Title: From 3D TQFTs to 4D models with defects

Date: Aug 04, 2017 11:00 AM

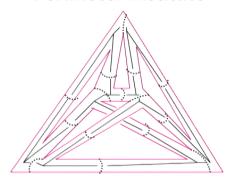
URL: http://pirsa.org/17080004

Abstract: I will explain a general strategy to lift (2+1)D topological phases, in particular string nets, to (3+1)D models with line defects. This allows a systematic construction of (3+1)D topological theories with defects, including an improved version of the Walker-Wang Model. It has also an interesting application to quantum gravity as it leads to quantum geometry realizations for which all geometric operators have discrete and bounded spectra. I will furthermore comment on some interesting (self-) duality relations that emerge in these constructions.

Pirsa: 17080004 Page 1/35

Lifting (2+1) TQFTs to (3+1) theories with line defects

Bianca Dittrich Perimeter Institute



Delcamp-BD, 1606.02384 [hep-th] JMP 2017;

BD, 1701.02037 [hep-th], JHEP 2017

Kitaev models et al PI, Aug 2017

Pirsa: 17080004 Page 2/35

Motivation

(2+1)D TQFT's

Kitaev model, string nets,
Hopf algebra gauge theory, ...

(3+1)D theory

(3+1)D theory

Pirsa: 17080004 Page 3/35

Motivation

(2+1)D TQFT's

Kitaev model, string nets, Hopf algebra gauge theory, ... Hilbert space (code space),
Operators

(3+1)D theory

(3+1) TQFTs with line defects eg. improved Walker-Wang, generalizations

Hilbert space (code space),

Operators

In particular: braiding needs 2D surfaces. How to (conveniently) implement it in (3+1)D?

In addition: number of reasons from quantum gravity.

A new quantum geometry realization:

Hilbert spaces are finite, all observables have discrete spectra, new gauge invariant bases.

Pirsa: 17080004 Page 4/35

Strategy: from (2+1)D TQFT to a (3+1)D theory with line defects

[Delcamp, BD: IMP 2017]

(2+1)D TQFT

assigns degrees of freedom to non-contractible curves on a surface

(3+1)DTQFT: 3-sphere with one-skeleton of (tetrahedral) triangulation removed

curves around triangles are contractible in 3-sphere

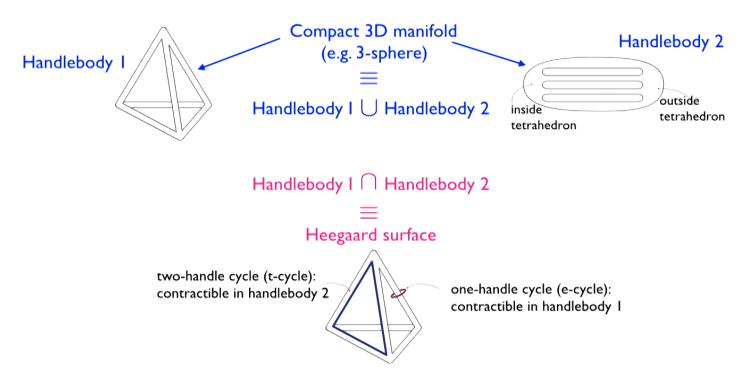
curves around the edges of the triangulation are not contractible

want to assign degrees of freedom to curves around edges of triangulation

Use (2+1) D theory to assign state space to a 3D triangulation. But impose (contractibility/ flatness) constraints associated to curves around triangles.

Pirsa: 17080004 Page 5/35

Heegaard splitting and diagrams



A Heegaard diagram is a Heegaard surface decorated with generating basis of one-handle cycles and two-handle cycles.

Heegaard diagrams encode uniquely topology of 3D manifold.

Pirsa: 17080004 Page 6/35

Heegaard diagrams

Heegaard diagrams can be constructed from a triangulation of the 3D manifold.

Set of cycles around triangles generates (over-completely) all curves that are contractible even if we do take out the one-skeleton of the triangulation.

Thus it is sufficient to impose flatness constraints for the cycles around the triangles.

two-handle cycle: contractible in handlebody 2

one-handle cycle: contractible in handlebody I

Pirsa: 17080004 Page 7/35

Part II: Examples

Pirsa: 17080004 Page 8/35

Strategy

- 1. Hilbert space, operators and bases for a closed surface.
- 2. Apply this to a Heegaard surface.
- 3. Impose constraints for 2-handle cycles and find operators and bases consistent with these constraints.

Pirsa: 17080004 Page 9/35

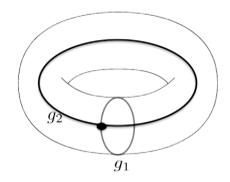
string nets with non-modular fusion category Rep(G)

Pirsa: 17080004 Page 10/35

string nets with non-modular fusion category Rep(G)

Hilbert space:

gauge invariant wave functions of flat G-connection



$$\delta_e(g_1g_2g_1^{-1}g_2^{-1}) \ \psi_{\rm inv}(g_1,g_2)$$

A basis?

string nets with non-modular fusion category

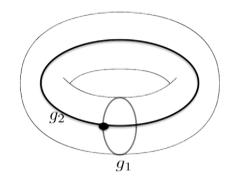
component

Pirsa: 17080004 Page 12/35

string nets with non-modular fusion category Rep(G)

Hilbert space:

gauge invariant wave functions of flat G-connection

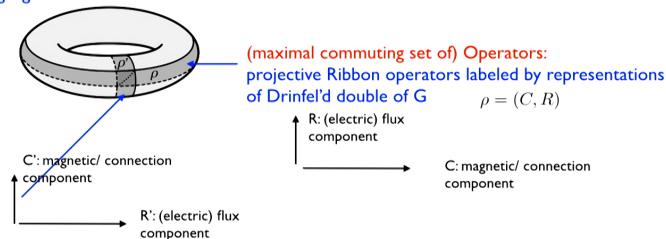


$$\delta_e(g_1g_2g_1^{-1}g_2^{-1}) \ \psi_{\rm inv}(g_1,g_2)$$

A basis?

string nets with non-modular fusion category

gauge invariant wave functions of flat G-connection

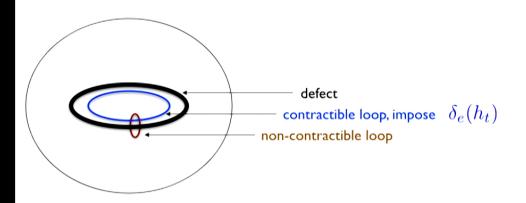


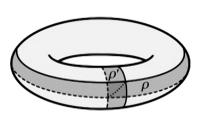
Transformation between basis:

S-matrix: $S_{\rho,\rho'}$

Pirsa: 17080004 Page 14/35

Interpreted as (3+1)D state space





Impose constraint or projector:

 $\rho\text{-basis: }C = \text{triv}, \quad R = \text{irrep of group G}$ spin network basis $\rho'\text{-basis: }C = \text{arbitrary}, \quad \text{sum over }R$ curvature basis: new gauge invariant basis from S-matrix

Pirsa: 17080004 Page 15/35

Lifting (2+1)D to (3+1)D

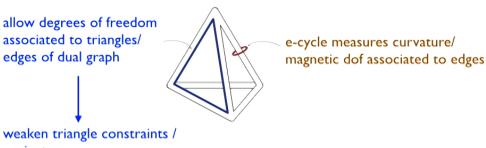
[Delcamp, BD: JMP 2017]

(2+1)D	(3+1)D
Fusion basis adjusted to (thickened) triangulation	curvature basis (for 3-sphere) Fourier-
Fusion basis adjusted to (thickened) dual graph	spin network basis
General fusion basis on Heegard surface	general basis
Ribbon operators along e-cycles	(magnetic) Wilson loop
Ribbon operators along t-cycles	(electric) surface (t'Hooft) operator

Pirsa: 17080004 Page 16/35

Generalizations

- · line defects along triangulation and
- line defects along dual graph



projectors

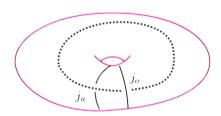
$$\delta_e(h_t) \rightarrow \delta_N(h_t)$$

N: normal subgroup of G

- · line defects along triangulation and
- line defects along dual graph

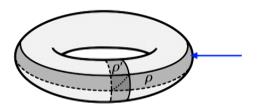
'interaction': (3+1) interpretation?

(2+1)D Turaev-Viro 'code space'/ string nets with modular fusion category C



Pirsa: 17080004 Page 18/35

What to expect?



(maximal commuting set of) Operators:

Projective ribbon operators labeled by objects of Drinfel'd centre of C: $C \boxtimes C^{op}$

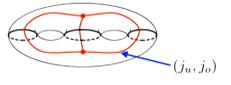
$$\rho = (j_o, j_u)$$

Impose constraint or projector:

trivializes one of the copies of the double

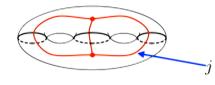
- (q-deformed) spin network basis: definition of Walker-Wang model
- curvature basis: diagonalizes Walker-Wang Hamiltonian

Basis for TV -TQFT



projector

Basis for WRT -TQFT



Quantization of Chern-Simon theory.

classical phase space:

quantum deformed (3+1) lattice Yang Mills = (2+1) Chern-Simons on Heegard surface

[Frolov; Riello]

Hilbert space for (2+1)D Turaev-Viro TQFT

here: for surfaces without punctures

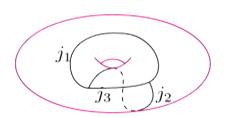
[Levin, Wen; Koenig, Kuperberg, Reichardt; Kirillov; BD, Geiller]

Kinematical (but gauge invariant) Hilbert space:

States based on spin-labelled three-valent graphs with $\ \mathrm{SU}(2)_k$ coupling rules imposed on the nodes.

Admissible spins: $j=0,\frac{1}{2},1,\ldots,\frac{k}{2}$ labelling undirected edges of the graph.

 $\text{Coupling rules:} \qquad \qquad i \leq j+k, \qquad j \leq i+k, \qquad k \leq i+j, \qquad i+j+k \in \mathbb{N}, \qquad i+j+k \leq k$



Hilbert space for (2+1)D Turaev-Viro TQFT

Physical Hilbert space - impose 'flatness' constraints:

Flatness constraint are imposed as equivalence relations between graph states:

Strands can be (isotopically) deformed.

$$j$$
 = j

2-2 Pachner move. Involving the F-symbol.

$$\begin{array}{ccc}
i & & \\
j & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& &$$

Strands with trivial spin can be omitted.

$$j$$
 j
 j
 j

3-1 Pachner move. Involving the F-symbol.

$$v_{i} = \frac{v_{m}v_{n}}{v_{k}}F_{nml}^{ijk}$$

$$v_{j} = (-1)^{j}\sqrt{d_{j}}$$

Rather involved now:

Finding a basis of independent states and operators consistent with equivalence relations. We need a) braiding and b) vacuum strands to define these.

a) Braiding

Strands can cross each other. Such crossings can be resolved using the R-matrix of $SU(2)_k$.

$$i \frac{j}{k} = \sum_{k} \frac{v_k}{v_i v_j} R_k^{ij} \quad i \frac{j}{k} \quad i = \sum_{k} \frac{v_k}{v_i v_j} (R_k^{ij})^* \quad i \frac{j}{k} \quad i = \sum_{k} \frac{v_k}{v_i v_j} (R_k^{ij})^* \quad i = \sum_{$$

We can thus define the so-called s-matrix as the evaluation of the Hopf link.

(Planar graphs are equivalent to a number times the empty graph. This number is called the evaluation of the planar graph.)

An important identity:

$$i \stackrel{j}{ \bigcirc} = \frac{s_{ij}}{s_{0j}}$$

b) Vacuum strands

Vacuum strands are defined as weighted sum over strands labelled by admissible spins:

$$\coloneqq \frac{1}{\mathcal{D}} \sum_k v_k^2$$

$$v_j = (-1)^j \sqrt{d_j}$$

$$\mathcal{D} := \sqrt{\sum_j v_j^4}$$
 total quantum dimension

A vacuum loop is similar to a $\delta(g)$ function. Wilson lines (strands) can be deformed across a region enclosed by a vacuum loop.

Sliding property:

Vacuum loops encircling a strand force the associated spin label to be trivial.

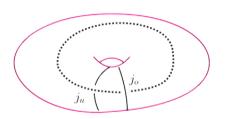
Killing property:

$$\supset = \mathcal{D} \, \delta_{j0}$$

Hilbert space for (2+1)D: Bases

[Kohno 1992; Alagic et al 2010]

For the torus:



Basis states parametrized by two spins (j_u, j_o) labelling an under- and over-crossing strand.

We will see that this basis diagonalizes over- and under-crossing Wilsonloops parallel to the vacuum loop.

S-transformation (generalized Fourier transformation):

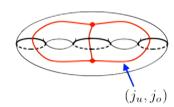
$$\mathbb{S}_{j_o j_u, k_o k_u} = \frac{1}{\mathcal{D}^2} \, s_{j_o k_o} s_{j_u k_u}$$

Hilbert space for (2+1)D: Bases

[Kohno 1992; Alagic et al 2010]

For g>1 surface:

To each pant decomposition of the surface we can associate a basis.



These bases states include a

- set of vacuum loops
- over-crossing graph (dual to vacuum loops)
- under-crossing graph (dual to vacuum loops).

Pirsa: 17080004 Page 25/35

From (2+1)D to (3+1)D

We discussed:

- choice of basis for (2+1)D Hilbert space
- consistent operators: under- and over-crossing Wilson loops.

For these constructions braiding relations play a very important role. Using the encoding of a 3D manifold into a Heegaard surface we can export these braiding relations to the (3+1)D theory.

To proceed:

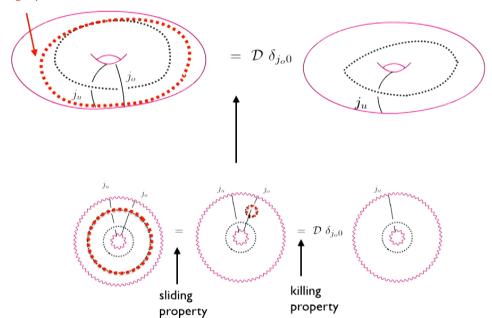
- a) Construct bases for Heegaard surface.
- b) Impose constraints.
- c) Find operators preserving constraints.

Pirsa: 17080004 Page 26/35

Example: defect loop in 3-sphere

The corresponding Heegaard surface: a torus. Flatness constraint along equator of this torus.

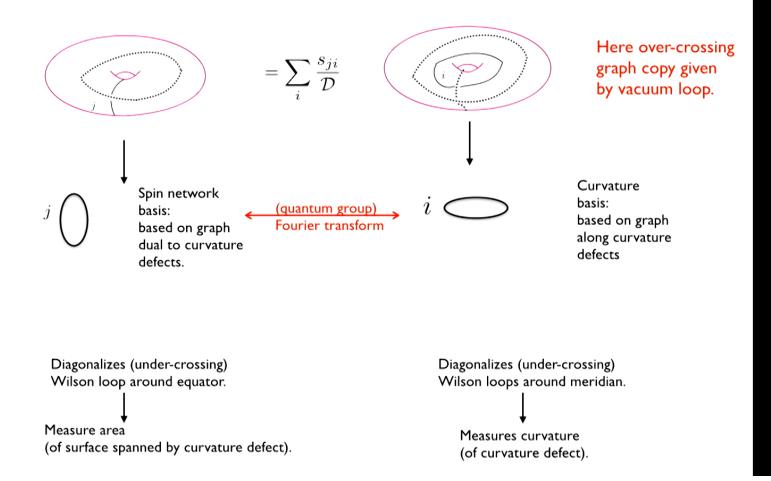
flatness constraint (over-crossing vacuum loop) along equator



The flatness constraints surpress the over-crossing graph copy.

Pirsa: 17080004 Page 27/35

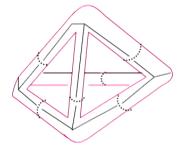
Example: defect loop in 3-sphere



Pirsa: 17080004 Page 28/35

Curvature basis for general 3D triangulation

- Choose pant-decomposition adjusted to the one-skeleton of the triangulation
- After imposing flatness constraints: curvature basis.



Under-crossing graph along one-skeleton of triangulation which can be freely labelled by spins: labels of the curvature basis.

Over-crossing graph given by vacuum loops around triangles.

• (Curvature or Crane-Yetter) vacuum state: trivial spins associated to all edges of (triangulation) graph.

Non-degenerate vacuum state for all topologies. Crane-Yetter invariant is 'trivial'.

Rather hard to see in Walker-Wang formulation.

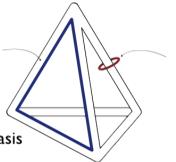
[Keyserlingk et al 2013]

Pirsa: 17080004 Page 29/35

Operators for the (3+1)D theory

Under-crossing Wilson loops preserve flatness constraints.

Wilson loops around triangles.



Wilson loops around edges.

- diagonalized by spin network basis
- measure area of triangles:

- · diagonalized by curvature basis
- · measures curvature around edges

For normalized k-Wilson loop:

$$\frac{\sin\left(\frac{\pi}{k+2}(2j+1)(2k+1)\right)\sin\left(\frac{\pi}{k+2}\right)}{\sin\left(\frac{\pi}{k+2}(2k+1)\right)\sin\left(\frac{\pi}{k+2}(2j+1)\right)} \xrightarrow{k\to\infty} 1 - \frac{8}{3}j(j+1)k(k+1)\left(\frac{\pi}{k+2}\right)^2$$

$$\stackrel{{\rm k} o \infty}{\longrightarrow}$$

$$1 - \frac{8}{3}j(j+1)k(k+1)\left(\frac{\pi}{k+2}\right)$$

Operators for the (3+1)D theory

Under-crossing Wilson loops encode curvature and area operators.

Spectra are discrete and bounded and coincide:

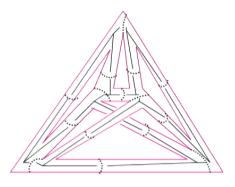
$$\frac{\sin\left(\frac{\pi}{k+2}(2j+1)(2k+1)\right)\sin\left(\frac{\pi}{k+2}\right)}{\sin\left(\frac{\pi}{k+2}(2k+1)\right)\sin\left(\frac{\pi}{k+2}(2j+1)\right)}$$

A self-dual quantum geometry.

Pirsa: 17080004 Page 31/35

Examples with even more self-duality

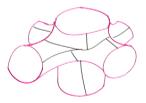
quantum-quantum 4-simplex



Curvature basis for 4-simplex. (Over-crossing graph copy, which is given by vacuum loops around triangles, is suppressed.)

Spin network basis for 4-simplex.

quantum-quantum 3-torus



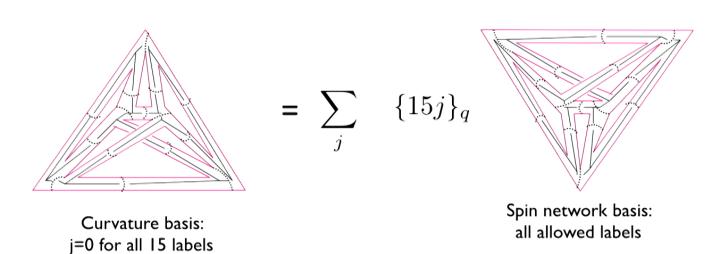
Curvature basis for 3 torus with cubical lattice. (Over-crossing graph copy and vacuum loops are surpressed.)

Spin network basis for 3-torus. (With Vacuum loops suppressed)

Two dual bases for the Walker-Wang model. Here operators: under-crossing Wilson-loops on Heegard surface.

Pirsa: 17080004 Page 32/35

Crane-Yetter simplex amplitude: vacuum state expanded in SNW basis



Pirsa: 17080004 Page 33/35

Conclusions

- general technique to lift Hilbert spaces and operators for a (2+1)D TQFT to (3+1)D theory with line defects. We discussed in more detail:
 - Turaev-Viro for modular fusion category: Crane-Yetter with curvature defects
 - BF theory (Turaev Viro for Rep(G)): 4D BF theory with curvature defects
- provides a straightforward analyses of excitations and operator (algebra) of (3+1)D theories
- e.g.: generalization of fusion basis to (3+1)D yields an entire family of new bases

Pirsa: 17080004 Page 34/35

Outlook

- generalizations ala [Baerenz, Barrett 2016]
 - · weaken flatness constraints for triangles
 - allows for degenerate ground state (non-trivial 4D invariants)
 - introduces torsion degrees of freedom in addition to curvature defects?
 - impose a different excitation content
 - start with Dijkgraaf-Witten models
 - allow for torsion defects instead of curvature defects

• consider boundaries and boundary excitations [Keyserlingk et al PRB 2013, ...] (in a 'natural' manner: compression bodies)

Pirsa: 17080004 Page 35/35