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Abstract: It iswell known that commutative Frobenius algebras can be represented as topol ogical surfaces, using the graphical calculus of dualizable
objects in monoidal 2-categories. We build on related ideas to show that the interacting Frobenius algebras of Duncan and Dunne, which have a
Hopf algebra structure, arise naturally in a similar way, by requiring a single 3-morphism in a 3-category to be invertible. We show that this gives a

purely geometrical proof of Mueger's version of Tannakian reconstruction of Hopf algebras from fusion categories equipped with a fibre functor.
We also relate our results to the theory of lattice code surgery.
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What is higher algebra?

@ Ordinary algebra lets us compose along a line:

xy?zyx3
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What is higher algebra?

@ Ordinary algebra lets us compose along a line:

xy?zyx3

@ Higher algebra lets us compose in higher dimensions:
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A tradeoff between algebra and topology

Frobenius algebras
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A tradeoff between algebra and topology

Frobenius algebras as a ‘shadow’ of a two dimensional theory.

nYl-[al-Int
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A tradeoff between algebra and topology

Frobenius algebras as a ‘shadow’ of a two dimensional theory.
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Next hour: Hopf algebras as a ‘shadow’ of a three dimensional theory.
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Part 2
2-categories

David Reutter Hopf algebras and 3-categories August 3, 2017 6/ 34

Pirsa: 17080011 Page 14/188



Algebra in the plane = 2-category theory

The language describing algebra in the plane is 2-category theory:

g
N

AT B

A
f

1-morphism 2-morphism
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Algebra in the plane = 2-category theory
The language describing algebra in the plane is 2-category theory:

g
N

AT B

A
f

object 1-morphism 2-morphism

We can compose 2-morphisms like this:

Be

TN TN

A— B Afn Bfe C
\Tl“r_zj N B N

vertical composition horizontal composition

These are pasting diagrams.
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Algebra in the plane = 2-category theory

The language describing algebra in the plane is 2—categorygtheory:

A (M) B

object 1-morphism 2-morphism

We can compose 2-morphisms like this:

A A()B()C

vertical composition horizontal composition

These are pasting diagrams. The dual diagrams are the graphical calculus.
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Algebra in the plane = 2-category theory

The language describing algebra in the plane is 2—categorygtheory:
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Algebra in the plane = 2-category theory

The language describing algebra in the plane is 2—categorygtheory:

@

f
object 1-morphism 2-morphism

We can compose 2-morphisms like this:

@ ©

vertical composition horizontal composition

These are pasting diagrams. The ¢uafpdizgrams are the graphical calculus.
A 2-category with one object (the 'empty region') is a monoidal category.
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Dualizable 1-morphisms

A 1-morphism A fy B has a dual B ©5 A if there are 2-morphisms:
frf foof

A = kL Py

foofe frof
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Dualizable 1-morphisms

A 1-morphism A fy B has a dual B ©5 A if there are 2-morphisms:
A ko
X )
such that the following hold:

S PR
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Dualizable 1-morphisms

A 1-morphism A fy B has a dual B ©5 A if there are 2-morphisms:
A ko
X )
such that the following hold:

S PR

Theorem. Graphical calculus for duals <> oriented wires in the plane
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Dualizable 1-morphisms

A 1-morphism A fy B has a dual B ©5 A if there are 2-morphisms:
A ko
X )
such that the following hold:

S PR

Theorem. Graphical calculus for duals <> oriented wires in the plane

Tangle hypothesis.
Bordi% = free monoidal category on a dualizable object
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Dualizable 1-morphisms

A 1-morphism A fy B has a dual B ©5 A if there are 2-morphisms:
frf foof

x 2 . g
€Y ¥
foof froof
such that the following hold:

S PR

Theorem. Graphical calculus for duals <> oriented wires in the plane

Definition. G directed graph = F»(G) := free 2-category with duals on G.
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Dualizable 1-morphisms

A 1-morphism A fy B has a dual B ©5 A if there are 2-morphisms:
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foof froof
such that the following hold:

S PR

Theorem. Graphical calculus for duals <> oriented wires in the plane

Definition. G directed graph = F»(G) := free 2-category with duals on G.

Example. F; ( _I;, ) . free 2-category on dualizable 1-morphism
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Dualizable 1-morphisms

A 1-morphism A fy B has a dual B ©5 A if there are 2-morphisms:
frf foof

x 2 . g
€Y ¥
foof froof
such that the following hold:

| 2-1-0
defect data defect bordisms

embedded in R?

Theorem. Graphical calculus for d\%_e_o.dme{ wires in the plane

Definition. G directed graph = F»(G) := free 2-category with duals on G.

Example. F; ( _I;, ) . free 2-category on dualizable 1-morphism
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Frobenius algebras and dualizable 1-morphisms

A Frobenius algebra in a monoidal category is an object with morphisms:

ALY

such that:

A=y pe-4

R T 11 7

T
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Frobenius algebras and dualizable 1-morphisms

A Frobenius algebra in a monoidal category is an object with morphisms:

ALY

such that:

Q- =19 V-V bl
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Frobenius algebras and dualizable 1-morphisms

A Frobenius algebra in a monoidal category is an object with morphisms:

ALY

such that:

Q- =19 V-V bl

A

Frob: free monoidal category on a Frobenius algebra
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Frobenius algebras and dualizable 1-morphisms

A Frobenius algebra in a monoidal category is an object with morphisms:

A~ U

such that:

Q-0 £-1-9 V-V b-|-v

W-X-W

Frob: free monoidal category on a Frobenius algebra

There is a 2-functor Frob 'thiﬂing' Fr .= F ( | )

—>
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Frobenius algebras and dualizable 1-morphisms

A Frobenius algebra in a monoidal category is an object with morphisms:

A~ U

such that:

Q-0 £-1-9 V-V b-|-v

W-X-W

Frob: free monoidal category on a Frobenius algebra

There is a 2-functor Frob 'thiﬂing' Fr .= F ( | )

—>

Theorem. This induces a monoidal equivalence Frob =~ F, ( , ).
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Frobenius algebras and dualizable 1-morphisms

A Frobenius algebra in a monoidal category is an object with morphisms:

A~ U

such that:

Q-0 £-1-9 V-V b-|-v

W-X-W

Frob: free monoidal category on a Frobenius a

open strings
in the plane

| \
Fz ( . /,.H"‘l}
—u)
Theorem. This induces a monoidal equivalence Frob = I ( : )

" "thickening'
There is a 2-functor Frob — —3 ¢ Fy :=
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Frobenius algebras and dualizable 1-morphisms

A Frobenius algebra in a monoidal category is an object with morphisms:

A~ U

such that:

Q-0 £-1-9 V-V b-|-v

W-X-W

Frob: free monoidal category on a Frobenius algebra

There is a 2-functor Frob 'thiﬂing' Fr .= F ( | )

—>

Theorem. This induces a monoidal equivalence Frob =F, ( , ).
Frob as a 'shadow’ of the theory of dualizable 1-morphisms in 2-categories.
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Other algebraic theories?

What about commutative Frobenius algebras
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Other algebraic theories?

What about commutative Frobenius algebras or bialgebras?

QN 69
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Other algebraic theories?

What about commutative Frobenius algebras or bialgebras?

QN 69

Only make sense in (at least) three dimensional space.

Qalta 20 s
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Other algebraic theories?

What about commutative Frobenius algebras or bialgebras?

QN 69

Only make sense in (at least) three dimensional space.

4

Shadows of 3D structures?
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Part 3
3-categories
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Algebra in three dimensions = 3-category theory

The language describing algebra in three dimensions is 3-category theory:
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Algebra in three dimensions = 3-category theory

The language describing algebra in three dimensions is 3-category theory:

object 1-morphism
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Algebra in three dimensions = 3-category theory

The language describing algebra in three dimensions is 3-category theory:
; g

object 1-morphism 2-morphism
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Algebra in three dimensions = 3-category theory

The language describing algebra in three dimensions is 3-category theory:

g a

b
object 1-morphism 2-morphism 3-morphism
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Algebra in three dimensions = 3-category theory

The language describing algebra in three dimensions is 3-category theory:

g a

b
object 1-morphism 2-morphism 3-morphism

We can compose 3-morphisms like this:
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Algebra in three dimensions = 3-category theory

The language describing algebra in three dimensions is 3-category theory:

g a

b
object 1-morphism 2-morphism 3-morphism

We can compose 3-morphisms like this:

vertical composition
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Algebra in three dimensions = 3-category theory

The language describing algebra in three dimensions is 3-category theory:

g a
A
A F G F G F
B
b

object 1-morphism 2-morphism 3-morphism

We can compose 3-morphisms like this:

vertical composition  horizontal composition
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Algebra in three dimensions = 3-category theory

The language describing algebra in three dimensions is 3-category theory:

g a
A
A F G F G F
B
b

object 1-morphism 2-morphism 3-morphism

We can compose 3-morphisms like this:

vertical composition  horizontal composition layered composition
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Algebra in three dimensions = 3-category theory

The language describing algebra in three dimensions is 3-category theory:

object | 1-morphism 2-morphism 3-morphism

We can compose 3-morphisms like this:

vertical composition  horizontal composition layered composition

A one object (the ‘empty region') 3-category is a monoidal 2-category.

David Reutter Hopf algebras and 3-categories August 3, 2017 12 [ 34

Page 51/188



Pirsa: 17080011

Algebra in three dimensions = 3-category theory

The language describing algebra in three dimensions is 3-category theory:

I:4 a

. b
object 1-morphism 2-morphism 3-morphism

We can compose 3-morphisms like this:

vertical composition  horizontal composition layered composition

A one object (the ‘empty region') 3-category is a monoidal 2-category.
A one object and one 1-morphism 3-category is a braided monoidal category.
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Duals in 3-categories

A 1-morphism A has an oriented dual A* if there are 2-morphisms (folds):
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Duals in 3-categories

A 1-morphism A has an oriented dual A* if there are 2-morphisms (folds):

_Ev\ 5 horizontal and vertical reflections
\ —+— . . .
and opposite orientation
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Duals in 3-categories

A 1-morphism A has an oriented dual A* if there are 2-morphisms (folds):

horizontal and vertical reflections
* and opposite orientation
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Duals in 3-categories

Theorem. graphical calculus for duals <> oriented surfaces in 3D space
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Duals in 3-categories

Theorem. graphical calculus for duals <> oriented surfaces in 3D space

Tangle hypothesis.
Bord%fio = free monoidal 2-category on a dualizable object
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Duals in 3-categories

Theorem. graphical calculus for duals <> oriented surfaces in 3D space

Let G be a 2-globular set G = (2-Edges —¢ Edges —3 Vertices)
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Theorem. graphical calculus for duals <> oriented surfaces in 3D space

Let G be a 2-globular set G = (2-Edges —¢ Edges —3 Vertices)
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Duals in 3-categories

Theorem. graphical calculus for duals <> oriented surfaces in 3D space

Let G be a 2-globular set G = (2-Edges —¢ Edges —3 Vertices)
4 _

N
Def. F3(G): free 3-category with duals for 2- and 1-morphisms given in G.

Examples.

F3 ( T s ): free 3-category on a dualizable 1-morphism

two dualizable 1-morphisms

- free 3-category on {one dualizable 2-morphism
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Duals in 3-categories

Theorem. graphical calculus for duals <> oriented surfaces in 3D space

Let G be a 2-globular set G = (2-Edges —¢ Edges —3 Vertices)
N

Def. F3(G): free 3-category with duals for 2- and 1-morphisms given in G.

Examples.

F3 ( T s ): free 3-category on a dualizable 1-morphism

two dualizable 1-morphisms

- free 3-category on {one dualizable 2-morphism

Summary. The graphical calculus of F3(G) is given by regions, surfaces
and wires in three dimensional space.
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Duals in 3-categories

Theore |_defect data | cylys for duals <> oriented surfaces in 3D space
J

e —

v
Let G be a 2-globular set G = (2—Edges —¢ Edges —3 Vertices)
_&_ -

— N

Def. F3(G): free 3-category with duals for 2- and 1-morphisms given in G.
N
Examples. \

3-2-1-0
F3 ( defect bordisms | 5ory on a dualizable 1-morphism
embedded in R3

two dualizable 1-morphisms
one dualizable 2-morphism

/’f—/—‘\[
F3 \Ujj,l . free 3-category on {
j

Summary. The graphical calculus of F3(G) is given by regions, surfaces
and wires in three dimensional space.
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Commutative Frobenius algebras

A commutative Frobenius algebra is a Frobenius algebra such that:

Ay Y
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Commutative Frobenius algebras

A commutative Frobenius algebra is a Frobenius algebra such that:

Ay Y

cFrob: free braided monoidal category on a commutative Frobenius algebra
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Commutative Frobenius algebras

A commutative Frobenius algebra is a Frobenius algebra such that:

Ay Y

cFrob: free braided monoidal category on a commutative Frobenius algebra
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Commutative Frobenius algebras

A commutative Frobenius algebra is a Frobenius algebra such that:

) -/

cFrob: free braided monoidal category on a commutative Frobenius algebra

There is a 3-functor cFrob 'thiﬂing' F3 .= F3 ( 1 ) i
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Commutative Frobenius algebras

A commutative Frobenius algebra is a Frobenius algebra such that:

) -/

cFrob: free braided monoidal category on a commutative Frobenius algebra

There is a 3-functor cFrob 'thiﬂing' F3 .= F3 ( 1 ) i

Theorem. This induces a braided monoidal equivalence cFrob%F3( A )
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Commutative Frobenius algebras

A commutative Frobenius algebra is a Frobenius algebra such that:

) -/

cFrob: free braided monoidal category on a commutative Frobenius algebra

There is a 3-functor cFrob ‘thiﬂing' F3 .= F3 ( l ) i

Theorem. This induces a braided monoidal equivalence cFrob%F3( A )

cFrob as a 'shadow’ of the theory of dualizable 1-morphisms in 3-categories.
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Part 4
Hopf algebras
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Hopf algebras

A Hopf algebra in a braided monoidal category is a pair of

an algebra (A , (L) a coalgebra (Y , T)

that form a bialgebra

L A v

and have an antipode; an endomorphism S fulfilling

(e |
Qalta 77 unm
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Hopf algebras

A Hopf algebra in a braided monoidal category is a pair of

an algebra (A , (L) a coalgebra (Y , T)

that form a bialgebra

L A v

and have an antipode; an endomorphism S fulfilling

$

T - e 0
2ot 74 van 189

Here, we consider more restrictive algebras.

David Reutter Hopf algebras and 3-categories August 3, 2017

Page 72/188



Unimodular Hopf algebras

A unimodular Hopf algebra is a pair of Frobenius algebras

(AT (AT
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Unimodular Hopf algebras

A unimodular Hopf algebra is a pair of Frobenius algebras

(MY (AT

that form a bialgebra

-1 7

ite 75
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Unimodular Hopf algebras

A unimodular Hopf algebra is a pair of Frobenius algebras

(A1) (ALY

that form a bialgebra

ST v

and such that

YooY A
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Unimodular Hopf algebras

A unimodular Hopf algebra is a pair of Frobenius algebras

(A1) (ALY

that form a bialgebra

ST v

and such that

YolY A4

uHopf: free braided monoidal category on a unimodular Hopf algebra
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Unimodular Hopf algebras

A unimodular Hopf algebra is a pair of Frobenius algebras

(A1) (ALY

that form a bialgebra

ST v

and such that

YolY A4

uHopf: free braided monoidal category on a unimodular Hopf algebra

Theorem. The antipode of a unimodular Hopf algebra is (#: \p = (fj\
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Unimodular Hopf algebras

A unimodular Hopf algebra is a pair of Frobenius algebras

(A1) (ALY

that form a bialgebra

ST v

and such that

YolY A4

uHopf: free braided monoidal category on a unimodular Hopf algebra

Theorem. The antipode of a unimodular Hopf algebra is (#: \p = (fj\

U. Hopf algebras in Vect, are finite dimensional unimodular Hopf algebras.
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A unimodular Hopf algebra is a pair of Frobenius algebras

(A1) (ALY

that form a bialgebra

ST v

and such that

YolY A4

uHopf: free braided monoidal category on a unimodular Hopf algebra

Theorem. The antipode of a unimodular Hopf algebra is (#: \p = (fj\

U. Hopf algebras in Vect, are finite dimensional unimodular Hopf algebras.

Example. Any finite dimensional semisimple and cosemisimple Hopf algebra.
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free ‘topological’ 3-category on

@ a blue surface

Start with F:
3 @ a red surface

@ a blue-red boundary wire

Definition. H is the free 3-category with duals on two surfaces and a
boundary wire, such that the following hold:

[
IS inverse to \_m\: and =

Explicitly, invertibility of the saddles means:
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A Hopf algebra in H

Let's check (some of) the axioms of unimodular Hopf algebras:
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A Hopf algebra in H

The bialgebra laws correspond to the invertiblity of the saddle:
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A Hopf algebra in H

Summary. uHopf is a shadow of a simpler 3-category.
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A Hopf algebra in H

Summary. uHopf is a shadow of a simpler 3-category.

Formally, we have defined a 3-functor uHopf — H.

Conjecture. This induces a braided equivalence uHopf = H ( , )

Several Hopf algebraic calculations simplify in this 3D model.
For example, the antipode is the half twist:

— T
—

e——

=> The antipode is an algebra antihomomorphism.
= In a unimodular Hopf algebra, the antipode squares to the twist.
In particular, in a symmetric monoidal category, its 4th power is trivial.
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Part 5
Higher linear algebra

David Reutter Hopf algebras and 3-categories August 3, 2017 24 / 34

Pirsa: 17080011 Page 119/188



Representations

So far: algebraic structures in terms of generators & relations
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Representations

So far: algebraic structures in terms of generators & relations

Now: representations - instances of these structures in concrete categories
U. Hopf algebras in a BMC C : braided monoidal functors uHopf — C
Linear representations - representation functors with target Vect

What are the appropriate linear targets for higher categorical theories?

Expectations:

@ symmetric monoidal n-categories nVect categorifying Vect
e recover nVect from (n + 1)Vect: (n + 1)Vect(I,I) = nVect

nVect a ‘shadow’ of (n + 1)Vect «~ (n+ 1)Vect a ‘thickening' of nVect

‘thickening’ ‘thickening’
Bl N BN

J - i i,

/
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Higher linear algebra

objects morphisms

f.d. vector spaces linear maps
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Higher linear algebra

tensor
unit

objects

1-morphisms

2-morphisms

3-morphisms

f.d. vector spaces

complex numbers

linear maps

finite semisimple
categories

f.d. semisimple
algebras

linear functors

f.d. bimodules

natural
transformations

intertwiners

3Vect

fusion
categories

finite semisimple

bimodule categories

intertwining
functors

natural
transformations

They are symmetric monoidal 1-,2- and 3-categories with duals.

3Vect(l,I) = 2Vect

2Vect(I,I) = Vect

Various generalizations are possible.
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The 3-category 3Vect

G
fusion bimodule intertwining natural

category category functor transformation
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The 3-category 3Vect

fusion bimodule intertwining
category category functor

= B

right C-module M left C-module N
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The 3-category 3Vect

fusion bimodule intertwining natural
category category functor transformation

= 8 -0

right C-module M left C-module N relative Deligne product M K¢ N
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The 3-category 3Vect

G
fusion bimodule intertwining natural
category category functor transformation

= - N

right C-module M left C-module N relative Deligne product M K¢ N

relative Deligne product: universal for C-bilinear functors out of M x N/ 1
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The 3-category 3Vect

fusion bimodule intertwining natural
category category functor transformation

= 8 -0
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The 3-category 3Vect

fusion bimodule intertwining natural
category category functor transformation

= 8 -0

right C-module M left C-module N relative Deligne product M K¢ N

a fusion category C
— 3Vect : < two right C-module categories M, N
an intertwining functor M — N
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Hopf algebras and fusion categories - a sketch

This 3-functor factors through H if the following hold:

is inverse to and @ =
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Hopf algebras and fusion categories - a sketch

This 3-functor factors through H if the following hold:
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=> ) C_ Is isomorphic to

In other words, ) . M Xe¢ N — Vect is an adjoint equivalence!

and O Is isomorphic to
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Hopf algebras and fusion categories - a sketch

This 3-functor factors through H if the following hold:

is inverse to n and @ =
= ) C_ is isomorphic to and O is isomorphic to

In other words, ) . M Xe¢ N — Vect is an adjoint equivalence!

a fusion category C
a left and a right module category M, N
an adjoint equivalence M K¢ N — Vect

Data of a 3-functor
H — 3Vect
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a left and a right module category M, N
an adjoint equivalence M K¢ N — Vect
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Hopf algebras and fusion categories - a sketch

This 3-functor factors through H if the following hold:

is inverse to n and =
= ) C_ is isomorphic to and O is isomorphic to

In other words, ) . M Xe¢ N — Vect is an adjoint equivalence!

a fusion category C
a left and a right module category M, N
an adjoint equivalence M K¢ N — Vect

If M is the regular module C, then C K¢ N = N = Vect.

A C-module structure on Vect is the same as a monoidal functor C — Vect.

Data of a 3-functor
H — 3Vect

Data of a 3-functor _ { a fusion category C

H — 3Vect with M =C a monoidal functor C — Vect
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Tannaka reconstruction

Given a fusion category C with a monoidal functor C £, Vect
= The following vector space is a unimodular Hopf algebra:
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Tannaka reconstruction

Given a fusion category C with a monoidal functor C £, Vect
= The following vector space is a unimodular Hopf algebra:

F_Vect r

F Vect F

|
|
|
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|
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a scalar 2-morphism in 3Vect
= a vector space

This is a version}c of ;l'annaka reconstruction:
If C = Rep(H) —2= Vect, this recovers the Hopf algebra H.

Conversely, any fusion category with fibre functor C — Vect is of the form
Rep(H) with H constructed as above.

Proof. Follows from an old result of M. Miiger.!

'"Theorem 6.20 in [Miiger, From subfactors to categories and topology 1, 2003]
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Part 6
Lattice models
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Lattice models and 3Vect

Kitaev or Levin-Wen lattice models with boundaries = defect TQFTs
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Lattice models and 3Vect

Kitaev or Levin-Wen lattice models with boundaries = defect TQFTs

bulk of lattice «~ a fusion category C
boundary of lattice «~ a C-module category M

Ground space
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Lattice models and 3Vect
Kitaev or Levin-Wen lattice models with boundaries = defect TQFTs

bulk of lattice «~ a fusion category C
boundary of lattice «~ a C-module category M

N

Ground space

surface codes | C = Vecty,
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Lattice models and 3Vect
Kitaev or Levin-Wen lattice models with boundaries = defect TQFTs

bulk of lattice «~ a fusion category C
boundary of lattice «~ a C-module category M

Vect

Ground space | i @ i@l = Vectz, Vecty,

Vect

surface codes | C = Vecty,
two possible boundaries: l two module categories:
smooth and rougFiBlEIEAVect,, and Vect
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Lattice surgery

topologically protected operations on surface codes via

splitting or merging of lattices along smooth or rough boundaries?

2[Horsman et al., Surface code quantum computing by lattice surgery, 2012]
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Lattice surgery
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splitting or merging of lattices along smooth or rough boundaries?

2[Horsman et al., Surface code quantum computing by lattice surgery, 2012]
David Reutter Hopf algebras and 3-categories August 3, 2017

Page 174/188



Pirsa: 17080011

The End

@ Many open questions:

» Can we drop dualizabilities in H to get more general Hopf algebras?

» Can we make H into a symmetric monoidal 3-category with duals to
talk about actual fully extended defect TQFTs?

> For a Frobenius algebra in a monoidal category C, there is a 2-category
C < C such that the Frobenius algebra comes from a dualizable

1-morphism in C.ls something similar true for Hopf algebras?
> ...

@ Maybe most interestingly:
For a defect TQFT, what is the physical meaning of the conditions:
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For a defect TQFT, what is the physical meaning of the conditions:

A

Tranks for listening!
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Weak Hopf algebras

If we drop the second condition
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Weak Hopf algebras

If we drop the second condition

we only obtain a weak Hopf algebra on

but have more functors H — 3Vect.
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Weak Hopf algebras

If we drop the second condition

we only obtain a weak Hopf algebra on

but have more functors H — 3Vect.
In fact, every fusion category induces such a functor.The corresponding
Hopf algebra coincides with the Kitaev-Kong construction.
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