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Abstract: The Turaev-Viro invariant for a closed 3-manifold is defined as the contraction of a certain tensor network. The tensors correspond to
tetrahedrain atriangulation of the manifold, with values determined by a fixed spherical category. For a manifold with boundary, the tensor network
has free indices that can be associated to qudits, and its contraction gives the coefficients of a quantum error-correcting code. The code has local
stabilizers determined by Levin and Wen. By studying braid group representations acting on equivalence classes of colored ribbon graphs embedded
in a punctured sphere, we identify the anyons, and give a simple recipe for mapping fusion basis states of the doubled category to ribbon graphs.
Combined with known universality results for anyonic systems, this provides a large family of schemes for quantum computation based on local
deformations of stabilizer codes. These schemes may serve as a starting point for developing fault-tolerance schemes using continuous stabilizer
measurements and active error-correction.

Thisisjoint work with Greg Kuperberg and Ben Reichardt.
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Outline of talk

* Motivation: quantum fault-tolerance

Case study: Kitaev’s toric code

e ground states
* mapping class group representation
* protected gates

Our work: The Turaev-Viro code

 relationship to 3-manifold invariants
e ground states

* mapping class group representations
e protected gates
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Quantum fault-tolerance: the DiVincenzo criteria

DiVicenzo criteria for fault-tolerant quantum computation

I

2
<
4
5

scalable physical system with well-characterized qubits

. ability to initialize fiducial state 0)

decoherence times > gate operation time

measurement

circuit

initialization
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. qubit-specific measurement capability élﬁ_'

. universal set of quantum gates H +

I

depth

0)R)S0)®@--+ ---®]|0)®1|0)  k logical qubits

David DiVincenzo

time
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Quantum fault-tolerance: the DiVincenzo criteria

DiVicenzo criteria for fault-tolerant quantum computation

alable physical system with well-characterized qubits
2. a o initialize fiducial state 0)

3. decoherence times > gate operation time

4. qubit-specific measurement capability ‘élzl i
5. universal set of quantum gates H + David DiVincenzo

measurement % é] ﬁ éﬁ lﬁl Ekl lfz?l l?'a‘?l 4

circuit depth LUl

initialization 0 R0)RDR:-- - -®[0) R |0) k logical qubits
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Quantum noise on n qubits

Quantum noise on n qubits is represented by a completely positive trace-preserving map (CPTPM)
N+ B((©)®") = B((C)®")

Operational problem: can we recover information subjected to such noise?

encoded state |$)

Procedure: (isometrically) embed/ “encode” ’u;itTar; L
(oo LA A s el (2Ll ERE
(C*) (C*) et

v > v —~—

) @ |0)&—*

unencoded state + ancillas

Pirsa: 17080010 Page 6/98



Quantum noise on n qubits

Quantum noise on n qubits is represented by a completely positive trace-preserving map (CPTPM)
N+ B((©)®") = B((C)®")
Operational problem: can we recover information subjected to such noise?

Using the Kraus decomposition N(P) = ZEGS E;OEJr
it can be shown that it suffices to protect against against a certain set of errors &
where an erroris a linearmap F : ((Cz)@"”' — ((CQ)@’“'

encoded state |$)

Procedure: (isometrically) embed/ “encode” ’u;itTar; L
(C IS =5 e o (e (R
v — v et

T ® |(_])°'4'”'_"’
unencoded state + ancillas
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Quantum noise on n qubits

Quantum noise on n qubits is represented by a completely positive trace-preserving map (CPTPM)
N : B((@?)@n) — B((@Q)@n)
Operational problem: can we recover information subjected to such noise?

Using the Kraus decomposition N(P) = ZEES E;OET
it can be shown that it suffices to protect against against a certain set of errors &
where an erroris a linearmap F : (C2)®”" - ((C?‘)@'“'

Mathematical problem: Is there a recovery CPTPM R : B((C2)®n) — B(((C2)®n)
such that for “'suitable” p R(EpET) X p forall £ € £

encoded state |l_11)

Procedure: (isometrically) embed/ “encode” SEEERES
o L unitary encoder
(Cojes = peC e AiRSASA

L — 'Y ~—

W) @ [0)E"—*
unencoded state + ancillas
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Quantum noise on n qubits

Quantum noise on n qubits is represented by a completely positive trace-preserving map (CPTPM)
N+ B((©)®") = B((C?)®")
Operational problem: can we recover information subjected to such noise?

Using the Kraus decomposition N(P) — ZEGS E;)E'T
it can be shown that it suffices to protect against against a certain set of errors &
where an erroris a linearmap [ : (C?)®" — ((CE)@’”

Mathematical problem: Is there a recovery CPTPM R : B((C2)®n) — B(((Cz)@n)
such that for “'suitable” p R(EpET) X p for all £ € £

encoded state |$)

Procedure: (isometrically) embed/ “encode” ’u;itTar; el
EHes s g eia)en ERE
(C*%) (C*) AiEEERE

v —> v S

¥) ® |(_]>ozm._;,:
unencoded state + ancillas

QEC condition:| L protects against errors £ & (U|ETF|B) = c(E, F){(¥|p)
foral E,F €& U, pel
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“Topological” error-correcting codes

Def: A “topological” code:

Pirsa: 17080010

protects against all local errors, e.g.,

and more generally errors with
“topologically trivial” support

does not protect against errors
with topologically non-trivial
support, e.g.,

supp(E)
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“Topological” error-correcting codes

Def: A “topological” code:

protects against all local errors, e.g.,

and more generally errors with
“topologically trivial” support

does not protect against errors
with topologically non-trivial
support, e.g.,

Example: Kitaev's toric code

= 2172 qubits on the edges of a edges of a L x L periodic lattices

A

Pirsa: 17080010

L

\j

4

3

n

L ={¥e (C2e"

AU =B, ¥ =T

A, = X% for each vertex v

B, = Z%* for each plaquette p

k = log, dim £ = 2 encoded qubits

supp(E)

for all v, p}
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Quantum fault-tolerance: the DiVincenzo criteria

DiVicenzo criteria for fault-tolerant quantum computation

1. scalable physical system with well-characterized qubits

2. ability to initialize fiducial state 0)

v~ 3. decoherence times > gate operation time

4. qubit-specific measurement capability élﬁ_'

5. universal set of quantum gates H +

measurement

circuit

initialization
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-

depth

)RR+ ---®]|0)®1|0)  k logical qubits

David DiVincenzo

time
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Quantum fault-tolerance: the DiVincenzo criteria

DiVicenzo criteria for fault-tolerant quantum computation

1. scalable physical system with well-characterized qubits

2. ability to initialize fiducial state 0)

v~ 3. decoherence times > gate operation time

\4. qubit-specific measurement capability ‘élzl

5. universal set of quantum gates H +

measurement

circuit

initialization
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-

depth

0)R)S0)®@--+ ---®]|0)®1|0)  k logical qubits

David DiVincenzo

time
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Logical operators and gates

Given: error-correcting code £ == (C2)®* ¢ (C?)®n

A operator F' : (C2)®" — (C?)®" is logical if FL C L.

A logical unitary U : (C?)®™ — (C?)®" is an implementation
of a unitary  Up : (C?)®* — (C?)®* if

U € (C2)8* U . Uple (C3)k
l encode l encode
7] epe ((CZ)@n U

> UTeLcC(C)8n

Goal: characterize unitaries [/}, : (C?)®F — (C?)®* which have “fault-tolerant” implementations

i.e., unitary automorphisms of L with certain properties
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The code space of Kitaev’s toric code
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Logical operators in Kitaev's toric code

The operators X1, Z1, X2, Z2
e preserve the code space L, i.e., are logical
e satisfy Pauli commutation relations 5]

P PR R P R ¥
N
[l

B-ON BN

=> They define a factorization of the

code space £ = C? ® C? such that =
X 2X®l Xe=XXXXXX 241= |z 512212

71%Z®I
X=Xl
,(YQEI‘X‘)(
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Logical operators in Kitaev's toric code: commuting subalgebras

TR
AN NN
T T Tl T

XA X X X1 X zlglzlzlz XZ(ZXZ{ZXZ(
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Logical operators in Kitaev's toric code: commuting subalgebras

F(ﬂgﬂ)(cl) F(l,O)(Cl) F((),'L)(Cﬂ F(l,;l)(Cl)
X X
X Z XZ
£ Z 7Z
X X
these 4t | - 7 XZ
commute: [ 7 X’g
X 4 X
these 4 | |
commute; 3 XX X Yoy 7. 7 7 77 XZX%Z{ZXZ{
Flo,0(C2) F(1,0)(C2) Flo,1)(C2) F(1,1)(C2)
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idempotents
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" Flux"-basis states associated with loops on a torus

= For every closed, non-contractible loop (,

:;B there is a family of logical operators
”p’ {F('fr,_ﬁ) (Cj)}(w‘ﬁ)c%g X Zg SatiSfying
P - o j
C F((_y‘l‘j')((j) —_— t‘Z}:! - -.
A Fia,p)(C)F(ar g (C) = Flatar,p+8)(C)
X 3
L
X% i.e., these form a representation

of the Verlinde algebra C[Z, x Z,)|

(a, B) * (&, B') = (a+ ', B+ )

we can use the following 4 orthogonal projections to label

basis states of the code space:
Pop,oy(C) = —('d + X®L) . 1(id + Z2®%) 1)
‘ X®L)

Pa,0(C) = %( §(|d+Z®L) e)c
Pon(C) = 3(d+X%). 5(id - 255)  jm)c
Paun(C) = 2(d—X%®5).1(id—2Z%5) el

Every non-contractible closed loop ' gives rise to a basis B¢ of the code space
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Fault-tolerant gates (on Kitaev’s toric code)

v € (C?)8* Us . Uple (C)®k
l encode l encode
Velc (C2)®n Lk

> [Teflc ()%=

Goal: characterize unitaries [/, : (C?)®F — (C?)®* which have “fault-tolerant” implementations

i.e., unitary automorphisms of L with certain properties
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Fault-tolerant execution logical gates: two ways

i - E

l\.a

1) Apply code deformation (sequence of codes)

* generalizes to other models: mapping class group representation
* gives universal gate sets (in certain models)!

-

2) Apply a short (transversal) quantum circuit

* gives certain Clifford operations
* generalization?

Special case: apply a string-operator

a
I

* only gives logical Pauli operators
* does not generalize

N % Mk k3

Pirsa: 17080010 Page 21/98



Mapping class group representation and toric code

apply L CNOTSs relocate qubits apply L CNOTs relocate qubits
in parallel A in parallel A
X X |
& & repeat L times
& S o~ = -
= =]
= 2
A )
EB\ CNOT gate
basis states of the code space: (T y 27

Lic =
! | >( are eigenvectors ’ >
e)c i 5

\m) . of this operation
& with eigenvalues
€)c
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Mapping class group representation and toric code

apply L CNOTSs relocate qubits apply L CNOTs relocate qubits
in parallel A in parallel A
= X |
& & repeat L times
& S o~ = -
o N
~ =
A b
EB\ CNOT gate
(T}QW
= For every closed, no-contractible loop C, Wi 2=
C there is a logical gate U(C') implementable in — i
depth L

Each (' defines an element ¢ € MCG of the mapping class group of the torus (twisting along ).
Yo+ U(C) gives a (projective) representation of MCG
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Transversal gates are protected

unitary U/
preserving codespace L:

fault-tolerance
properties depend on |
structure of [/

Rl o
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Transversal gates are protected

transversal gate= implementable by a depth-1-circuit

* error Iogﬁtions

depth-1-circuit HEEEENBN

when applying a transversal gate:

e preexisting errors do not spread

e faulty unitaries only introduce local errors

Pirsa: 17080010

unitary U
preserving codespace L:

fault-tolerance A , ’ , ’ , , ,
properties depend on , ! ,
Bk (I T

structure of U/

Page 25/98



Example: Robust implementation of a gate in Kitaev's code

first
X;X apply 217
/7 LSy
_ERELgN
7.5 Z
X Z
XA — [
% Z
5, % Z
—
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then translate by
1/2 lattice Z
spacing A ZZ

(relabel_qubits) X);_X
VA
VA
Z
VA
Z

=»> operation

is logical

overall effect on
logical operators:

%
2
%
Z

|._>

—
—
>

Zy
X,
Z
X1

implements the gate
SWAP o (H ® H)

in a locality-preserving
way: support of errors
only minimally changed
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Table of contents

* Motivation: quantum fault-tolerance

» Case study: Kitaev’s toric code

» ground state (labeling)
* mapping class group representation
* protected gates

s * Our work: The Turaev-Viro code
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relationship to 3-manifold invariants
ground states

mapping class group representations
protected gates
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The Levin-Wen/Turaev-Viro code e

finite set of “particle labels”
* involution operation on particle labels
* set of allowed triples
* scalars and a tensor

local Hilbert space C¢
associated to every edge

Code space LAC (Cd)®N
L =A{|T) | By|¥) = |¥) Vp, 4,|¥) = |¥) Vu}

Levin & Wen, Phys.Rev. B71 (2005) 045110
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The Levin-Wen/Turaev-Viro code

vertex operator:

plaquette operator:

local Hilbert space C¢
associated to every edge

EreHCae

Code space

L= {|U) | By|¥) = [I) Vp, A,|¥) = |¥) Vu}

Pirsa: 17080010

A, = Z(i,j,k) allowed |27 K) (17 K|

ingredients:
finite set of “particle labels”
* involution operation on particle labels

* set of allowed triples
7 U
Ik

* scalars and a tensor
k k 1 g Ttk
= d; F’”‘ e 4l omYE . m
By pz 2 (H K_ ) | M)k, W

kkm ¢

mi

Ik, m) =

Levin & Wen, Phys.Rev. B71 (2005) 045110
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Manifold-invariants from triangulations

Consider closed n-manifolds modulo homeomorphism

FACT: For n=2,3, every equivalence class has a triangulated representative.

FACT (Pachner): n-manifolds homeomorphic ‘I\:>
triangulations related sequence of Pachner moves.

Pachner moves: finite
list of local changes of
triangulation, e.g., in
n=2:

—>

—>
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Manifold-invariants from triangulations

Consider closed n-manifolds modulo homeomorphism

FACT: For n=2,3, every equivalence class has a triangulated representative.

FACT (Pachner): n-manifolds homeomorphic @
triangulations related sequence of Pachner moves.

Pachner moves: finite
list of local changes of
triangulation, e.g., in
n=2:

— Recipe for constructing invariants:
* associate scalar to every triangulation

—

* show invariance under Pachner moves
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Example: State-sum invariants

a b = associate scalar with
A L (colored) triangle

C

define invariant by summing over edge colorings:

I(M) — D—#triangles qu) Htriangles t gd)

triangulated sum over all
2-manifold colorings

Compatibility with Pachner moves

ICAN) =1 A)

Pirsa: 17080010
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Example: State-sum invariants

a b S F associate scalar with
L (colored) triangle

define invariant by summing over edge colorings:

I(M) = D—#triangles qu) Htriangles : gzb

triangulated sum over all
2-manifold colorings
Compatibility with Pachner moves is equivalent to algebraic conditions

I( A) = I( A) D-lFabc = Zrychu‘,Flbquuc
I(@):I(®) ZFGbT cxd s ZFm;er?;b
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The Turaev-Viro 3-manifold invariant

‘ triangulate

3-manifold

sum over

colorings

(closed)

2o : :
Fkﬁ*n scalar associated with

(colored) tetrahedron
V dm dn

TV(M) =D~ 2Vl S T] dgy II 9

colorings ¢ edges e tetrahedrat

sum over all “allowed” colorings
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Algebraic conditions for invariance
(via Pachner moves)

. %

nm ( i j m
}ikE*TL

=y ——
1 vV d?n dn

¢

TV(M) = D~2Vn| 9y

B IT dee

colorings ¢ edges e

[

tetrahedrat

|
dr =1
If di = dj» then TVC is a 3-manifold
D=/>d invariant
fi,'(f_, = er,—j;\.nf;_.
-
(\_,-j,,,o(\_,,, elv = fsj om* Ogmi* .
B A spherical category ¢

*: involution on
set of colors

wijme g e I o : 5 n %
Eycen 0ijmOktme = Figgy OitnOjhen is/provides a solution to
(o ]‘mn.("r,flﬂ_jip':1’1_-}'&-:3 = I.wj?p" I{ﬁ""n["’

- Lumn * kpn © MNSS flop q*kr”® més i .
1: special color e these equations
(Fien )* = Fiagns

Oii € NuU {U} F,'J',,. - FJ"”’ = F(‘A-?rr* ==

1!‘!!{[‘ f,l' rj!
kin Lkn* Jin F

o k*né 'i.,‘”"
fidel
J.,f;l 01.)-’"

ijm
Fké’ﬂ. = R !',w'i*l
Jtak

d; € Ry

(Barrett and Westbury, hep-th/9311155)
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Data/example of a modular category

modular category & - example: category Fib
Unitary, Particles [ ] +z = *,* [0 0 [ e —
braided, (colors)
semisim

ple, *  Fusion i (setof) allowed ) k )\
rules J K triples dix € 10,1} N
Qi = ds O

F-matrix J\{g_ . (?(a::?\ﬁ%{c \« - é\\/ \Z
< \f\ @ \Z

::ii?ase Cl 3_ & + ()\ — e—4mi/5

a b a b | -, 3 '/r
= i . ab — Lo
R-matrix ‘?_ Rc Y ? — Y
C /i |
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The Turaev-Viro code c (C%)®IE| o sl comnasel
b3
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The Turaev-Viro code c (C4)®IEI o ecoloingsor @
X

Y x [-1,1]

&o

(extend triangulation

from 3 x {£1})
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The Turaev-Viro code C (C2)®IE| o eecdomasol
b3

Y x [-1,1]

@ contract
tensor
N network

(extend triangulation

frem) X0 o< SR 1)
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The Turaev-Viro code c (C9)®IE| o sdecornasel
b3

Y [—1, 1] (Cd)®|E|

é@ contract
tensor T
N network

(extend triangulation ((Cd)®|E

frem) X0 o< SR 1)
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~v edge colorings of

The TU raeV‘Ver COde C (Cd)®|E| — surface triangulation é@

Y [—1, 1] (Cd)®|E| Z

é@ contract
tensor T
N network

(extend triangulation ((Cd)®IE

frem) X0 o< SR 1)

Turaev-Viro code: support of this projection in the Hilbert space (C4)®/F|
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surface triangulation

2 X [—1, 1] (Cd)®|E| Z

The Turaev-Viro code C (C4)®IEI = Feecimes %

%/% contract
tensor

(extend triangulation (Cd)®IE

frem) X0 o< SR 1)

T

Turaev-Viro code: support of this projection in the Hilbert space (C4)®/F|

Local stabilizers: attaching blisters - set of local operators which are

* projections

* mutually commuting

* stabilize code space
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Blisters: propert|es from manlfo

mvarlance

BpB

stabilize code space:

project onto code
space

Pirsa: 17080010
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The code space of the Turaev-Viro code

Three mathematical theorems underlie this beautiful model
(1) given a UFC C, we can construct a Turaev-Viro unitary (2 + 1)-TQFT [BW],
(2) the Drinfeld center Z(C) or quantum double D(C) of a UFC C is always modular [Mue], and

(3) the Turaev-Viro (2+ 1)-TQFT based on C is equivalent to the Reshetikhin-Turaev (2 + 1)-TQFT based on the center Z(C) [BK, TV].
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“Standard bases’” from maximal sets of commuting observables

Any DAP-decomposition correspond to a “complete set of observables” and defines
a basis of the code space.

elements of
surface DAP- standard
decomposition(s) basis/bases
)
D H use idempotents of the Verlinde algebra for a
= each loop

(LY b
[

alp as as

e
C
ay az as
&
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“Standard bases’” from maximal sets of commuting observables

Any DAP-decomposition correspond to a “complete set of observables” and defines
a basis of the code space.

surface

DAP-
decomposition(s)

use idempotents of the Verlinde algebra for
each loop

Pirsa: 17080010

elements of
standard
basis/bases

a

(LY b
[

(S; + 5,)2

<- analogy to three spin-1/2s:

ol > = 2] ~ 7
(81 + Sz + S3) btot&]

N7
btotal

alp as as

e
C
ay a as
&
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Pi

IIIII

117080010

F-move: basis change between
bases associated with different DAP-
decompositions

ay a2 as

a1 as as
il azaih N
\h<< Zh’ Fca, h’ \<’/
¢

some (controlled) unitary U((I‘z, ay,as, (3) h,h!

....analogous to spin-1/2- 6j symbols
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Mapping class group (generators) and basis elements

4_52%

Dehn-twist:
J
-

Braid-move:




Mapping class group (generators) and basis elements
1

& N2m

Dehn-twist; 2
N72NG V

Braid-move:
surface DAP-decomposition(s) | elements of ISpOicE Al DTS
standard basis/bases - -
D = a A, D= twist
O
R-matrix
a p a b
a b

v Y ? = R2° Y B|b,asc) = R%|a,bic)
c C B=braid
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Consistency between bases: pentagon identity

mlq sz Jsn _ ppdipt ptoig
Zn F/ PN ’”““1 Sk q"‘f\'rf mis
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Conditions for MCG-representations:

*Consistency of basis changes:

. il pagip* pgsn  pgipt prtigh
Zn. Pk'gm Frnns FH\-'J" - Pq* A‘:rﬁmf's

(pentagon-identity)

*Compatibility of basis changes with
action of braiding generators:

Skt k™t m ‘)f\,} . w*k*m pkn 1j*'i*n.
e S g
T

4 ! 4 il = Uy

i (B"]*Z)* | (hexagon-identity)

* unitarity of representation:

Pirsa: 17080010

(Moore and Seiberg)

spherical

braided

modular category
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Basis states for the Turaev-Viro code
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Explicit descriptions of code spaces: three descriptions

havi < gos

\ local Hilbert space C¢
associated to every edge
* Turaev-Viro subspace - ground space of Levin-Wen - ribbon graph
defined using > X | qudit lattice Hamiltonian space H s
ﬁ H=-3, 00 oA
(g Vo)
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Explicit descriptions of code spaces: three descriptions

A {
//\/\/ \

discretizing

\ / \ N\ local Hilbert space C¢
associated to every edge
+ Turaev-Viro subspace + ground space of Levin-Wen * ribbon graph
defined usmgz x| qudit lattice Hamiltonian space H s
- ﬁ Zpﬁ Zz))\
Fact: These Hilbert spaces are isomorphic. (SEANES =

(statement is independent of triangulation used)
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Levin-Wen ground space and local relations

gudit lattice Hamiltonian

H = zpﬁ— Sk

ground state coefficients in computational basis satisfy discrete local “skein” relations, e.g.,

f(00) (00 ) (040001 )

Consequence: Ground space is isomorphic to Hilbert space of ribbon graphs
(“pictures”) modulo local equivalence relations
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Ribbon graphs Hilbert space Hsy for general category
trivalent labeled directed graphs (with loops) embedded in D

State: formal linear combination of ribbon graphs

¢ B ot
QT

(0]
modulo local relations
(=)

i = d;  g-dimensions

SRR

T
Z zyn b

T o kin ; I” . F-symbol
e G

. dual labels: i*
fusion rules

(set of allowed triples): trivial label (absence of string):

1 = _

—_—_—— = —.
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Example of relations in Hs; for category

S

........

.

Fib
local relations:
)=(
O =9
e
—O=0
BN




Ribbon graph bases of #s for Fib

Surface Y, dimHsx Example basis
Disc 1
(1-punctured O
sphere)
Annulus — -—- =
(2-punctured 7 . - ‘ .

Pair of pants

(3-punctured
sphere)

n-punctured S0 (n)
2
sphere
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Action of Dehn twist on Hs, for Fib

> »
2 T{- ‘_ _' Fril

Freedman, Nayak, Walker, Wang,
On Picture (2+1)-TQFTs,
arXiv:0806.1926

I

1
) Y

i

]

s

= R S
=lliidus
e A

Goal: identify “fusion tree basis” (eigenvectors of twist)
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eigenvalue (twist) name boundary labels

Eigenvector —
E +¢ i) 1 1®1 }
- Low 11
e .
1 1 TRT Anyonic
k - fusion
Wil i [ : = Ami/5 basis
+¢e—37rz/5 S ¢’€_311'z/5 ? < 17 e
sl e ) L
e/ 74_ pe—3mi/5 ? e=474/5 @1 T diagc?naliz
=5 LA Sonl ation
+ 7 + ? ; TRT
f 1 T } pe 1
I 1 TRT } 15 10
fusion space basis element topological phase anyon type multiplicity index

for different

: = : lizat
‘fiz =C|i ,L-C)‘_ 9@ J realizations

of “doubled” theory a5 subspaces of

FZb ® FZb, ’HEz
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Tool for describing anyonic fusion basis states:
“vacuum” ribbons

a Zl = 2545 ¢

1 1

Properties:
“removal of holes” “doubling” “removal of enclosed strings”
o~
J = 1) 3 \ N = - o =V=DPRogm
Pl
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Anyonic fusion basis from“doubled” manifold % x [~1,1]

Goal: find Example: find element ?
' z
anyonic for annulus J

fusion basis
states on D
o

some ribbon graph on
Intermediate

step: identify

relevant ribbon /V:’ ne

graphs on B B
J

2 X [_1? 1] g

Pirsa: 17080010 Page 62/98



Anyonic fusion basis from“doubled” manifold > x [-1,1]

Goal: find Example: find element +?, .
anyonic for annulus k)
fusion basis .

states on @ —

b

some ribbon graph on
Intermediate

step: identify —

relevant ribbon /V:’ ne

graphs on B B
J

2 X [“13 1] g

simple derivation of
topological phase:
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Anyonic fusion basis from“doubled” manifold ¥ x [-1,1]

Goal: find
anyonic
fusion basis
states on

Intermediate
step: identify
relevant ribbon
graphs on

Y x [-1,1]

simple derivation of

idempotency property:

Pirsa: 17080010

Example: find element + Sl
for annulus -

F]=

some ribbon graph on

Page 64/98



Pirsa: 17080010

Anyonic fusion basis from“doubled” manifold ¥ x [-1,1]

Goal: find
anyonic
fusion basis
states on

Intermediate
step: identify
relevant ribbon
graphs on

Y x [-1,1]

Map ribbon graphs

25 X [—'I,'l] — 2
by connecting up
boundary ribbons,
and projecting

Example: find element + Sl
for annulus -

)
/ N
J
e
1
m n =
(D=l
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eigenvector

- pe—3mi/5

pedTils

1e
S

AT SIS e

+
Sl

G

(/)(:'.}m/‘r)

_l_

pe—3mi/5

+

Y 9 ¢
&

H) L5

3D-representation

- =

\
N i o
~

-

name

1®1

1®7

T® 1

T

boundary labels

1.1

} ol
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3D-ribbon graphs for 2-anyon fusion spaces

k =— j e—— 3-puncturedspherex|-1,1]
/ﬁw/’*/f::::;*::--:o kK Q7
ke gl . corresponds to fusion spaceY

5y ‘//
l * (f
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2-anyon fusion basis for Fib
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Unitary,
braided,
semisimple, *

Pirsa: 17080010

Derived categories: basic data

/  doubled /
modular tensor categoryc ~ dual category C | category C®C

Particles| L . +-z: *i | {i/ | ieC} | {’z Rj" | fee(i}

Fusion ) o ’ :
rules I oxE (set of) allowed | =
triples JANE I NE
Ve
g-dim o
I ( }L = dz | =0
F- matnx & < a b c
- bam b a be
)k_{{ n i( n’ \%l’ | F()’(" w?"l‘*‘ Fdrir?an | F 0% FI
tOp | = U; & | H,L-f — gl | &,;@»};! — 97;977
phase Cl 7 : ' :
| a b a b | R(Lfbl Rab R R’
R-matrix ?._ R Y e =
c c
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Computation with Turaev-Viro codes
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Computation with Turaev-Viro codes
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Different lattices and F-move isomorphism
‘ 1)1 | ~L !

For unitary tensor categories, this is a unitary 5-qudit gate.

lattice G deformed lattice G°

“F-move”

Y

Hg ground space of :> Ho ground space of

spins on original lattice spins on deformed lattice
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Dehn-twist:
discrete version

Can be implemented by sequence of O(|7|*)  F-moves (5-qudit gates)

T -twists can be implemented similarly, therefore braids:

B= DR Do

-7~
universal gate set:

* braids generate dense subgroup of unitaries on subspace of HE for (doubled) Fib
* for approriate encoding, approximation of universal gate set by Solovay-Kitaev
(Freedman, Larsen, Wang’02)
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Example “topological” qubit in Fib

Qubit

encoding: |0> = \/< |1> = \%

Braids:

= o e = c
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Example “topological” qubit in Fib

Qubit
encoding:

7-(¢

S| g‘_
°

¢
N =

—-lrr:/) 0
= 0 e3mi/5 | =

0) — \/<

Braids:

|1>H\<<

N
=

1 —47i/d ok i
ANGUIEAIC RN
G S e Ve C

NOT-gate approximation accuracy 107(-4)
compiled with Solovay-Kitaev

c) — o—4mi/5
\

- o Bonesteel et al.,
— 6357”/0 \/ Phys. Rev. Lett. 95,
140503 (2005) (

"‘ vYAvAvAAvidviivivivs
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Gate sets obtained from the mapping class group

@8>

TQFT mapping class group (braiding)
contained in
D(Z,) Pauli group
abelian anyon model generalized Pauli group
Fibonacci model universal

Ising model

Clifford group

Pirsa: 17080010
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Limitations on transversal gates are protected

transversal gate= implementable by a depth-1-circuit

*x error IocEtions

depth-1-circuit EEEEEREEN

when applying a transversal gate:

e preexisting errors do not spread

e faulty unitaries only introduce local errors
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Limitations on transversal gates are protected

transversal gate= implementable by a depth-1-circuit

..... but limited

* error Ioc‘etions

depth-1-circuit E B EEEBEEREN

when applying a transversal gate:

e preexisting errors do not spread

e faulty unitaries only introduce local errors

Pirsa: 17080010

General (non-stabilizer) codes:

Theorem: Transversal encoded gates
generate a finite group.

2D surface codes:

Theorem: Suppose the stabilizer group has no
generators of weight 2. Then all
transversal gates are in the Clifford group.
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Limitations for protected gates for local stabilizer codes

constant-depth
quantum circuit

Clifford hierarchy protected gate implementable by

Cy =Pauli group
Co =Clifford group

Cap=A{ic U2 | Ut cel Y ¢ —

Theorem:[Bravyi,K '13] For a constant-depth
D-dimensional local stabilizer code: quantum circuit
protected gates belong to Cp
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Limitations for protected gates for local stabilizer codes

Clifford hierarchy

protected gate

implementable by

constant-depth
quantum circuit

C, =Pauli group
Co =Clifford group

€= {UclUziuctice)

Theorem: wyi, K '13] For a
D-dimensional local stabilizer code:
protected gates belong to Cp

Corollary: For any
e 2-dimensional local stabilizer code

o family {L, }1 of D-dimensional local
stabilizer codes such that
k = k(L) independent of L

the set of protected gates is not
computationally universal

Pirsa: 17080010

constant-depth
quantum circuit
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Limitations for protected gates for local stabilizer codes

constant-depth

Clifford hierarch = [ ircui
ifford hierarchy protected gate = implementable by quantum circuit

Cy =Pauli group
Co =Clifford group

2 There are codes saturating

this bound.
C.ii={U e U2k | Uc,Ur c ¢;}
Theorem:[Bravyi,K '13] For a LR LI tradeoffs and generalization to
D-dimensional local stabilizer code: A - subsystem codes
rotected gates belong to C

2 s Sl D=2 D=3
Corollary: For any
e 2-dimensional local stabilizer code C> (Cliffords) B o e e,
e family {L; }, of D-dimensional local

stabilizer codes such that | if gates in C, then d < O(L) if gates in C3 then d < O(L)

k = k(L) independent of L Ploss < 1/2 s t) 8
the set of protected gates is not only gates in C; if anergy barrier
Computatioﬂa"y universal is macroscopic
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Limitations on protected gates in TQFTs: results

(‘:‘4 -

Definition: A gate U is
protected if it preserves locality
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Limitations on protected gates in TQFTs: results

Definition: A gate U is

protected if it preserves locality =
FTOET mapping class group (braiding) locality-preserving unitaries
contained in contained in
D(Z,) Pauli group Clifford group
abelian anyon model generalized Pauli group generalized Clifford group
Fibonacci model universal global phase (trivial) Results
Ising model Clifford group Pauli group
generic anyon model model-dependent finite group
generic anyon model universal global phase (trivial)
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Matrix representation of protected gates in DAP-basis

Suppose U : Hpnys = Hpnys is a protected gate

Lemma: Let C = {C;} be a DAP-decomposition, B¢ be the associated basis of Hy:.
The matrix U representing U in this basis is unitary monomial:

Ue =1II¢D¢

7

permutation diagonal
matrix unitary
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Matrix representation of protected gates in DAP-basis

Suppose U : Hpnys = Hpnys is a protected gate

Lemma: Let C = {C;} be a DAP-decomposition, B¢ be the associated basis of Hy:.
The matrix U representing U in this basis is unitary monomial:

Ue =1II¢D¢

7

permutation diagonal

matrix unitary
Proof sketch:
for any loop C';  consider A > UAU' for logical This realizes an isomorphism of
operators supported around the Verlinde algebra because

][ o E Qa }a
a TR

hence [IRJ_(Cj)[_IT =F <) for a permutation 7; of particle labels

Then extend to whole DAP-decomposition
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Matrix representation of protected gates in DAP-basis

Suppose U : Hpnys = Hpnys is a protected gate

Lemma: Let C = {C;} be a DAP-decomposition, B¢ be the associated basis of Hy:.
The matrix U representing U in this basis is unitary monomial:

Ue =1II¢D¢

7

permutation diagonal

; : A%
matrix unitary >
Consequence: For two bases B¢ and Be:
related by a unitary V we must have
VII¢cD¢ = Ilg: DoV A"
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Matrix representation of protected gates in DAP-basis

Consequence: For two bases By and B!
related by a unitary V we must have

VHC DC = Hcf Dcf V

basis B¢
o o
D=z 11l s
g . &
V)= g |l g

Pirsa: 17080010

Example: 4 Ising-o anyons

Protected gates belong to the Pauli group.

basis Be:
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Matrix representation of protected gates in DAP-basis

Consequence: For two bases By and B!
related by a unitary V we must have

VHC DC = Hcf Dcf V

basis B¢
o o
D=z 11l s
g . &
V)= g |l g

Pirsa: 17080010

Example: 4 Ising-o anyons

Protected gates belong to the Pauli group.

basis Be:
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Matrix representation of protected gates in DAP-basis

Consequence: For two bases Bc and Be: Example: 4 Ising-o anyons
related by a unitary V we must have

Protected gates belong to the Pauli group.
VH(?DC = HCfDCfV

basis B¢ basis B
o o o
=0 l1lo )=z N 4

B 1 0 0 1)
1= (o 1) (1 0
(l]) [1)) (D¢, Der) = e*?(diag(1,1), diag(1,1)) e'?(diag(1,1), diag(1,-1))
I =
0 A e :
(1 0) gl d i) ¢ (diag(1, —1), diag(1, 1))
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Matrix representation of protected gates in DAP-basis

Consequence: For two bases Bc and Be: Example: 4 Ising-o anyons
related by a unitary V we must have

Protected gates belong to the Pauli group.
VH(?DC = HCfDCfV

basis B¢ basis B
a g a
V=g l1lo = 1
a a ; 4
V=g ¢l o ') =y
e ol D _ 0 1)
L= (o 1) S (1 0
(3) ‘1)) BB =l e ({'] ?) &2 (dac(l 1) dided =1)) ((1) ('})
Il = :
g i — o 0 1 ‘ | | 0 1
(1 (0 JB| e s QL s ) 10 ¢'?(diag(1, 1), diag(1,1)) \-1 0
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Matrix representation of protected gates in DAP-basis

Suppose U : Hpnys = Hpnys is a protected gate

Lemma: Let C = {C;} be a DAP-decomposition, B¢ be the associated basis of Hy:.
The matrix U representing U in this basis is unitary monomial:

Ue =1II¢D¢

7

permutation diagonal

; : A%
matrix unitary >
Consequence: For two bases B¢ and Be:
related by a unitary V we must have
VII¢cD¢ = Ilg: DoV A"
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Matrix representation of protected gates in DAP-basis

Suppose U : Hpnys — Hpnys is a protected gate

Lemma: Let C = {C;} be a DAP-decomposition, B¢ be the associated basis of H:.
The matrix U representing U in this basis is unitary monomial:

Ue =II¢D¢

ZE

permutation diagonal

: : Vv
matrix unitary =
Consequence: For two bases Be and Be:
related by a unitary V we must have
VII¢cD¢ =1I¢:De'V b4

Consequence: V() ITo D¢V (Y)! is unitary monomial
matrix for any ¥ € MCGyx;
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Universality and absence of protected gates

Theorem: If V : MCGy, — PU(Hyx) has a dense image, then there is no non-trivial protected gate|

Consequence: V() ITo D¢V (9)! is unitary monomial
matrix for any ¥ € MCGy,
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Conclusions and open problems

* Turaev-Viro codes offer a rich class of examples for potential platforms for topological quantum
computation.

* The mapping class group representation can be “decomposed” using the string-net formalism

* Explicit constructions of protected/transversal gates for TQFTs?

* Performing syndrome-measurement & error correction, thresholds for fault-tolerance?

* Higher-dimensional generalizations?
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Thank you!
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