgetting at this stage AC, B3 applies corresponding unitary U;" to
extract |3) !
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When is a state more entangled than another?

More/less entanglement:

We quantify entanglement by listing the set of operations w > F*w on

states which (by definition!) do not increase it. — partial ordering of states.

What are these “operations”? Single system (channel):
» Time evolution/gate: unitary transformation: F(a) = UaU*
» Ancillae: n copies of system: F(a) = l¢n ® a

» v. Neumann measurement: F(a) = PaP, where P : H — H'
projection
» Arbitrary combinations = completely positive maps (stinespring 1955]
Bipartite system:

Separable operations (“= channels + classical communications”):

Normalized sum of product channels, > | F4 ® Fp acting on operator
algebra A, @ Ap
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Example: Teleportation

Stated more abstractly in terms of channels, Teleportation is a combination
of the following:

Ancillae: a —» a ® 1 ® 1o
v. Neumann measurement: a ® b® c = Pi(a®c)P; ® b
Unitary gate: a ® c®@ b+ a ® c® U;bU

v. Neumann measurement: ¢ ® c® b+ (Q|a ® ¢|Q2) b where |Q0) =
Bell state.

Teleportation

If 7; : A — B is the channel defined by composing these separable
operations, ¢ € {00,01, 10,11}, then the sum ) | F; implements
teleportation (in “Heisenberg picture”).
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Entanglement measures

Definition of entanglement measure is consistent with basic facts (pienio, vedrat 1998):

» No separable state can be mapped to entangled state by separable
operation

-

» Every entangled state can be obtained from maximally entangled state
(BeII state) by separable operation

An entanglement measure £ on bipartite system should satisfy:

Minimum requirements for any entanglement measure:

» No increase “on average” under separable operations:

Zp»; ‘w) < E(w)

for all states w (NB: p; = F;w(1) = probability that i-th separable
operation is performed)

» F non-negative, F(w) = 0 <> w separable

» (Perhaps) various other requirements
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Examples of entanglement measures

Example: Relative entanglement entropy (uindslad 1972, Unimann 1977, Plenio, Vedral 1998,..]:

Er(p) = inf H(p,0).

o separable

Here, H(p,o0) = Tr(plnp — pln o) = Umegaki’s relative entropy (anx 1570s)

Example: Distillable entanglement rains 2000:

Ep(p) =1In (max. number of Bell-pairs extractable

via separable operations from N copies of p) / copy

Example: Reduced v. Neumann entropy/mutual information (schrodinger 19362:

Eyn(p) = = Tr(palnpa). (3)
Reduced state p4 = Try, p (restriction to A, or similarly B) or

Er(p) = Hin(pa) + Hin(pB) — Hin(paB)

are not a reasonable entanglement measure except for pure states!
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Examples of entanglement measures

Example: Bell correlations (sei 19, Tsirelson 1980..3: (before)

Example: Logarithmic dominance (sm. sanders 2017, .J:

En(p) = In (min{|lo ] | o > p})

Example: Modular nuclearity s+ & sanders 20171:

Eyv(p) =lnvagp (5)

where v is the nuclearity index (“trace”) of the map a —» Al/%a|Q2) where
a € Ay, |2) is the GNS-vector representing p and A is the modular
operator for the commutant of 2 g

Many other examples!

Pirsa: 17080072 Page 14/35



Non-uniqueness entanglement measures

In fact, for pure states one has basic fact [Donald, Horodecki 2002):

Uniqueness

For pure states, basically all entanglement measures agree with v. Neumann
entropy of reduced state.

For mixed states, uniqueness is lost. In QFT, we are always in this situation!
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Entanglement measures in QFT

In QFT, systems are tied to spacetime location, e.g. system A

[T =

time slice = Cauchy surface C

Figure: Causal diamond O 4 associated with A.

Set of observables measurable within O 4 is an algebra A 4 = “quantum fields
localized at points in O 4”. If A and B are regions on time slice (Einstein
causality) (Haag Kastler 1964]

&4, %5] = {0} .
The algebra of all observables in A and B is called 2 4 V 2Ag = v. Neumann
algebra generated by 2A 4 and A g.
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Entanglement measures in QFT

Unfortu natEIY[Buchholz. Wichmann |986, Buchholz, D‘Antoni, Longo 1987, Doplicher, Longo 1984, ... .
(A4, Ap| = {0} does not always imply A4 VA = A, R Ap .

This will happen due to boundary effects if A and B touch each other
(algebras are of type /11 in Connes classification):

Basic conclusion

a) If A and B touch, then there are no (normal) product states, so no
separable states, and no basis for discussing entanglement!

b) If A and B do not touch, then there are no pure states (without
firewalls)!

Therefore, if we want to discuss entanglement, we must leave a safety
corridor between A and B, and we must accept b).

—> no unique entanglement measure!

In the rest of talk, | explain results obtained for relative entanglement
E'p for various concrete states/QFTS (Holiands, sanders 2017, 104pp]
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Entanglement in QFT

Natural application of entanglement ideas: Spacetimes with “bifurcate Killing
horizons”. Quantum state is strongly entangled (in a particular way!)
between a “system A” and a “system B” across bifurcation surface:

AVAVAVAVAVS

system B

bifurcation surface
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Kay and Wald (xay & waid 1991] have shown
Hawking-Unruh effect

Any quantum state w which is invariant under “boost” symmetry and

“regular” across horizon necessarily has to be a thermal state at precisely the
Hawking-temperature,

K
THawking = ‘2; (6)

The surface gravity, k characterizes the geometry of the bifurcation surface
(“horizon”). Related to (sisognano, Wichmann 1972, Hawking 1975, Unruh 1976, Sewell 1982]

Consequences:

» A thermal state at a different temperature necessarily must have a
singular behavior of the stress tensor w(7,;) — oo on the horizons .7
and J#73, i.e. an observer made out of the quantum field (or coupled to
it) will burn when he/she crosses the horizon (“firewall).

» w must be (infintely) entangled-acruss bifurcation surface!
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Overview

Results obtained in [Hollands, sanders 2017]:

I. 1+ 1-dimensional integrable models
. d + 1-dimensional CFTs
. Area law

. Free quantum fields

. Charged states
. General bounds for vacuum and thermal states
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Overview
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|) Integrable models

These models (i.e. their algebras 2( 4) are constructed using an “inverse
scattering” method from their 2-body S-matrix, e.g.

2N+1

sinh @ — 7sin by,
S 9 — )
2(0) g sinh 0 + i sin by,

by [Schreer, Wiesbrock 2000, Buchholz,Lechner 2004, Lechner 2008, Allazawi,Lechner 2016, Cadamure, Tanimotec 2016].

b; = parameters specifying model, e.g. sinh-Gordon model (N = 0).

+

Op O4

Figure: The regions A, B.
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Results

For vacuum state py = |0)(0| and mass m > 0:

Eg(po) S Coce™™17F) |

for mr > 1. The constant depends on the scattering matrix So, and £ > 0.

The proof partly relies on estimates of [Lechner 2008, Allazawi,Lechner 2016]

Conjecturally (i.e. modulo one unproven estimate)
Er(po) < Co|In(mr)|*,

for mr < 1, with constants Cy, & depending on S;.
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2) CFTs in 3 + 1 dimensions

Figure: Nested causal diamonds.

Define conformally invariant cross-ratios u, v by

(w4 —2p-)*(Tay —wa-)°

>0
(za- —zp_)*(za+ — zB4)?

U =

(v similarly) and set

6 = cosh ™! (
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Results

For vacuum state py = |0)(0| in any 3 + 1 dimensional CFT with local
operators {0} of dimensions dp and spins s, S

sinh 1
Eg(po) <In ) e ™0 2
O

Figure: The regions A and B.

(sp +1)8 sinh %(sb +1)0
sinh?(36) '

For concentric diamonds with radii
R > r this gives

T\ do
Er(po) S No ()
where O = operator with the
smallest dimension dp and Np = its
multiplicity.

Tools: Hislop-Longo theorem [Brunetti, Guido, Longo 1994], Tomita-Takesaki theory
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Results

For vacuum state py = |0)(0| in any 3 + 1 dimensional CFT with local
operators {0} of dimensions dp and spins s, Si:

sinh 1
Eg(po) <In ) e ™0 2
(),

Figure: The regions A and B.

(sp +1)8 sinh %(sb +1)0
sinh?(36) :

For concentric diamonds with radii
R > r this gives

T\ do
Er(po) S No () »
where O = operator with the
smallest dimension dp and Np = its
multiplicity.

Tools: Hislop-Longo theorem [Brunetti, Guido, Longo 1994], Tomita-Takesaki theory
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3) Area law in asymptotically free QFTs

A and B regions separated by a Bl
thin corridor of diameter ¢ > 0 ETEES _
in d + 1 dimensional Minkowski A NG

spacetime, vacuum pg = |0)(0|.
Figure: The the systems A, B

Result (“area law”)

Asymptotically, as ¢ — 0

D;-|0A|/ed!  d>1,
E > :
R(pO)N{Dz_lnmmfil,B! d=1,

where Dy = distillable entropy E'p of an elementary “Cbit” pair

Tools: Strong super additivity of E' 1, bounds [Donald, Horedecki 2002], also [Verch, Werner 2005, Wolf, Werner 2001, ,HHorodecki 1999]
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4) Free massive QFTs

A and B regions in a static time
slice in ultra-static spacetime,
ds? = —dt? + h(space); lowest
energy state: pg = |0)(0|.

Geodesic distance: r Figure: The the systems A, B

Results (decay + area law)

Dirac field: Asr — 0

Erlp) S Coln(mn)| Y- v [ o

j>d-1

where a; curvature invariants of OA. Lowest order — area law.
Klein-Gordon field: As r — oo decay

ER()OO) 5 Cooe—vrlfr‘/?

(Di rac: [islam, to a.ppear])
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We expect our methods to yield similar results to hold generally on
spacetimes with bifurcate Killing horizon, as studied by Kay and Wald in 1991
paper:

SN AVAV

bifurcation surface

Figure: Spacetime with bifurcate Killing horizon.
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5) Charged states

A and B regions, w any normal
state in a QFT ind + 1 dim.
X *w state obtained by adding

“charges” x in A or B.
Figure: Adding charges to state in A

Result

0 < Eg(w) — Eg(x*w) < lnl—‘[dim(xz-)m" :

n;: # irreducible charges y; type ¢, and

dim(x;) = quantum dimension = \/Jones index

Tools: Index-statistics theorem [Longo [990], Jones subfactor theory, Doplicher-Haag-Roberts theory
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Examples

Example: d = 1, Minimal model type (p,p + 1), x irreducible charge of
type (n,m)

. m(p+1)m\ _. Tpn
S111 (—'—'—p ) Sin (p___+1

o m(pt1) ) TP
sin (#p ) sin (p—l—]_

0 < Ep(w) — Er(x*w) < In

Example: d > 1, general QFT, irreducible charge x with Young tableaux
65 421
3121 :

statistics

0 < Eg(w) — Eg(x*w) < 2Inb, 945,940
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6) Decay in general QFTs

A and B regions in a time slice
of Minkowski. Distance: r. QFT
satisfies nuclearity condition a la

Buchholz-Wichmann Figure: The the systems A, B

Results (Decay)

Vacuum state in massive theory:

k

ER(pO) 5 Coe—(mr) ’

for any given k < 1 (our Cj diverges when k — 1)
Thermal state:
Er(pg) S Car—ott,

for @ > 1 a constant in nuclearity condition. Similar for massless theory.
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In this talk, | have

Explained what entanglement is, and how it can be used.

Explained what an entanglement measure is, and given concrete
examples

Explained how entanglement arises in Quantum Field Theory, and why
there always has to be a finite safety corridor between the systems.

Evaluated (in the sense of upper and lower bounds) a particularly
natural entanglement measure in several geometrical setups, quantum
field theories and states of interest.

» Shown how the “area law” emerges.

| think that our entanglement measure deserves to be studied further,
especially its relation with the considerable literature on v. Neumann entropy
in the theoretical physics literature! Especially:

> 2d CFTS Calbrese, Cardy, Nozaki, Numasawa, Takayanagi,...
» 2d integrable models carey, Doyon..
» Modular theory, c-theorems: casini. Huera...

> HOIOgraphiC methods Hubeny, Myers, Rangamani, Ryu, Takayanagi,...
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