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Abstract: Kitaev originaly constructed his quantum double model based on finite groups and anticipated the extension based on Hopf algebras,
which was achieved later by Buerschaper, etc. In this talk, we will present the work on the generalization of Kitaev model for quantum groupoids
and discuss its ground states.
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Motivation

@ Kitaev built exactly solvable lattice model based on finite groups
whose ground state degeneracy is protected by topology from
local perturbation. He also predicted the extension to Hopf
algebra, which was achieved by Buerschaper et al.

@ Every fusion category is the representation category of some
weak Hopf algebra. There should be lattice model based on
certain algebra dual to Levin-Wen model based on fusion
category.
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Lattice models

@ Place spins/qubits at each edge of a oriented lattice on a closed
surface.

@ Hilbertspace L= @ V.
edges
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Quantum double model based on finite group G
Hilbert space £L = & C[G]

edges
@ Vertex operator All:

g3

h o
A | =]

@ Plaquette operator Bp:

g3
BS g4 P "’Q4>—5g11g2g3g4_h 92
g1
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Quantum double model based on C* Hopf algebra H

Hilbert space L = @ H
edges
@ Vertex operator Al:

h
Ah| =2

#
L
[ £
VJ

@ Plaquette operator By’
h3

By | ho) P "h4> (,Z-)OC(S_'1(h1(1))h2(2)h3(2)h4(2))
p) )i
hy '

ho(1)
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Dual picture of plaquette operator

+ hy

BT b
Pl B >

|h1

where H is considered as a left H*-module with the action
o — X .= <OC.,X(2)>X(1)

and a right H*-module with the action

X — o= (Q, X(1))X(2)-
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@ At a site (v,p), Al and By give rise to a representation of quantum
double D(H)

AIBg = D B A (ae), ST (ha)) (e, hin))
(h).(x)
@ When A € Cocom(H) = {x | A(x) = /_\.Op(x)} and A € Cocom(H*),
we have [A}, A}] = [Bp,By] = [A}, BY] =
@ Further, when A and A are x-invariant |dempotents l.e. A*=A,

A* =24 and A° = A, 12 = A (e.g. Haar integral), we have exactly
solvable Hamiltonian

TA-YE
v P

whose ground state |V > is a common eigenspace of all A)’s and
Bg’s for eigenvalue 1, i.e., A}|V >= |V > and B |V >= |V > for all
v and p.

Pirsa: 17080005 Page 8/22



Quantum Groupoids

A finite quantum groupoid (weak Hopf algebra) H is a finite
dimensional vector space with structures of associative algebra by
multiplication m: He H — H and unit n € H and coassociative
coalgebra by comultiplication A: H - H® H and counit € : H — C s.t.
(1) A(ab) = A(a)A(b)

(Awid)A(M) = (AM)@n)(neAM)) = (neAM))(AM) @n)
(2) E(c':le) — E(ab(1))8(b 2)0) — E(ab('g))&‘,(b(”C)
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@ Integral

@ C*, quasitriangular, ribbon, ...
@ Rep(H) is tensor category with U® V := A(n) - (U®¢ V) and
tensor unit Hy = {e(nyh)ney | he Hj

duality, braided, ribbon, modular, ...
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The quantum double D(H) for a quantum groupoid H is defined
over the vector space H*“P & H with multiplication

(@@ x)(B@y) = aB2)® X2y (Bs) S~ (X)) By, X(1))

Let J be the two-sided ideal spanned by

aA(z—€e)®x—-a®zx, ze Hy, xe H, a e H*

AE—W)RX—aRWX, WEH;, xeH, a e H”
D(H) := H**°P % H/J is a quantum groupoid with unit [¢ @ n] and

AD([O_’- X X]) :[(1(1) Y X(1 )] X [(1(2) 09 X(z)]
ep(la @ x]) =e(x)a(n)
So([e® x]) =[S (aq2)) @ S(x2)){az). S~ (X(3))) (1) X(1))
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Quantum Double Model from Quantum Groupoid

e Atany site (v.p), Aj and By satisfy:

C o h i
AVBg = ZBI v (oqz), 7" (hgy)) (o), hay)

By Ay :Bp e
BSAW :Brx(e‘f w)Ac

@ For x-invariant idempotents A € Cocom(H) and A € Cocom(H*)
H= -y 4 -3 8}
v p

Is an exactly solvable Hamiltonian.
Remark: such A and A exist for C*-quantum groupoid.
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Finite Groupoid

For a finite groupoid G (a category with finitely many morphisms such
that each morphism is invertible), its groupoid algebra C(G) is a finite
quantum groupoid.

gh =composition whenever well defined or 0 otherwise

n _Zidxﬁ idy is the identity morphism of object x
Alg)=g@g
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Kitaev-Kong Quantum Groupoid H,

Kitaev and Kong constructed a C*-quantum groupoid Hg from a unitary
fusion category C. For simplicity, we assume C is mulitiplicity free and
self-dual.

@ As vector space, Hp is spanned by

a

ei;Cd =

where a.b,c.d.i € .
@ Multiplication
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@ Comultiplication

C

) _ v V9iGpdq Ffap Fqu

L2 Jdods | Kl Tk

d

@ Counit

M|EE D *p [BS -
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Fibonacci Category F

Simple objects: 1 and t;

Self dual: 1* =1 and t* = 7;

Quantum dimension: d; =1 and d; = ¢ = %@
Fusion rule: 2 =1+1.

F-moves:

& "V 7 T E & E & 3
\/ [/ \\/ . Y/
1s :¢_..'| r.I +¢ 5 T

. v ; "C\/F ® f ¢
XY N
T T T
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Br= ngg b M35 is 13 dimensional quantum groupoid with basis

TT TT T 71 71 1 1r '
{e]’ 11 e’ L ORI SRR LN Lo - L0 el et e "t er1r L

Hr is actually the Temperley-Lieb- Jones algebra TLJ4 generated by

Uy =geq’ 11 +¢’ erh’

= : 1
Up =¢ 9111+‘P e1rr+‘/’ "9111 e, +9 ze r1r+ert1

71
+er-1r+d’ er 1>

U3*¢’e111+‘f’ err1+ern+err1+¢

Tff

subject to the relations UE = O Uk, UkUk41Ux = Uk, Ujl; = U;u; if |i—j| > 1
and 1 — 02up — p(Uy + Uz) + O (U Us + Us Uy + Uplz + Uzlp ) + 92 Uy Uz —
UiUoUs — UglUo Uy — O(UslUq Us + UglqUs) + Us Uy Usls = O (the 4th
Jones-Wenz| idempontent).

M|EE D *p [ES -
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Solvable Hamiltonian for H;

Exactly solvable Hamiltonian HX =
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Ground States

e }fd'l Gglf;!\;a GH;;J'J
ormad 4 2431 aoc
abcD vVa

Y
bo & @3

C2 d3

£K) has a basis around vertex v given by

d
> = E D2 /d, - Gg;t()c
K abe

M|GE D *p (BS -
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Given a trivalent lattice I on a closed oriented surface ¥, the ground
space LX (.1 of the Kitaev model based on H is canonically |
isomorphic to the ground space L*W(%.T) of Levin-Wen Models based |
on C. As a consequence, LX(¥.T) is canonically isomorphic to the
target space Zry(X) of the Turaev-Viro TQFT based on C.
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RICIER

@ Non-semisimple Hopf algebra — ?
Lattice model realization of Kuperberg invariant of 3-manifolds

@ 3D lattice model «+ ? trialgebra

MIEE D *p [BS :
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Thank You!
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