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Abstract: | will explain ageneral strategy to lift (2+1)D topological phases, in particular string nets, to (3+1)D models with line defects. This allows
a systematic construction of (3+1)D topologica theories with defects, including an improved version of the Walker-Wang Model. It has also an
interesting application to quantum gravity as it leads to quantum geometry realizations for which all geometric operators have discrete and bounded
spectra. | will furthermore comment on some interesting (self-) duality relations that emerge in these constructions.
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Motivation

(2+ I )D TQ FT’S Kitaev model, string nets,

Hopf algebra gauge theory, ...

1

(3+1)D theory
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Motivation

(2+ I )D TQ FT’S Kitaev model, string nets,

Hilbert space (code space),
Hopf algebra gauge theory, ... Operators

(3+1) TQFTs with line defects Hilbert space (code space),
(3+ I )D theor)’ eg. improved Walker-Wang, generalizations Operators

In particular: braiding needs 2D surfaces. How to (conveniently) implement it in (3+1)D?

In addition: number of reasons from quantum gravity.
A new quantum geometry realization:

Hilbert spaces are finite, all observables have discrete spectra, new gauge invariant bases.
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Strategy: from (2+1)D TQFT to a (3+1)D theory

with line defects [Delcamp, BD: JMP 2017]

(3+1)D TQFT: 3-sphere with
one-skeleton of (tetrahedral)
triangulation removed

(2+1)DTQFT

curves around the
edges of the
triangulation are
not contractible

curves around triangles /,

P & W
( ~=fA— ~ \ are contractible in

3-sphere

assigns degrees of freedom want to assign degrees of
to non-contractible curves freedom
on a surface to curves around edges of

triangulation

\,/

Use (2+1) D theory to assign state space to a 3D triangulation.
But impose (contractibility/ flatness) constraints associated to curves
around triangles.

Pirsa: 17080004 Page 5/35



Heegaard splitting and diagrams

Compact 3D manifold
Handlebo dy | iﬁ \ /

Handlebody 2
(e.g. 3-sphere)
! | s \ . , \..
\'5 '\\ — l ¢ , .:l
| N« L ;
(& S — ) outside
= Hﬂ Handlebody | UJ Handlebody 2  inside ratrahedron
S~V tetrahedron

Handlebody | [ Handlebody 2

Heegaard surface

two-handle cycle (t-cycle): !
contractible in handlebody 2/,

one-handle cycle (e-cycle):
\ contractible in handlebody |

A Heegaard diagram is a Heegaard surface decorated with
generating basis of one-handle cycles and two-handle cycles.

Heegaard diagrams encode uniquely topology of 3D manifold.
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Heegaard diagrams

Heegaard diagrams can be constructed from a triangulation of the 3D manifold.

Set of cycles around triangles generates (over-completely) all curves that are contractible even
if we do take out the one-skeleton of the triangulation.

Thus it is sufficient to impose flatness constraints for the cycles around the triangles.

Heegaard surface

two-handle cycle:

contractible in handlebody 2 \ z,ﬁ one-handle cycle:

contractible in handlebody |
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Part |l: Examples
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Strategy

I. Hilbert space, operators and bases for a closed surface.
2. Apply this to a Heegaard surface.

3. Impose constraints for 2-handle cycles and find operators and bases
consistent with these constraints.
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BF theory / Kitaev model

string nets with non-modular fusion category Rep(G)
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BF theory / Kitaev model

string nets with non-modular fusion category Rep(G)

Hilbert space:
gauge invariant wave functions of flat G-connection

5(-‘(."719291—192_1) '(7/-"'111\’ (ﬂl , .(]3.)

A basis’
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BF theory / Kitaev model

string nets with non-modular fusion category

(2+1)D Hilbert space:
gauge invariant wave functions of flat G-connection

(maximal commuting set of) Operators:
projective Ribbon operators labeled by representations

of Drinfel'd double of G p=(C,R)
R: (electric) flux
I component
> C: magnetic/ connection
component
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BF theory / Kitaev model

string nets with non-modular fusion category Rep(G)

Hilbert space:
gauge invariant wave functions of flat G-connection

5(-‘(."719291—192_1) '(7/-"'111\’ (ﬂl , .(]3.)

A basis’
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BF theory / Kitaev model

string nets with non-modular fusion category

(2+1)D Hilbert space:
gauge invariant wave functions of flat G-connection

(maximal commuting set of) Operators:
projective Ribbon operators labeled by representations

of Drinfel'd double of G p=(C,R)
R: (electric) flux
I component
> C: magnetic/ connection
component
R’ (electric) flux
- component

Transformation between basis:

S-matrix: Sp.pr
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Interpreted as (3+1)D state space

defect
- contractible loop, impose (5,,(/1 ,_)

non-contractible loop

Impose constraint or projector:

p-basis: C' =triv, R =irrep of group G

N spin network basis

(gauge invariant)
group
Fourier-transform
from S-matrix

p'-basis: C' =arbitrary, sum over R

curvature basis:
new gauge invariant basis
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Llftlng (2+ I)D to (3+ I )D [Delcamp, BD: JMP 2017]

(2+1)D (3+1)D
Fusion basis adjusted to (thickened) curvature basis
triangulation (for 3-sphere) Fourier-

transform
from S-matrix

Fusion basis adjusted to (thickened) : :
spin network basis

dual graph

General fusion basis on .

general basis

Heegard surface

Ribbon operators (magnetic) Wilson loop

along e-cycles

Ribbon operators

along t-cycles (electric) surface (t'Hooft) operator
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Generalizations

* line defects along triangulation and
* line defects along dual graph

allow degrees of freedom
associated to triangles/
edges of dual graph

C—Cych measures CIJI'VFIKUI'C/
magnetic dof associated to edges

weaken triangle constraints /
projectors

de U.!., ) - N (: hy)

N: normal subgroup of G

* line defects along triangulation and

. ‘interaction”: (3+1) interpretation?
* line defects along dual graph (3+1) P
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(2+1)D Turaev-Viro ‘code space’/

string nets with modular fusion category C

Pirsa: 17080004 Page 18/35



What to expect!

(maximal commuting set of) Operators:
Projective ribbon operators labeled by objects
of Drinfel'd centre of C: (' [ (P

P = (.ju-. J'u)

Impose constraint or projector:

trivializes one of the copies of the double

* (g-deformed) spin network basis: definition of Walker-Wang model
* curvature basis: diagonalizes Walker-Wang Hamiltonian

Basis for TV -TQFT Basis for WRT -TQFT
projector P

A RN

— j

(Jus Jo)
Quantization of Chern-Simon theory.

classical phase space:
quantum deformed (3+1) lattice Yang Mills = (2+1) Chern-Simons on Heegard surface

[Frolov; Riello]
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Hilbert space for (2+1)D Turaev-Viro TQFT

here: for surfaces without punctures

[Levin,Wen, Kr)(‘nig‘ |<Up<_‘l'h(‘|'g, Reichardt: Kirillov: BD, G(‘ill(‘r]

Kinematical (but gauge invariant) Hilbert space:

States based on spin-labelled three-valent graphs with SU(2), coupling rules imposed on the

nodes.
1 k
Admissible spins: J=0,0000 labelling undirected edges of the graph.
i< g+ k, J<i+k, k<i+y, t+J+keN, i+i+k<k

Coupling rules: <

K“ v\ )

}s ' /}}-/
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Hilbert space for (2+1)D Turaev-Viro TQFT

Physical Hilbert space - impose ‘flatness’ constraints:

Flatness constraint are imposed as equivalence relations between graph states:

Strands can be (isotopically) deformed.

Jo— = 1

2-2 Pachner move. Involving the F-symbol.

L
= >k "

A

] I8 "

Rather involved now:

Finding a basis of independent states and operators consistent with equivalence relations.

Strands with trivial spin can be omitted.

= J—_—
_f'/Kf

3-1 Pachner move. Involving the F-symbol.

"N’ - f. /
7 UmUn ik
N\ n L
, il
Uk

k A

v ( —1 }.’f \.-'jffj

We need a) braiding and b) vacuum strands to define these.

Page 21/35



Pirsa: 17080004

a) Braiding

Strands can cross each other. Such crossings can be resolved using the R-matrix of SU(2)x.

Ry I T
Bl e T , SRTILIN

We can thus define the so-called s-matrix as the evaluation of the Hopf link.

(Planar graphs are equivalent to a number times the empty graph.This number is called the

evaluation of the planar graph.) 7
sin (nﬂz(g-i F1)(2k 4 I'))
J p

Sij k ) \ gives sk = (—1)2k+2 ,
Hi‘]l( i )

e
k2

An important identity:

e
\__I / 50
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b) Vacuum strands

Vacuum strands are defined as weighted sum over strands labelled by admissible spins:

i v = ( i)f \.d}
| g
e (3
D Z h D= N ""f total quantum
k r dimension

A vacuum loop is similar to a d(¢) function. Wilson lines (strands) can be deformed across a region
enclosed by a vacuum loop.

Sliding property:

Killing property: ST = Do
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Hilbert space for (2+1)D: Bases

[ Kohno 1992; Alagic et al 2010]

For the torus:

— Basis states parametrized by two spins  (ju, Jo)
"""""""""" ) labelling an under- and over-crossing strand.

We will see that this basis diagonalizes

d
;\ """ \ over- and under-crossing Wilsonloops
T parallel to the vacuum loop.

S-transformation (generalized Fourier transformation):

\ 7 e\
\ vl \f Ko h Nk Nef /
Fu \ """ S _—
) 1
S; IDRLL _I_jE SjokiaSiky,
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Hilbert space for (2+1)D: Bases

[ Kohno 1992; Alagic et al 2010]

For g>1| surface:

To each pant decomposition of the surface we can associate a basis.

These bases states include a
* set of vacuum loops
* over-crossing graph (dual to vacuum loops)
* under-crossing graph (dual to vacuum loops).
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From (2+1)D to (3+1)D

We discussed:
* choice of basis for (2+1)D Hilbert space
* consistent operators: under- and over-crossing Wilson loops.

For these constructions braiding relations play a very important role.

Using the encoding of a 3D manifold into a Heegaard surface we can export these
braiding relations to the (3+1)D theory.

To proceed:

a) Construct bases for Heegaard surface.
b) Impose constraints.

c) Find operators preserving constraints.
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Example: defect loop in 3-sphere

The corresponding Heegaard surface: a torus.
Flatness constraint along equator of this torus.

flatness constraint (over-crossing vacuum loop)
along equator

The flatness

Dd o T constraints surpress
( g the over-crossing
N A i graph copy.

sliding killing
property property
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Example: defect loop in 3-sphere

J— ~ e e \ Here over-crossing
P N\ Sji ( e Y ) sraph copy given
( N v/ J — . D \ ::‘ ( ; :'_- »_;/_,- } 3_, . p Py (L,

A i \ Sd e by vacuum loop.

J \ - sreaner :

Spin network Curvature

9 basis: (quantum group) 1 © basis:
based on graph Fourier transform blased on graph
dual to curvature along curvature
defects defects

Diagonalizes (under-crossin Diagonalizes (under-crossin

g g g g
Wilson loop around equator. Wilson loops around meridian.

l l

Measure area Measures curvature
(of surface spanned by curvature defect). (of curvature defect)
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Curvature basis for general 3D triangulation

® Choose pant-decomposition adjusted to the one-skeleton of the triangulation

e After imposing flatness constraints: curvature basis.

Under-crossing graph along one-skeleton of triangulation which
can be freely labelled by spins: labels of the curvature basis.
Over-crossing graph given by vacuum loops around triangles.

® (Curvature or Crane-Yetter) vacuum state:
trivial spins associated to all edges of (triangulation) graph.

Non-degenerate vacuum state for all topologies.
Crane-Yetter invariant is ‘trivial’.

Rather hard to see in Walker-Wang formulation.

[ Keyserlinglk et al 201 3]
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Operators for the (3+1)D theory

Under-crossing Wilson loops preserve flatness constraints.

Wilson loops around

_ Wilson loops around
triangles.

edges.

« diagonalized by spin network basis « diagonalized by curvature basis

* measure area of triangles: /

* measures curvature around edges
For normalized sin (1%“"* (2k + ”)“‘“ ) ks a0 . NV
k -Wilson loop: A : g L= 850G+ D) k(k+1) (|T)
v=vviison loop. Hin(kir._,('.}ﬁ I)}) "IU(JT (27 4 I])) ’
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Operators for the (3+1)D theory

Under-crossing Wilson loops encode curvature and area operators.

Spectra are discrete and bounded and coincide:

sin (113(21 + 1)(2k + 1)) sin (ki")

P

sin (ﬁ(ﬂ\ + 1))) sin (](1.;(2.'}‘ + 1)))

P

A self-dual quantum geometry.
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Examples with even more self-duality

quantum-quantum 4-simplex

Curvature basis for 4-simplex.
(Over-crossing graph copy, which is
given by vacuum loops

around triangles, is suppressed.)

Spin network basis for 4-simplex.

quantum-quantum 3-torus

Curvature basis for 3 torus
with cubical lattice.
(Over-crossing graph copy and
vacuum loops are surpressed.)

Spin network basis for 3-torus.
(With Vacuum loops suppressed)

Two dual bases for the Walker-VWang model.
Here operators: under-crossing Wilson-loops
on Heegard surface.
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Crane-Yetter simplex amplitude:

vacuum state expanded in SNWV basis

Spin network basis:
all allowed labels

Curvature basis:
j=0 for all 15 labels
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Conclusions

e general technique to lift Hilbert spaces and operators for a (2+1)D TQFT to
(3+1)D theory with line defects. We discussed in more detail:

* Turaev-Viro for modular fusion category: Crane-Yetter with curvature defects
* BF theory (Turaev Viro for Rep(G)): 4D BF theory with curvature defects
® provides a straightforward analyses of excitations and operator (algebra) of (3+1)D theories

® c.g.:generalization of fusion basis to (3+1)D yields an entire family of new bases
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Outlook

L] genemlizations ala [Baerenz, Barrett 2016]
+ weaken flatness constraints for triangles
+ allows for degenerate ground state (non-trivial 4D invariants)
* introduces torsion degrees of freedom in addition to curvature defects?

® impose a different excitation content
* start with Dijkgraaf-Witten models
* allow for torsion defects instead of curvature defects

® consider boundaries and boundary excitations [Keyserlingk et al PRB 2013, ...]
(in a ‘natural’ manner: compression bodies)
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