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Abstract: We present a general scheme for constructing topological lattice models in any space dimension using tensor networks. Our approach
relies on finding "simplex tensors' that satisfy a finite set of tensor equations. Given any such tensor, we construct a discrete topological quantum
field theory (TQFT) and local commuting projector Hamiltonians on any lattice. The ground space degeneracy of these models is a topological
invariant that can be computed via the TQFT, and the ground states are locally indistinguishable when the ground space is nondegenerate on the
sphere. Any ground state can be realized by a tensor network obtained by contracting simplex tensors. Our models are exact renormalization fixed
points, covering a broad range of models in the literature. We identify symmetries on the virtual level of the tensor networks of our models that
generalize the topologica invariance properties beyond fixed point models. This framework combined with recent tensor network techniques is
convenient for studying excitations, their statistics, phase transitions, and ultimately for classification of gapped phases of many-body theories in
3+1 and higher dimensions.
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Original: Let no one unversed in geometry enter here.

Let no one uninterested in geometry enter here.
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Motivations

. Topologist: . Low/high energy physicist:
Classify topologies Classify quantum matter
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. Quantum information theorist & quantum memory engineer:
Physical systems robust to local noise
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Outline

* Motivations: Topology, Quantum matter, Quantum error correcting codes

More Motivations:
- Quantum matter
- Quantum error correction
Basics

- Tensor Networks (notation & overview of achievements)
- Topological Quantum Field Theory (state-sum TQFTs) 5
» Tensor Networks for TQFTs: numbers, states, operators, etc.
* A general tensor network framework: Tensor Networks > TQFTs
TQFTs are RG-fixed points. General TN framework: Away from RG-fixed points
* Examples: DW-models, 2+1D (Levin-Wen), 3+1D (Walker-Wang)
* Some problems:
- excitations ~ extending TQFTs - Phase transitions (perturbing tensors)
- Q. err. Correction performance - Higher form symmetries

Summary
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A brief history of classification of the
phases of matter

. Classical thermal physics: . Quantum phases at T=0 with
Thermal phases: local order parameter

Solid, liquid, gas, etc. \ /

Landau's
spontaneous sym.
breaking

. Quantum phases at T=0 with nonlocal order parameters:

Fractional quantum Hall systems, spin-liquids

Topological order
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A computational approach for the
classification of quantum matter

+ Many-body system on a lattice, local Hamiltonian, gapped
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« Trivial phase: Product state ~ |¢ >®Y « h; = (1 — | >< ¢|) ;
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A computational approach for the
classification of quantum matter

« Equivalence relation: gap preserving local unitaries
¥ >~ ¥ > 8 =2l ¥ =
¥ ~ B F H=U, HU .

&2

» Phase diagram enriches when a symmetry is added

e ey
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Quantum error correction

Let no one uninterested in error correction enter here.
* Error correction is fundamental

Things that are persistent must be robust (correctable) against
errors (noise).

We are local, fortunately noise is also local.
Examples: Languages
Hard disks
Quantum hard disks
» Relation to topological order (gapped phases of quantum matter)

Codespace: Ground state space of a local Hamiltonian

Robustness: Ground state space is protected against local noise

(+ Hamiltonian perturbations)
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Toric Code
= —XvAp + _Zpo
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Outline

* Motivations: Topology, Quantum matter, Quantum error correcting codes

More Motivations:
- Quantum matter
- Quantum error correction
Basics

- Tensor Networks (notation & overview of achievements)

- Topological Quantum Field Theory (state-sum TQFTs) 5
. Tensor Networks for TQFTs: numbers, states, operators, etc.
. A general tensor network framework: Tensor Networks > TQFTs
TQFTs are RG-fixed points. General TN framework: Away from RG-fixed points
. Examples: DW-model, 2+1D (Levin-Wen), 3+1D (Walker-Wang)
. Some problems:

- excitations ~ extending TQFTs - Phase transitions (perturbing tensors)
- Q. err. Correction performance - Higher form symmetries
Summary
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Basics-1: Tensor Networks

* Matrix product states a
- L iN '
. i1 Al i
= |¥>= Zaya,,. r(ATA% . AW)
li1, 80 vl >

* Projected entangled pair states (PEPS)

V¥V
g ﬁ'l = ¥ > B—ILS aByS

. Multiscale entanglement renormalization ansatz (MERA)

~ Renormalization (1D)

i
af
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Basics-1: Tensor Networks

. Start with bipartite
maximally entangled states
between each nearest
neighbour site:

s

\ w=2?=1|i>|i>

/ == . l.IJ’ — m®2N
\Virtual space l,

H=Z2Z;(I-] w><w )
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Basics-1: Tensor Networks

. Insert a linear map at every
Site:

A:Virtual = Physical

N

P = A®N BN

] Virtual space \ ‘

Physical‘
Space
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Basics-1: Pedagocigal Summary

] Virtual épace \

Physical
Space

. There are virtual and physical

Hilbert spaces

. The structure of the whole state is

encoded in
A (local tensor)

. Local tensor —— State
. State — Local Hamiltonian
. Numerous other properties about

entanglement entropy, efficient
simulation of quantum systems,
etc..
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Euclidean Path Integrals ~ Tensor
Networks

. Given a local Hamiltonian H:

s

® © & o ® ®
¢ 9o ¢ ¢ ¢ @

N\

. Hisgapped —— Approximate ground state projector
(constant depth circuit)
. Compress it to an MPS with finite bond dimension:

|Lpground > &
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Tensor Network approach

Take the ground states of many-body lattice systems as tensor network
states (TNS).

Find the conditions on the tensors (“iff” if possible), such that TNS
satisfies the required physical properties.
Topologically ordered TNS:

Axiomatize the conditions on the TNS such that the ground state space is

topologically ordered (= Physical properties (such as ground state
degeneracy) depending on the topology).

TQFTs appear as Tensor Network/Hamiltonian
fixed-points for TQFTs
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Outline

* Motivations: Topology, Quantum matter, Quantum error correcting codes

More Motivations:
- Quantum matter
- Quantum error correction
Basics

- Tensor Networks (notation & overview of achievements)

- Topological Quantum Field Theory (state-sum TQFTs) N
. Tensor Networks for TQFTs: numbers, states, operators, etc.
. Ageneral tensor network framework: Tensor Networks > TQFTs
TQFTs are RG-fixed points. General TN framework: Away from RG-fixed points
. Examples: DW-model, 2+1D (Levin-Wen), 3+1D (Walker-Wang)
. Some problems:

- excitations ~ extending TQFTs - Phase transitions (perturbing tensors)
- Q. err. Correction performance - Higher form symmetries
Summary
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Basics-2: TQFT (state-sum)

* Goal: Assign numbers to n+1-dim e We can:
manifolds:

M+ N iff Z(M) # Z(N) ZM) =Z(N) if M~N

N
* How:

- Triangulate the manifold M (glue n+1-simplices)

- Put degrees of freedom on 0, 1, ..., n-simplices

- Assign a tensor T to every n+1-simplex.

- Obtain Z(M) by contracting (gluing) tensor (n+1-simplices) T.

- Tis such that Z(M) is invariant under retriangulations (=T satisfies
Pachner equations).
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0-simplex:
1-simplex:

2-simplex:

3-simplex:

4-simplex, ...,
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Basics-2: TQFT (state-sum)

o (point) * Gluing (a 1+1 D example):

—(line) - |
NS ¢
A (triangle) L

> % ijk knm

* Retriangulation mvanance

(tetrahedron)

n-simplex, ...
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What do state-sum TQFTs do?

* An+1 (state-sum) TQFT uses the local data T to assign
Z(M) € C to a closed n+1-manifold M.

« Z(M) = |v>€ Z(N) toan+l-manifold M with boundary &

closed n-manifold N = oM

Nn@ = )€ 2l N,
Mm’t

« Z(Nx1): Z(N) » Z(N) isprojector on the vector space Z(N)
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Outline

* Motivations: Topology, Quantum matter, Quantum error correcting codes

More Motivations:
- Quantum matter
- Quantum error correction
Basics

- Tensor Networks (notation & overview of achievements)
- Topological Quantum Field Theory (state-sum TQFTs) 5
. Tensor Networks for TQFTs: numbers, states, operators, etc.
. A general tensor network framework: Tensor Networks ~ TQFTs
TQFTs are RG-fixed points. General TN framework: Awayfrom RG-fixed points
. Examples: DW-model, 2+1D (Levin-Wen), 3+1D (Walker-Wang)
. Some problems:
- excitations ~ extending TQFTs - Phase transitions (perturbing tensors)
- Q. err. Correction performance - Higher form symmetries

Summary
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State-sum TQFTs © TN RG-fixed points

* Given a state sum TQFT (1+1D) (given a tensor T, satisfying Pachner equations)
we can define a many-body Hamiltonian such that

.H=-3,h, where [h, h,]=0allv,v and =

x

(Koenig, Reichardt,
Kuperberg — 2010)

Page 23/40



State-sum TQFTs - TN RG-fixed points

. “Cylinder map” Z(N x I) projects onto the ground state space.

ZNx)Z(NXx1) Z(N x 1)
. Ground state is expressible in terms of a TNS, where

: - Coarser lattice
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State-sum TQFTs = TN RG-fixed points

Na
é;;{ T
N,

L2 N
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Outline

* Motivations: Topology, Quantum matter, Quantum error correcting codes

More Motivations:
- Quantum matter
- Quantum error correction
Basics

- Tensor Networks (notation & overview of achievements)

- Topological Quantum Field Theory (state-sum TQFTs) 5
. Tensor Networks for TQFTs: numbers, states, operators, etc.
. A general tensor network framework: Tensor Networks > TQFTs
TQFTs are RG-fixed points. General TN framework: Away from RG-fixed points
. Examples: DW-models, 2+1D (Levin-Wen), 3+1D (Walker-Wang)
. Some problems:

- excitations ~ extending TQFTs - Phase transitions (perturbing tensors)
- Q. err. Correction performance - Higher form symmetries
Summary

Pirsa: 17080008 Page 26/40



A general tensor network framework:
Tensor network operators

. TNO-injectivity: . Pulling through:

. The local tensor is injective within . TNOs can be deformed through
a subspace of the virtual degrees the lattice freely!
of freedom!
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State-sum TQFTs < TN framework

. Pachner eq. = TNO-injectivity - Pachner eq. = Pulling through

SR

. special case: @ %
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State-sum TQFTs < TN framework

. Pachner eq. = TNO-injectivity - Pachner eq. =Pulling through

. special case: 2-4 Pachner equation 2-4 Pachner equation
3-3 Pachner equation
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Example-1: Dijkgraaf-Witten models
in n+1 dimensions

Finite group G
Local degrees of freedom g in G

live on 1-simplices

ab
n+l-simplex ~ T= wn+1(91,92,---,9n+1) (satisfies cocycle equation)
General construction of Hamiltonian and ground states

- Local tensor |

~ ws(a,b,c)
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Example-2: Levin-Wen models in
2+1 dimensions

A unitary fusion tensor category C:
Objects: i=01,....N

Tensor product: a®b =@, NygpcC

. G-symbol
Associator: \ /
_>

e

Associator satisfies 'Pentagon equation' °

b a d [t

W o' Y o V
Gd ll

b a

2
.!
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Example-2: Levin-Wen models in
2+1 dimensions

. Local degrees of freedom: objects : b
in C assigned to the 1-simplices :
C
k
. 3-simplex: T ~ G-symbol ﬂ Uk
e | i Gabc b
C

Local tensor

ijk
T= vk ngc, :g

c

arXiv:1409.2150 [quant-ph] Joint with Williamson, Bultinck, Marien, Haegeman, Schuch, Verstraete
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Example-2: Pulling through= Pentagon
(Pachner) equation

arXiv:1409.2150 [quant-ph]
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Example-3: Walker-Wang models in 3+1
dimensions

UBFC-C

Objects: i=0,1,...,N

Tensor product: ;@ p =@, N,,.c
Braiding: E

b/ a . &8
d

a
Associator: \ / Sesvinbhl
e
»
A

Associator (G-symbol) satisfies 'Pentagon equation' and 'Hexagon equation'
with the braiding morphism (R-symbol).

a

C

b ¢

Joint with Walter & Temme
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Example-3: Walker-Wang models in
3+1 dimensions

. Local degrees of freedom: objects b
_—
in C are assigned to the 2-simplices a d

« 4-simplex: T ~ 15j-symbol

———

! Local tensor/
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Example-3: Pulling through=Pachner

equation

~T ] ;
ot K= NN
. il & . i E
\ \ E’ | \ j |
- - . g
g §
' N
7 ) [
e ]
\ X |
\ /
\ 7

Joint with Walter & Temme
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How to find a new model (n+1-dim)?

. A crude way: Solve the equations!
1- Assign degrees of freedoms to 0, 1, ..., n-simplices
2- Assign a tensor T to n+1 simplex

3- Solve the Pachner equations for the tensor T (= retriangulation invariance in
n+1 dimensions)

4- Use what we saw to write down the model, tensor network ground states,
tensor network operators, etc.

. A more systematic way: Come up with an n-category!

1- Objects, 1-morphisms, 2-morphisms,... , n-morphisms, and an associator at
level n+1.

2- Assign objects to 0-simplices, 1-morphisms to 1-simplices, etc. And assign
tensor T as the associator to the n+1 simplex

3- T automatically satisfies Pachner equations.
4- ...
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Away from fixed points
© H1

Heixed

There are stable and unstable tensor variations

Stable variations —* Stay in the same phase

Unstable variations —— Going out of the phase (Boson condenstation)
Stable variations are those that respect MPO-symmetries

Numerical simulation of topological phase transition

Joint with Shukla, Pollmann, Chen arXiv:1610.00608 [cond-mat.str-el]
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Outlook

. Finding new models . Performing/analyzing quantum
error correction

Understanding the excitations
(loop-like excitations, braiding,

P il N Project onto
y E s 3 - — local injectivity |

[

=% A s - - subspace
C@O) /Unitary gates \,‘_ Y}f* H N ~ P 5
is A s S =

etc.)

. for quantum N

' computation

. Studying topological quantum . Extending Landau's theory to
phase transitions higher form symmetries

; Anyon | Symmetries on |
| condensation | strings,surfaces, |
4 etc. /
3 ’,

0.0
00 02 04 08 08 10 12 14
LA
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Summary

Motivations, basics of tensor networks and state-sum TQFTs
State-sum TQFTs _RG-fixed point models
Characterization of topological order in tensor network states:
- TNO injectivity

- Pulling through (deformable TNOs)

RG-fixed point models > General TN framework

RG-fixed point examples:

- Dijkgraaf-Witten models (~group G & n+1-cocycle)

- Levin-Wen (Turaev-Viro) models (YUFTC & F-symbol)

- Walker-Wang (Crane-Yetter) models (YUBFC & 15j-symbol)

Some problems:

- excitations ~ extending TQFTs - Phase transitions

- Q. err. Correction performance - Higher form symmetries
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