Title: Topological defects and higher-categorical structures

Date: Aug 01, 2017 03:00 PM

URL: http://pirsa.org/17080003

Abstract: I will discuss some (higher-)categorical structures present in three-dimensional topological field theories that include topological defects of any codimension. The emphasis will be on two topics:

(1) For Reshetikhin-Turaev type theories, regarded as 3-2-1-extended TFTs, I will explain why codimension-1 boundaries and defects form bicategories of module categories over suitable fusion categories.

In the case of defects separating three-dimensional regions supporting the same theory, the relevant fusion category A is the modular tensor category underlying that theory, while for defects separating two theories of Turaec-Viro type with underlying fusion categories  $A_1$  and  $A_2$ , respectively, A is the Deligne product  $A_1 \rightarrow A_2$ .

(2) I will indicate the building blocks of a generalization of the TV-BW state-sum construction to theories with defects. Making use of ends and coends, various aspects of this construction can be formulated without requiring semisimplicity.

# TOPOLOGICAL DEFECTS AND HIGHER-CATEGORICAL STRUCTURES



**P** 1\_8\_2017

F P 1\_8\_17 - p. 1/25

Page 2/99

| Motiv      | ation                                                          | Topological defects |
|------------|----------------------------------------------------------------|---------------------|
| Total Inc. |                                                                |                     |
| •          |                                                                |                     |
|            | Out TET with the factor of any and improved in                 |                     |
| THE        | ME: 3-d TFT with defects of any codimension                    |                     |
|            |                                                                |                     |
| • Pos      | SIBLE MOTIVATIONS:                                             |                     |
|            |                                                                |                     |
| . 137      | TFT with substructures / on stratified spaces                  |                     |
| •          | gapped interfaces /                                            |                     |
|            |                                                                |                     |
| •          | topological line defects in 2+1-dimensional topological orders |                     |
|            |                                                                |                     |
|            |                                                                |                     |
|            |                                                                |                     |
|            |                                                                |                     |
|            |                                                                |                     |
| •          |                                                                |                     |
| •          |                                                                |                     |
|            |                                                                |                     |
|            |                                                                |                     |

F P 1.8.17 - p. 2/25

4

# Motivation Topological defects

THEME: 3-d TFT with defects of any codimension

#### POSSIBLE MOTIVATIONS:

- TFT with substructures / on stratified spaces
- gapped interfaces /
  topological line defects in 2+1-dimensional topological orders
- defects in general quantum field theory
- applications to 2-d conformal field theory

F P 1 8 17 - n 2/2

Pirsa: 17080003 Page 4/99



- codimension-1 defect QFT1 QFT2
  - = interface separating region supporting QFT $_1$  from region supporting QFT $_2$
  - natural part of the structure of a quantum field theory
  - physical boundaries as special case

 $\mathsf{QFT}_1$ 

Pirsa: 17080003 Page 6/99

**Defects in QFT** 

Topological defects

codimension-1 defect QFT1 QFT2

- = interface separating region supporting QFT<sub>1</sub> from region supporting QFT<sub>2</sub>
- natural part of the structure of a quantum field theory
- physical boundaries as special case
- topological defect: correlators do not change when deforming the defect

without crossing other substructures

- natural wish list for topological defects :
  - - → allows for natural formulation in terms of higher categories
  - ual defect via orientation reversal

  - transparent defect as unit for fusion product of defects between equal phases
    - → categories with monoidal and rigid structures

F P 1 8 17 - p 4/25

Pirsa: 17080003 Page 7/99

# **Symmetries from defects** Topological defects wish list continued: subclass: invertible topological defects: $D \otimes D^{\vee} \cong \mathbf{1} \cong D^{\vee} \otimes D$

Topological defects

#### wish list continued:

subclass: invertible topological defects:

$$D \otimes D^{\vee} \cong \mathbf{1} \cong D^{\vee} \otimes D$$

basic property:

$$D = \dim(D)$$

 ${\rm drawn\ for\ } d=2$ 

$$\dim(D) = \pm 1$$

- → identity of correlators when applied locally in any configuration of fields & defects
- invertible defects form a group under fusion
- act on all data of the theory as a symmetry group

Topological defects

#### wish list continued:

subclass: invertible topological defects:

$$D \otimes D^{\vee} \cong \mathbf{1} \cong D^{\vee} \otimes D$$

basic property:

$$D = \dim(D)$$

 ${\rm drawn\ for\ } d=2$ 

$$\dim(D) = \pm 1$$

wrapping of a topological defect around a bulk field:

$$= \sum_{\substack{\text{intermediate} \\ \text{defects } D_i}} \Phi_{D_i}$$

i.e. bulk field turned into disorder field(s)

F P 1.8.17 - p. 5/25

Topological defects

#### wish list continued:

subclass: invertible topological defects:

$$D \otimes D^{\vee} \cong \mathbf{1} \cong D^{\vee} \otimes D$$

basic property:

$$= \dim(D)$$

 ${\rm drawn\ for\ } d=2$ 

$$\dim(D) = \pm 1$$

subclass: duality defects:

additional wrapping with dual defect turns disorder field back to bulk field

- ightharpoonup happens if and only if  $D \otimes D^{\vee} = \text{direct sum of invertible defects}$
- furnishes order-disorder duality
- again action on all field theoretic quantities

F P 1.8.17 - p. 5/2

Topological defects

#### wish list continued:

subclass: invertible topological defects:

 $D \otimes D^{\vee} \cong \mathbf{1} \cong D^{\vee} \otimes D$ 

basic property:

$$D = \dim(D)$$

drawn for d=2

 $\dim(D) = \pm 1$ 

- subclass: duality defects:
  additional wrapping with dual defect turns disorder field back to bulk field
  - $\rightarrow$  happens if and only if  $D \otimes D^{\vee} = \text{direct sum of invertible defects}$
  - furnishes order-disorder duality
  - again action on all field theoretic quantities

#### known to be true for 2-d RCFT:

defects form a rigid monoidal category

symmetries and order-disorder dualities

JF-RUNKEL-SCHWEIGERT 2002

F-FJELSTAD-RUNKEL-SCHWEIGERT 2008

F-Fröhlich-Runkel-Schweigert 2007

F P 1 8 17 - p 5/25

Pirsa: 17080003 Page 12/99



**Extended 3-d TFT** 

Topological defects

#### DEFINITION -

#### Cobordism bicategory

- monoidal bicategory Cobord<sub>3,2,1</sub>:
  - $\sim$  objects = closed oriented 1-manifolds S
  - 1-morphisms = spans  $S \to M \leftarrow S'$ with M oriented 2-manifold with boundary  $\partial M = -S \sqcup S'$
  - ≥ 2-morphisms = 3-manifolds with corners up to diffeomorphisms
  - tensor product = disjoint union

Pirsa: 17080003 Page 14/99

#### DEFINITION —

#### Cobordism bicategory -

- monoidal bicategory Cobord<sub>3,2,1</sub>:
  - objects = closed oriented 1-manifolds S
  - ightharpoonup 1-morphisms = spans  $S o M \leftarrow S'$ with M oriented 2-manifold with boundary  $\partial M = -S \sqcup S'$
  - □ 2-morphisms = 3-manifolds with corners up to diffeomorphisms
  - tensor product = disjoint union

#### DEFINITION — 2-vector spaces

- monoidal bicategory 2-Vect:
  - objects = semisimple finite k-linear abelian categories
  - 1-morphisms = k-linear functors
  - 2-morphisms = k-linear natural transformations

Pirsa: 17080003 Page 15/99

# **Extended 3-d TFT** Topological defects Extended 3-d TFT -**DEFINITION** — 3-2-1 extended oriented topological field theory $:= \ \, \mathsf{symmetric} \,\, \mathsf{monoidal} \,\, \mathsf{2\text{-}functor} \,\, \mathbf{tft}_{3,2,1} \colon \, \mathcal{C}\!\mathit{obord}_{3,2,1} \longrightarrow 2\text{-}\mathcal{V}\!\mathit{ect}$

Pirsa: 17080003

F P 1.8.17 - p. 7/25

```
DEFINITION -
```

#### Extended 3-d TFT -

3-2-1 extended oriented topological field theory

:= symmetric monoidal 2-functor  $\mathbf{tft}_{3,2,1}: \mathcal{C}obord_{3,2,1} \longrightarrow 2\text{-}\mathcal{V}ect$ 

#### COMMENT -

#### in more detail:

 $\blacksquare$  closed oriented 1-manifold  $S \longmapsto$  linear category  $\mathbf{tft}(S)$ 

in particular for the empty 1-manifold:  $\mathbf{tft}(\emptyset) = \mathcal{V}ect$ 

 $span S \to M \leftarrow S' \longmapsto linear functor \mathbf{tft}(S) \xrightarrow{\mathbf{tft}(M)} \mathbf{tft}(S')$ 

in particular for closed 2-manifolds *M*:

linear functor  $\mathbf{tft}(M) \colon \mathcal{V}\!ect \longrightarrow \mathcal{V}\!ect$  (thus vector space  $\mathbf{tft}(M)(\Bbbk)$ )

in particular for the empty 2-manifold:  $\mathbf{tft}(\emptyset) = \mathbb{k}$ 

3-manifold with corners  $\longrightarrow$  linear natural transformation

(thus a number / an invariant)

F P 1\_8\_17 - p. 7/25

Pirsa: 17080003 Page 17/99

### **Extended 3-d TFT**

Topological defects

**DEFINITION** —

Extended 3-d TFT -

□ 3-2-1 extended oriented topological field theory

:= symmetric monoidal 2-functor  $\mathbf{tft}_{3,2,1} : \mathcal{C}obord_{3,2,1} \longrightarrow 2\text{-}\mathcal{V}ect$ 

COMMENT -

 $\square$  category  $\mathbf{tft}(\mathbb{S}^1)$  for the circle  $\mathbb{S}^1$  is

monoidal



~



JF ₱ 1.8.17 − p. 7

#### **DEFINITION** -

#### Extended 3-d TFT -

- 3-2-1 extended oriented topological field theory
  - := symmetric monoidal 2-functor  $\mathbf{tft}_{3,2,1}: \mathcal{C}obord_{3,2,1} \longrightarrow 2\text{-}\mathcal{V}ect$

#### COMMENT -

- $^{_{\text{\tiny LSS}}}$  category  $\mathbf{tft}(\mathbb{S}^1)$  for the circle  $\mathbb{S}^1$  is braided monoidal

  - ightharpoonup braiding  $⊗ ⇒ ⊗^{op}$  furnished by 2-morphism



F P 1.8.17 - p. 7/2

Pirsa: 17080003 Page 19/99

**DEFINITION** -

Extended 3-d TFT -

■ 3-2-1 extended oriented topological field theory

:= symmetric monoidal 2-functor  $\mathbf{tft}_{3,2,1} : \mathcal{C}obord_{3,2,1} \longrightarrow 2\text{-}\mathcal{V}ect$ 

INFORMAL DEFINITION — Defect-ccobordism bicategory =

monoidal bicategory  $\left(\begin{array}{c} Cobord \frac{\partial}{3,2,1} \end{array}\right)$ :

- objects = closed oriented 1-manifolds with marked points
- 1-morphisms = spans with embedded marked 1-manifolds
- ≥ 2-morphisms = 3-manifolds with corners up to diffeomorphisms

with ...

tensor product = disjoint union

Pirsa: 17080003 Page 20/99

### **Extended 3-d TFT**

Topological defects

DEFINITION —

Extended 3-d TFT -

■ 3-2-1 extended oriented topological field theory

:= symmetric monoidal 2-functor  $\mathbf{tft}_{3,2,1} : \mathcal{C}obord_{3,2,1} \longrightarrow 2\text{-}\mathcal{V}ect$ 

-

**DEFINITION** -

Extended 3-d TFT with defects —

■ 3-2-1 extended oriented topological field theory with defects

 $:= \ \, \mathsf{symmetric} \,\, \mathsf{monoidal} \,\, \mathsf{2}\text{-functor} \,\, \mathbf{tft}^{\partial}_{3,2,1} \colon \,\, \mathcal{C}\!\mathit{obord}^{\partial}_{3,2,1} \longrightarrow \mathsf{2}\text{-}\mathcal{V}\!\mathit{ect}$ 

F P 1 8 17 - n 7/2

Pirsa: 17080003 Page 21/99

# **RT-type TFT with defects** Topological defects Reshetikhin-Turaev - type TFT:

# **RT-type TFT with defects**

Topological defects

- Reshetikhin-Turaev type TFT:
  - → input: a modular tensor category C

  - insertions on Wilson lines / junctions labeled by morphisms of C
  - 2-d cut-and-paste boundaries on which Wilson lines can end
  - $\longrightarrow$  state space for cut-and-paste boundary = morphisms space  $\operatorname{Hom}_{\mathcal{C}}(X, \mathbf{1})$

F P 1 8 17 - n 8/2

Pirsa: 17080003 Page 23/99

- Reshetikhin-Turaev type TFT:

  - insertions on Wilson lines / junctions labeled by morphisms of C
  - 2-d cut-and-paste boundaries on which Wilson lines can end
  - $\longrightarrow$  state space for cut-and-paste boundary = morphisms space  $\operatorname{Hom}_{\mathcal{C}}(X, 1)$
- RT-type TFT with boundaries and defects: replace  $Cobord_{3,2,1}$  by  $Cobord_{3,2,1}^{\partial}$

Pirsa: 17080003 Page 24/99

25

```
Reshetikhin-Turaev - type TFT:
```

- input: a modular tensor category C
- insertions on Wilson lines / junctions labeled by morphisms of C
- 2-d cut-and-paste boundaries on which Wilson lines can end
- $\longrightarrow$  state space for cut-and-paste boundary = morphisms space  $\operatorname{Hom}_{\mathcal{C}}(X, \mathbf{1})$
- RT-type TFT with boundaries and defects: replace  $Cobord_{3,2,1}$  by  $Cobord_{3,2,1}^{\partial}$ 
  - in particular three-manifolds with physical boundary and/or surface defects
  - $\longrightarrow$  3-d bulk regions labeled by modular tensor categories  $\mathcal{C}_1, \mathcal{C}_2, \ldots$  (bulk Wilson lines in such a region labeled by objects of  $\mathcal{C}_i$ )
  - boundary Wilson lines and defect Wilson lines
  - several layers of insertions and of junctions

F P 1 8 17 - p 8/2

Pirsa: 17080003 Page 25/99

- Reshetikhin-Turaev type TFT:

  - insertions on Wilson lines / junctions labeled by morphisms of C
  - 2-d cut-and-paste boundaries on which Wilson lines can end
  - $\longrightarrow$  state space for cut-and-paste boundary = morphisms space  $\operatorname{Hom}_{\mathcal{C}}(X,1)$
- RT-type TFT with boundaries and defects: replace  $Cobord_{3,2,1}$  by  $Cobord_{3,2,1}^{\partial}$
- Final goal: construct symmetric monoidal 2-functor  $\operatorname{Cobord}_{3,2,1}^{\partial} \longrightarrow 2\operatorname{-Vect}$  in particular:
- Conjecture: these fit together to form bicategories of module categories

JF-Schweigert-Valentino 2013

F P 1\_8\_17 - p. 8/25

Pirsa: 17080003 Page 26/99

- lacksquare assume boundary " $oldsymbol{a}$ " to some bulk region labeled by a modular tensor cateory  $\mathcal C$ 
  - can contain boundary Wilson lines

ightarrow category  $\mathcal{W}_a$  of Wilson lines on boundary a

F P 1 8 17 - p 9/2

Pirsa: 17080003 Page 27/99





## **Labels for boundaries**

Topological defects

- assume boundary "a" to some bulk region labeled by a modular tensor cateory C
  - can contain boundary Wilson lines

  - such insertions can be composed
  - boundary Wilson lines can be fused and can be deformed
    - ightarrow rigid monoidal category  $\mathcal{W}_a$  of Wilson lines on boundary a

F P 1\_8\_17 - p. 9/25

Pirsa: 17080003 Page 30/99







# **Labels for boundaries**

Topological defects

- oxdots assume boundary " $oldsymbol{a}$ " to some bulk region labeled by a modular tensor cateory  $\mathcal C$ 
  - $\rightarrow$  fusion category  $\mathcal{W}_a$  of Wilson lines on boundary a
- impose compatibility with process of moving bulk Wilson lines to boundary
  - $\rightsquigarrow$  functor  $F_a \colon \mathcal{C} \to \mathcal{W}_a$

F P 1 8 17 - n 9/2

Pirsa: 17080003 Page 34/99

- assume boundary "a" to some bulk region labeled by a modular tensor cateory C
  - ightarrow fusion category  $\mathcal{W}_a$  of Wilson lines on boundary a
- impose compatibility with process of moving bulk Wilson lines to boundary
  - $\rightsquigarrow$  functor  $F_a \colon \mathcal{C} \to \mathcal{W}_a$
- impose compatibility of fusion in bulk and in boundary



 $\rightarrow$  monoidal structure  $F_a(u \otimes_{\mathcal{C}} v) \xrightarrow{\cong} F_a(u) \otimes_{\mathcal{W}_a} F_a(v)$  coherently

## **Labels for boundaries**

Topological defects

- assume boundary " $oldsymbol{a}$ " to some bulk region labeled by a modular tensor cateory  ${\mathcal C}$ 
  - $\rightarrow$  fusion category  $\mathcal{W}_a$  of Wilson lines on boundary a
- impose compatibility with process of moving bulk Wilson lines to boundary
  - $\rightsquigarrow$  functor  $F_a \colon \mathcal{C} \to \mathcal{W}_a$
- impose compatibility of fusion in bulk and in boundary
  - $\rightarrow$  monoidal structure on  $F_a$
- impose independence from details of bulk-to-boundary process



 $\rightarrow$  central structure  $F_a(u) \otimes_{\mathcal{W}_a} x \stackrel{\cong}{\longrightarrow} x \otimes_{\mathcal{W}_a} F_a(u)$  coherently

F P 1 8 17 - n 9/2





#### **Labels for boundaries**

Topological defects

- assume boundary "a" to some bulk region labeled by a modular tensor cateory C
  - $\rightarrow$  fusion category  $\mathcal{W}_a$  of Wilson lines on boundary a
- impose compatibility with process of moving bulk Wilson lines to boundary
  - $\rightsquigarrow$  functor  $F_a: \mathcal{C} \to \mathcal{W}_a$
- impose compatibility of fusion in bulk and in boundary
  - $\rightarrow$  monoidal structure on  $F_a$
- impose independence from details of bulk-to-boundary process
  - $\sim$  central structure  $F_a(u) \otimes_{\mathcal{W}_a} X \xrightarrow{\cong} X \otimes_{\mathcal{W}_a} F_a(u)$

equivalently: choice of lift  $F_a$  forget  $C \xrightarrow{F_a} W_a$  to Drinfeld center of  $W_a$ 

 $\widetilde{F}_a$  fully faithful

DAVYDOV-MÜGER-NIKSHYCH-OSTRIK 2013

F P 1 8 17 - n 9/2

- $\blacksquare$  assume boundary " $\blacksquare$ " to some bulk region labeled by a modular tensor cateory  $\mathcal C$ 
  - $\rightarrow$  fusion category  $\mathcal{W}_a$  of Wilson lines on boundary a
- impose compatibility with process of moving bulk Wilson lines to boundary
  - $\rightsquigarrow$  functor  $F_a: \mathcal{C} \to \mathcal{W}_a$
- impose compatibility of fusion in bulk and in boundary
  - $\rightarrow$  monoidal structure on  $F_a$
- impose independence from details of bulk-to-boundary process
  - $\rightarrow$  central structure on  $F_a$
- postulate naturality:
  - only reason for being able to consistently move boundary Wilson line  $Y \in \mathcal{W}_a$  past any  $X \in \mathcal{W}_a$  should be that  $Y = F_a(u)$  for some  $u \in \mathcal{C}$ 
    - → essentially surjective → braided equivalence

 $\mathcal{C} \stackrel{\simeq}{\longrightarrow} \mathfrak{Z}(\mathcal{W}_a)$ 

F P 1 8 17 - n 9/2



- $\blacksquare$  assume boundary "a" to some bulk region labeled by a modular tensor cateory C
- $\rightarrow$  fusion category  $\mathcal{W}_a$  of Wilson lines on boundary a
- impose compatibility with process of moving bulk Wilson lines to boundary
  - $\rightsquigarrow$  functor  $F_a : \mathcal{C} \to \mathcal{W}_a$
- impose compatibility of fusion in bulk and in boundary
  - $\rightarrow$  monoidal structure on  $F_a$
- impose independence from details of bulk-to-boundary process
  - $\rightarrow$  central structure on  $F_a$
- postulate naturality:
  - only reason for being able to consistently move boundary Wilson line  $Y \in \mathcal{W}_a$  past any  $X \in \mathcal{W}_a$  should be that  $Y = F_a(u)$  for some  $u \in \mathcal{C}$ 
    - → essentially surjective → braided equivalence

 $\mathcal{C} \stackrel{\simeq}{\longrightarrow} \mathfrak{Z}(\mathcal{W}_a)$ 

F P 1 8 17 - n 9/2

#### **Labels for boundaries**

Topological defects

35

- lacksquare assume boundary " $oldsymbol{a}$ " to some bulk region labeled by a modular tensor cateory  $\mathcal C$ 
  - $\rightarrow$  fusion category  $\mathcal{W}_a$  of Wilson lines on boundary a
- impose compatibility with process of moving bulk Wilson lines to boundary
  - $\rightsquigarrow$  functor  $F_a: \mathcal{C} \to \mathcal{W}_a$
- impose compatibility of fusion in bulk and in boundary
  - $\rightarrow$  monoidal structure on  $F_a$
- impose independence from details of bulk-to-boundary process
  - $\rightarrow$  central structure on  $F_a$
- postulate naturality:
  - only reason for being able to consistently move boundary Wilson line  $Y \in \mathcal{W}_a$  past any  $X \in \mathcal{W}_a$  should be that  $Y = F_a(u)$  for some  $u \in \mathcal{C}$ 
    - → essentially surjective → braided equivalence

 $\mathcal{C} \xrightarrow{\simeq} \mathfrak{T}(\mathcal{W}_a)$ 

In short: compatible boundary condition for bulk region  $\mathcal{C}$ 

= Witt trivialization  $\widetilde{F}_a: \mathcal{C} \stackrel{\simeq}{\longrightarrow} \mathfrak{Z}(\mathcal{W}_a)$  for some fusion category  $\mathcal{W}_a$ 

F P 1\_8\_17 - p. 9/25

Topological defects

- thus: for any given boundary condition  $a: \mathcal{C} \xrightarrow{\simeq} \mathcal{Z}(\mathcal{W})$ 
  - in particular obstruction: no compatible boundary condition unless  $[\mathcal{C}] = 0$  in Witt group of modular tensor categories

F P 1.8.17 - p. 10/25

Topological defects

thus: for any given boundary condition a:

 $\mathcal{C} \xrightarrow{\simeq} \mathcal{I}(\mathcal{W}_a)$ 

in particular obstruction: no compatible boundary condition unless  $[\mathcal{C}] = 0$  in Witt group of modular tensor categories

for any other boundary condition b:
another fusion category  $\mathcal{W}_b$  of Wilson lines

-

JF P 1.8.17 - p. 10/2

Pirsa: 17080003

37

Topological defects

thus: for any given boundary condition a:  $\mathcal{C} \xrightarrow{\simeq} \mathcal{Z}(\mathcal{W}_a)$ 

- in particular obstruction: no compatible boundary condition unless  $[\mathcal{C}] = 0$  in Witt group of modular tensor categories
- $\blacksquare$  for any other boundary condition b:
  - ightharpoonup also category  $\mathcal{W}_{a,b}$  of Wilson lines separating boundary region labeled a from region labeled b
  - •• fusion of Wilson lines in region  $a \rightarrow$  functor  $\mathcal{W}_a \times \mathcal{W}_{a,b} \longrightarrow \mathcal{W}_{a,b}$ 
    - $\sim$   $\mathcal{W}_{a,b}$  left module category over  $\mathcal{W}_a$
  - $\sim$  likewise:  $\mathcal{W}_{a,b}$  right module category over  $\mathcal{W}_b$

IF P 1\_8\_17 - p. 10/2





Topological defects

thus: for any given boundary condition a:  $\mathcal{C} \xrightarrow{\simeq} \mathcal{Z}(\mathcal{W}_a)$ 

- in particular obstruction: no compatible boundary condition unless [C] = 0 in Witt group of modular tensor categories
- $\blacksquare$  for any other boundary condition b:
  - ightharpoonup also category  $\mathcal{W}_{a,b}$  of Wilson lines separating boundary region labeled a from region labeled b
  - fusion of Wilson lines in region  $a \rightsquigarrow \text{functor } \mathcal{W}_a \times \mathcal{W}_{a,b} \longrightarrow \mathcal{W}_{a,b}$ 
    - $\sim \mathcal{W}_{a,b}$  left module category over  $\mathcal{W}_a$
  - ightharpoonup likewise:  $\mathcal{W}_{a,b}$  right module category over  $\mathcal{W}_b$
  - ightharpoonup but also:  $\mathcal{W}_{a,b}$  right module category over  $\mathcal{E}nd_{\mathcal{W}_a}(\mathcal{W}_{a,b})$

module endofunctors

F P 1\_8\_17 - p. 10/2

Topological defects

```
thus: for any given boundary condition a: \mathcal{C} \xrightarrow{\simeq} \mathcal{Z}(\mathcal{W}_a)
```

- in particular obstruction: no compatible boundary condition unless [C] = 0 in Witt group of modular tensor categories
- $\blacksquare$  for any other boundary condition b:
  - ightharpoonup also category  $\mathcal{W}_{a,b}$  of Wilson lines separating boundary region labeled a from region labeled b
  - fusion of Wilson lines in region  $a \rightarrow$  functor  $\mathcal{W}_a \times \mathcal{W}_{a,b} \longrightarrow \mathcal{W}_{a,b}$ 
    - $\sim \mathcal{W}_{a,b}$  left module category over  $\mathcal{W}_a$
  - ightharpoonup likewise:  $\mathcal{W}_{a,b}$  right module category over  $\mathcal{W}_b$
  - ightharpoonup but also:  $\mathcal{W}_{a,b}$  right module category over  $\mathcal{E}nd_{\mathcal{W}_a}(\mathcal{W}_{a,b})$
- $\blacksquare$  impose naturality:  $\mathcal{E}nd_{\mathcal{W}_a}(\mathcal{W}_{a,b}) \simeq \mathcal{W}_b$

consistency check:  $\mathcal{Z}(\mathcal{E}nd_{\mathcal{W}_a}(\mathcal{W}_{a,b})) \simeq \mathcal{Z}(\mathcal{W}_a)$  canonically

SCHAUENBURG 2001

F P 1 8 17 - p 10/2

```
thus: for any given boundary condition a: \mathcal{C} \xrightarrow{\simeq} \mathcal{Z}(\mathcal{W}_a)

in particular obstruction: no compatible boundary condition unless [\mathcal{C}] = 0

in Witt group of modular tensor categories

for any other boundary condition b:

also category \mathcal{W}_{a,b}

of Wilson lines separating boundary region labeled a from region labeled b

fusion of Wilson lines in region a \hookrightarrow \text{functor } \mathcal{W}_a \times \mathcal{W}_{a,b} \longrightarrow \mathcal{W}_{a,b}

\mathcal{W}_{a,b} left module category over \mathcal{W}_a
```

Conjecture: boundary conditions for  $\mathcal C$  form the bicategory  $\mathcal W_a$ - $\mathcal M$ od of module categories over a fusion category  $\mathcal W_a$  satisfying  $\mathcal Z(\mathcal W_a)\simeq \mathcal C$ 

⇒ can work with a single reference boundary condition

 $\longrightarrow$  but also:  $W_{a,b}$  right module category over  $\mathcal{E}nd_{W_a}(W_{a,b})$ 

 $\sim$  likewise:  $\mathcal{W}_{a,b}$  right module category over  $\mathcal{W}_b$ 

 $\blacksquare$  impose naturality:  $\mathcal{E}nd_{\mathcal{W}_a}(\mathcal{W}_{a,b}) \simeq \mathcal{W}_b$ 

F P 1 8 17 - p 10/2

Topological defects

COMMENT -

 $\square$  boundary conditions given by  $\mathcal{W}_a$ - $\mathcal{M}od$ 

 $\Longrightarrow$ 

 $\mathcal{W}_{b,c} \simeq \mathcal{F}\!\!un_{\mathcal{W}_a}(\mathcal{W}_b,\mathcal{W}_c)$  for any pair  $b\,,\,c$  of boundary conditions

\_\_\_\_\_

Pirsa: 17080003 Page 52/99

#### COMMENT -

 $\square$  boundary conditions given by  $\mathcal{W}_a$ - $\mathcal{M}od$ 

 $\Longrightarrow$ 

 $\mathcal{W}_{b,c} \simeq \mathcal{F}un_{\mathcal{W}_a}(\mathcal{W}_b,\mathcal{W}_c)$  for any pair b, c of boundary conditions

#### COMMENT -

$$\operatorname{via} \ \mathcal{C} \xrightarrow{\simeq} \mathfrak{I}(\mathcal{W}_a) \xrightarrow{\operatorname{forget}} \mathcal{W}_a$$

any  $\mathcal{W}_a$ -module  $\mathcal{M}$  has natural structure of  $\mathcal{C}$ -module but not every  $\mathcal{C}$ -module over a Witt-trivial  $\mathcal{C}$  gives a boundary condition

illustration: 
$$C = \mathcal{Z}(Vect(\mathbb{Z}_2))$$
 (toric code)

- → 6 inequivalent indecomposable C-modules
- $\sim$  2 inequivalent indecomposable  $Vect(\mathbb{Z}_2)$ -modules
- 2 elementary boundary conditions

BRAVYI-KITAEV 2001

F P 1 8 17 - n 11/2

Topological defects



- analysis for surface defects analogous:
  - ightharpoonup defect d separating bulk regions labeled by  $\mathcal{C}_1$  and  $\mathcal{C}_2$
  - •• two monoidal functors  $\mathcal{C}_1 \longrightarrow \mathcal{W}_d$  and  $\mathcal{C}_2^{\mathrm{rev}} \longrightarrow \mathcal{W}_d$  to fusion category  $\mathcal{W}_d$
  - $lue{}$  combine to central functor  $\ \mathcal{C}_1oxtimes\mathcal{C}_2^{\mathrm{rev}} o\mathcal{W}_d$

inverse braiding

Deligne product

Pirsa: 17080003 Page 54/99



Topological defects

- analysis for surface defects analogous:
  - ightharpoonup defect d separating bulk regions labeled by  $\mathcal{C}_1$  and  $\mathcal{C}_2$
  - two monoidal functors  $\mathcal{C}_1 \longrightarrow \mathcal{W}_d$  and  $\mathcal{C}_2^{\mathrm{rev}} \longrightarrow \mathcal{W}_d$  to fusion category  $\mathcal{W}_d$
  - ullet combine to central functor  $\ \mathcal{C}_1oxtimes\mathcal{C}_2^{\mathrm{rev}} o\mathcal{W}_d$
  - ightharpoonup naturality ightharpoonup braided equivalence  $\mathcal{C}_1 \boxtimes \mathcal{C}_2^{\mathrm{rev}} \stackrel{\simeq}{\longrightarrow} \mathcal{Z}(\mathcal{W}_d)$
  - ightharpoonup obstruction: no defects between  $\mathcal{C}_1$  and  $\mathcal{C}_2$  unless  $[\mathcal{C}_1]=[\mathcal{C}_2]$  in Witt group

\_\_\_\_

Topological defects

analysis for surface defects analogous:

- $\longrightarrow$  defect d separating bulk regions labeled by  $\mathcal{C}_1$  and  $\mathcal{C}_2$
- two monoidal functors  $\mathcal{C}_1 \longrightarrow \mathcal{W}_d$  and  $\mathcal{C}_2^{\mathrm{rev}} \longrightarrow \mathcal{W}_d$  to fusion category  $\mathcal{W}_d$
- $\sim$  combine to central functor  $\mathcal{C}_1 \boxtimes \mathcal{C}_2^{\text{rev}} \to \mathcal{W}_d$
- ightharpoonup naturality ightharpoonup braided equivalence  $\mathcal{C}_1 \boxtimes \mathcal{C}_2^{\mathrm{rev}} \stackrel{\simeq}{\longrightarrow} \mathcal{Z}(\mathcal{W}_d)$

$$C_1 \boxtimes C_2^{\text{rev}} \xrightarrow{\simeq} \mathcal{I}(\mathcal{W}_d)$$

 $\blacksquare$  conclude: defects separating  $\mathcal{C}_1$  from  $\mathcal{C}_2$  form bicategory  $\mathcal{W}_d$ - $\mathcal{M}od$ of module categories over a fusion category  $\mathcal{W}_d$  satisfying  $\mathcal{Z}(\mathcal{W}_d) \simeq \mathcal{C}_1 \boxtimes \mathcal{C}_2^{\mathrm{rev}}$ 

Topological defects

- analysis for surface defects analogous:
  - ightharpoonup defect d separating bulk regions labeled by  $\mathcal{C}_1$  and  $\mathcal{C}_2$
  - two monoidal functors  $\mathcal{C}_1 \longrightarrow \mathcal{W}_d$  and  $\mathcal{C}_2^{\mathrm{rev}} \longrightarrow \mathcal{W}_d$  to fusion category  $\mathcal{W}_d$
  - ightharpoonup combine to central functor  $\mathcal{C}_1 \boxtimes \mathcal{C}_2^{\mathrm{rev}} \to \mathcal{W}_d$
  - naturality  $\leadsto$  braided equivalence  $\mathcal{C}_1 \boxtimes \mathcal{C}_2^{\mathrm{rev}} \stackrel{\simeq}{\longrightarrow} \mathcal{Z}(\mathcal{W}_d)$
- conclude: defects separating  $\mathcal{C}_1$  from  $\mathcal{C}_2$  form bicategory  $\mathcal{W}_d$ - $\mathcal{M}od$  of module categories over a fusion category  $\mathcal{W}_d$  satisfying  $\mathcal{Z}(\mathcal{W}_d) \simeq \mathcal{C}_1 \boxtimes \mathcal{C}_2^{\mathrm{rev}}$

#### **EXAMPLE** -

- Arr canonical Witt trivialization  $C \boxtimes C^{rev} \xrightarrow{\simeq} \mathcal{Z}(C)$  (C modular)
  - ightharpoonup defects separating  $\mathcal{C}$  from itself =  $\mathcal{C}$ -modules
  - ightharpoonup regular  $\mathcal{C}$ -module  $(\mathcal{C}, \otimes) \sim$  transparent defect  $\mathcal{T}$
  - T serves as monoidal unit for fusion of surface defects
  - ightharpoonup Wilson lines separating  $\mathcal T$  from itself = ordinary Wilson lines

F P 1\_8\_17 - p. 12/2

Pirsa: 17080003 Page 58/99

Topological defects



- analysis for surface defects analogous:
  - $\longrightarrow$  defect d separating bulk regions labeled by  $\mathcal{C}_1$  and  $\mathcal{C}_2$
  - two monoidal functors  $\mathcal{C}_1 \longrightarrow \mathcal{W}_d$  and  $\mathcal{C}_2^{\text{rev}} \longrightarrow \mathcal{W}_d$  to fusion category  $\mathcal{W}_d$
  - ullet combine to central functor  $\ \mathcal{C}_1oxtimes\mathcal{C}_2^{\mathrm{rev}} o\mathcal{W}_d$
  - naturality  $\sim$  braided equivalence  $\mathcal{C}_1 \boxtimes \mathcal{C}_2^{\mathrm{rev}} \stackrel{\simeq}{\longrightarrow} \mathcal{Z}(\mathcal{W}_d)$

$$C_1 \boxtimes C_2^{\text{rev}} \xrightarrow{\simeq} \mathcal{I}(\mathcal{W}_d)$$

 $\blacksquare$  conclude: defects separating  $C_1$  from  $C_2$  form bicategory  $W_d$ -Modof module categories over a fusion category  $\mathcal{W}_d$  satisfying  $\mathcal{Z}(\mathcal{W}_d) \simeq \mathcal{C}_1 \boxtimes \mathcal{C}_2^{\mathrm{rev}}$ 

#### EXAMPLE -

- Turaev-Viro / Barrett-Westbury case:  $C_1 = \mathcal{Z}(A_1)$  and  $C_2 = \mathcal{Z}(A_2)$ 
  - $\sim \mathcal{C}_1 \boxtimes \mathcal{C}_2^{\text{rev}} \simeq \mathcal{Z}(\mathcal{A}_1) \boxtimes \mathcal{Z}(\mathcal{A}_2^{\text{op}}) \simeq \mathcal{Z}(\mathcal{A}_1 \boxtimes \mathcal{A}_2^{\text{op}})$
  - $\longrightarrow$  thus defects separating  $C_1$  from  $C_2$

form bicategory ( $A_1$ - $A_2$ -Bimod)

ср KITAEV-KONG 2012

Pirsa: 17080003 Page 59/99

Topological defects



- analysis for surface defects analogous:
  - $\longrightarrow$  defect d separating bulk regions labeled by  $\mathcal{C}_1$  and  $\mathcal{C}_2$
  - two monoidal functors  $\mathcal{C}_1 \longrightarrow \mathcal{W}_d$  and  $\mathcal{C}_2^{\text{rev}} \longrightarrow \mathcal{W}_d$  to fusion category  $\mathcal{W}_d$
  - ightharpoonup combine to central functor  $\mathcal{C}_1 \boxtimes \mathcal{C}_2^{\mathrm{rev}} \to \mathcal{W}_d$
  - naturality  $\sim$  braided equivalence  $\mathcal{C}_1 \boxtimes \mathcal{C}_2^{\mathrm{rev}} \stackrel{\simeq}{\longrightarrow} \mathcal{Z}(\mathcal{W}_d)$

$$C_1 \boxtimes C_2^{\text{rev}} \xrightarrow{\simeq} \mathcal{I}(\mathcal{W}_d)$$

 $\blacksquare$  conclude: defects separating  $\mathcal{C}_1$  from  $\mathcal{C}_2$  form bicategory  $\mathcal{W}_d$ - $\mathcal{M}od$ of module categories over a fusion category  $\mathcal{W}_d$  satisfying  $\mathcal{Z}(\mathcal{W}_d) \simeq \mathcal{C}_1 \boxtimes \mathcal{C}_2^{\mathrm{rev}}$ 

#### **EXAMPLE** -

special case of TV-BW: Dijkgraaf-Witten theories

#### **EXAMPLE** -

RT TFT's for multi-layer 2+1-dimensional topological orders

52

- classification of modules over a generic modular tensor category  $\mathcal{D}$  out of reach even finding *any* indecomposable  $\mathcal{D}$ -module besides  $(\mathcal{D}, \otimes)$  can be hard
- TFT for N-layer system: modular tensor category  $\mathcal{D} = \mathcal{C}^{\boxtimes N}$  with  $\mathcal{C}$  modular tensor category for each single layer
- with  $w \triangleleft (u_1 \boxtimes \cdots \boxtimes u_N) = w \otimes u_1 \otimes \cdots \otimes u_N$

and mixed associativity constraint



for N=2

categorification of fact that *commutative* ring R is  $R \otimes_{\mathbb{Z}} R$ -module

F P 1 8 17 - p 13/2



- $\mathcal{D}$ -module  $\mathcal{P}$  realizable as category  $A_{\mathcal{P}}$ -mod of left  $A_{\mathcal{P}}$ -modules in  $\mathcal{D}$ 
  - $lacksquare A_{\mathcal{P}} = igoplus_{i \in I_{\mathcal{C}}} S_i^{\vee} \boxtimes S_i$  as object
  - ightharpoonup algebra structure directly determined by fusion of simple objects in  ${\mathcal C}$
  - → A<sub>P</sub> is symmetric special Frobenius and Azumaya
- for A Azumaya  $\Psi_A := (\alpha_A^+)^{-1} \circ \alpha_A^-$

describes transmission of bulk Wilson lines through surface defect A-mod

$$\alpha_{A_{\mathcal{P}}}^+(u\boxtimes v)\cong \alpha_{A_{\mathcal{P}}}^-(v\boxtimes u)$$
 by direct calculation

- $\implies$  transmission of bulk Wilson lines through  $\mathcal{P}$  permutes the layers
- braided induction for tensor products :  $\Psi_{A_1\otimes A_2}=\Psi_{A_1}\circ\Psi_{A_2}$

as monoidal functors if  $A_{1,2}$  Azumaya

- $\implies A_{\mathcal{P}} \otimes A_{\mathcal{P}}$  Morita equivalent to  $\mathbf{1}_{\mathcal{D}}$
- •• fusion rules:  $\mathcal{T} \boxtimes_{\mathcal{D}} \mathcal{P} \simeq \mathcal{P}$  and  $\mathcal{P} \boxtimes_{\mathcal{D}} \mathcal{P} \simeq \mathcal{T}$
- ightharpoonup categories of Wilson lines:  $\mathcal{F}un_{\mathcal{D}}(\mathcal{T},\mathcal{P}) \simeq \mathcal{C} \simeq \mathcal{F}un_{\mathcal{D}}(\mathcal{P},\mathcal{T})$

$$\operatorname{End}_{\mathcal{D}}(\mathcal{T}) \simeq \mathcal{D} \simeq \operatorname{End}_{\mathcal{D}}(\mathcal{P})$$

F P 18 17 - n 14/2

Page 62/99

## **Defects in Dijkgraaf-Witten theories**

Topological defects



Dijkgraaf-Witten theory:

$$\sim \mathcal{C} = D^{\omega}(G) \text{-mod} \simeq \mathcal{Z}(\mathcal{V}ect(G)^{\omega})$$

G finite group  $\omega \in Z^3(G, \mathbb{C}^{\times})$ 

- $ightharpoonup \omega$  gives holonomy on closed three-manifolds  $\leadsto$  topological bulk Lagrangian

$$Cobord_{3,2,1} \xrightarrow{\overline{Bun}} SpanGrpd$$
 spans of groupoids

JF P 1\_8\_17 - p. 16/2



Framework

Goal: construction of TFT admitting defects as well as boundaries thus obstruction must vanish:  $\mathcal{D}\simeq\mathcal{Z}(\mathcal{A})$ for some spherical fusion category  $\mathcal{A}$ 

Framework Topological defects

```
Goal: construction of TFT admitting defects as well as boundaries
respectively. It is thus obstruction must vanish: \mathcal{D} \simeq \mathcal{Z}(\mathcal{A})
                               for some finite tensor category A
        INFORMAL DEFINITION — Finite tensor category —
   finite tensor category = fusion category minus semisimplicity
i.e.
   in particular do not fix a pivotal or spherical structure
categorical tools:
   - ends and coends
   monads
                  (monad = algebra in \mathcal{E}nd(\mathcal{B}) for \mathcal{B} not necessarily monoidal)
```

Framework Topological defects

Goal: construction of TFT admitting defects as well as boundaries

regional thus obstruction must vanish:  $\mathcal{D} \simeq \mathcal{Z}(\mathcal{A})$ 

for some finite tensor category A

Thus: not necessarily semisimple finite k-linear abelian categories

→ as objects of 2-Vect

Limitations:

- requires further structure on manifolds
- → 3-d part not yet understood

# Framework Topological defects Goal: construction of TFT admitting defects as well as boundaries regional thus obstruction must vanish: $\mathcal{D} \simeq \mathcal{Z}(\mathcal{A})$ for some finite tensor category A Geometric framework: - combed oriented manifolds

Framework Topological defects



- Goal: construction of TFT admitting defects as well as boundaries
- restant thus obstruction must vanish:  $\mathcal{D} \simeq \mathcal{Z}(\mathcal{A})$

for some finite tensor category A

- Geometric framework:
  - combed oriented manifolds
  - stratifications with CW structure
    - e.g. for surfaces: polygonal complex
    - INFORMAL DEFINITION ———— Polygonal complex -
  - polygonal complex := CW complex with
  - 2-skeleton a collection of polygons
    - edges of the polygons identified by homeomorphisms
    - vertices of the polygons possibly identified by further equivalences

KUPERBERG 1996

F P 1 8 17 - n 18/2

Pirsa: 17080003 Page 69/99

Framework Topological defects

| some details for surfaces $\Sigma$ :                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - polygonal complex                                                                                                                                                                            |
| ightharpoonup replace each 0-cell $v$ by small circle $S(v)$ around $v$                                                                                                                        |
| intersecting adjacent 1-cells transversally                                                                                                                                                    |
| $ ightharpoonup$ fix a global orientation of $\Sigma$                                                                                                                                          |
| → each 0- and 1-cell endowed with their own orientation                                                                                                                                        |
| ${\color{red} \smile}$ orientation of 2-cells determined by orientation of $\Sigma$                                                                                                            |
| <ul> <li>choose auxiliary metric g</li> <li>mathematically inessential but simplifies description</li> <li>e.g. can represent orientation of 1-cell v by unit tangent field along v</li> </ul> |
| ightharpoonup with help of the normal w.r.t. $g$ edges and circles $S(v)$ acquire a 2-orientation                                                                                              |
| w.l.o.g. assume all transverse intersections orthogonal w.r.t. $g$                                                                                                                             |

Pirsa: 17080003

F P 1.8.17 - p. 19/25



Framework Topological defects

| so | me details for surfaces $\Sigma$ :                                               |
|----|----------------------------------------------------------------------------------|
| *  | polygonal complex                                                                |
| 4  | replace each 0-cell $ v $ by small circle $ S(v) $ around $ v $                  |
|    | intersecting adjacent 1-cells transversa                                         |
| 4  | fix a global orientation of $\Sigma$                                             |
| 4  | each 0- and 1-cell endowed with their own orientation                            |
| 4  | orientation of 2-cells determined by orientation of $\boldsymbol{\Sigma}$        |
| 4  | choose auxiliary metric g                                                        |
|    | mathematically inessential but simplifies description                            |
|    | e.g. can represent orientation of 1-cell $v$ by unit tangent field along $v$     |
| 4  | with help of the normal w.r.t. $g$ edges and circles $S(v)$ acquire a 2-orientat |
|    |                                                                                  |

Pirsa: 17080003

F P 1.8.17 - p. 19/25

# **Decorations** Topological defects Algebraic framework: decorations: to 3-cell (phase) assign finite tensor category $\mathcal{A}$

- to 3-cell (phase) assign finite tensor category  $\mathcal{A}$
- to 2-cell (surface defect) assign finite bimodule category  $\mathcal{B} \equiv_{\mathcal{A}} \mathcal{B}_{\mathcal{A}'}$

up to dualities (via orientations)

and up to twisting



- ightharpoonup distinguished case: transparent defect for  $\mathcal{A}' = \mathcal{A}$ 
  - given by regular bimodule A = AAA
- ightharpoonup physical boundary: A = Vect or A' = Vect

JF P 1\_8\_17 - p. 20/2

Pirsa: 17080003 Page 74/99

**Decorations**Topological defects

```
Algebraic framework: decorations:
                              assign finite tensor category A
to 3-cell (phase)
to 2-cell (surface defect) assign finite bimodule category \mathcal{B} \equiv_{\mathcal{A}} \mathcal{B}_{\mathcal{A}'}
   up to dualities (via orientations)
   and up to twisting:
   - can twist each of the actions by a power of the left/right double dual functor

→ module structures labeled by Z

       (all equivalent in presence of pivotal structure)
   \sim can switch between left module structure on \mathcal{B} and right module structure on \mathcal{B}^{op}
   • to keep track: intersection of vertex and edge \frac{1}{2}\mathbb{Z}-valued rather than \mathbb{Z}_2
                                                                             (orientation)
   - can be done with the help of a combing:
       vector field with prescribed isolated singularities
                                                                         KUPERBERG 1996
```

Pirsa: 17080003 Page 75/99

76

### Algebraic framework: decorations:

- to 3-cell (phase) assign finite tensor category  $\mathcal{A}$
- to 2-cell (surface defect) assign finite bimodule category  $\mathcal{B} \equiv {}_{\mathcal{A}}\mathcal{B}_{\mathcal{A}'}$
- to 1-cell (generalized Wilson line) assign finite category C



 $\longrightarrow$  in standard TV: Wilson line (or rather: ribbon) labeled by object of  $\mathcal{Z}(\mathcal{A})$ 

F P 1.8.17 - p. 21/2

Pirsa: 17080003 Page 76/99

**Decorations**Topological defects

Algebraic framework: decorations:

- to 3-cell (phase) assign finite tensor category A
- to 2-cell (surface defect) assign finite bimodule category  $\mathcal{B} \equiv {}_{\mathcal{A}}\mathcal{B}_{\mathcal{A}'}$
- to 1-cell (generalized Wilson line) assign finite category C
- to determine 
   C:
  - replace 1-cell by small cylinder



F P 1 8 17 - n 21/2

Pirsa: 17080003 Page 77/99



- to 3-cell (phase) assign finite tensor category A
- to 2-cell (surface defect) assign finite bimodule category  $\mathcal{B} \equiv {}_{\mathcal{A}}\mathcal{B}_{\mathcal{A}'}$
- to 1-cell (generalized Wilson line) assign finite category C
- to determine C:
  - replace 1-cell by small cylinder
  - consider cross section: decorated 1-manifold S



F P 1 8 17 - n 21/2

Pirsa: 17080003 Page 78/99



- to 3-cell (phase) assign finite tensor category A
- to 2-cell (surface defect) assign finite bimodule category  $\mathcal{B} \equiv {}_{\mathcal{A}}\mathcal{B}_{\mathcal{A}'}$
- to 1-cell (generalized Wilson line) assign finite category C
- to determine C:
  - replace 1-cell by small cylinder
  - consider cross section : decorated 1-manifold S
  - Arr define C(S) as a category of *balancings* on a certain bimodule category B(S)



F P 1 8 17 - n 21/2

Pirsa: 17080003 Page 79/99

**Decorations** 

Topological defects

Algebraic framework: decorations:

- to 3-cell (phase) assign finite tensor category A
- to 2-cell (surface defect) assign finite bimodule category  $\mathcal{B} \equiv {}_{\mathcal{A}}\mathcal{B}_{\mathcal{A}'}$
- to 1-cell (generalized Wilson line) assign finite category C

DEFINITION — Balancing —

• for  $\mathcal A$  monoidal category,  $\mathcal B$  an  $\mathcal A$ -bimodule and  $b\in\mathcal B$ :

balancing for b :=natural family  $(\sigma_a : a.b \rightarrow b.a)$  s.t.

$$(a \otimes a') \cdot b \xrightarrow{\sigma_{a \otimes a'}} b \cdot (a \otimes a')$$

$$\operatorname{id}_a \otimes \sigma_{a'} \xrightarrow{\sigma_a \otimes \operatorname{id}_{a'}} a \cdot b \cdot a'$$

commutes for all a , a'

F P 1.8.17 - p. 21/2

Pirsa: 17080003 Page 80/99



- to 3-cell (phase) assign finite tensor category A
- to 2-cell (surface defect) assign finite bimodule category  $\mathcal{B} \equiv {}_{\mathcal{A}}\mathcal{B}_{\mathcal{A}'}$
- to 1-cell (generalized Wilson line) assign finite category C

DEFINITION

\_\_\_\_\_\_ Balancing \_\_\_

 $\mathbb{Z}_{\mathcal{A}}(\mathcal{B})$ 

:= category of objects with a balancing

COMMENTS -

- for  $\mathcal{B} = \mathcal{A}$  get Drinfeld center:  $\mathcal{Z}_{\mathcal{A}}(\mathcal{A}) = \mathcal{Z}(\mathcal{A})$
- $\square$  for  $\mathcal{A}$  having right duals:
  - $\sigma_a$  isomorphism
  - $\stackrel{\scriptstyle \leadsto}{} \mathcal{Z}_{\mathcal{A}}(\mathcal{B}) \simeq Z_{\mathcal{A}}\text{-mod}(\mathcal{B}) \ \ \text{with} \ \ Z_{\mathcal{A}} \ \ \text{the monad} \ \ Z_{\mathcal{A}} \colon \ \mathcal{B} \to \mathcal{B} \\ b \mapsto \int^{a \in \mathcal{A}} a^{\vee} \! . \, b \, . \, a$

JF P 1\_8\_17 - p. 21/25

Pirsa: 17080003 Page 81/99

82

Algebraic framework: decorations:

- to 3-cell (phase) assign finite tensor category A
- to 2-cell (surface defect) assign finite bimodule category  $\mathcal{B} \equiv {}_{\mathcal{A}}\mathcal{B}_{\mathcal{A}'}$
- to 1-cell (generalized Wilson line) assign finite category C

 $\square$  to determine  $\mathcal{C}$ :

- replace 1-cell by small cylinder
- ross section gives decorated 1-manifold S

$$\longrightarrow \mathcal{B}(S) := \bigotimes_{v \in S} \mathcal{B}_v$$



F P 1\_8\_17 - p. 21/2



- to 3-cell (phase) assign finite tensor category A
- to 2-cell (surface defect) assign finite bimodule category  $\mathcal{B} \equiv {}_{\mathcal{A}}\mathcal{B}_{\mathcal{A}'}$
- to 1-cell (generalized Wilson line) assign finite category 
  C

to determine C:

replace 1-cell by small cylinder

cross section gives decorated 1-manifold S

$$\longrightarrow \mathcal{B}(S) := \bigotimes_{v \in S} \mathcal{B}_v$$

on  $\mathcal{B}(S)$  have commuting monads (distributive laws  $Z_{\mathcal{A}_i} \circ Z_{\mathcal{A}_j} = Z_{\mathcal{A}_j} \circ Z_{\mathcal{A}_i}$ )  $\rightarrow$  monad Z on  $\mathcal{B}(S)$ 

 $ightharpoonup \operatorname{\mathsf{define}} \quad igl( \mathcal{C}(S) := Z\operatorname{\mathsf{-mod}}(\mathcal{B}(S)) igr)$ 



IF P 1\_8\_17 - p. 21/2



- to 3-cell (phase) assign finite tensor category A
- to 2-cell (surface defect) assign finite bimodule category  $\mathcal{B} \equiv {}_{\mathcal{A}}\mathcal{B}_{\mathcal{A}'}$
- to 1-cell (generalized Wilson line) assign finite category C

■ to determine C:

### COMMENTS -

- transparent case  $A_i = A$  and  $B_\ell = AA_\ell \implies C(S) = \mathcal{Z}(A)$
- comprises notions of category-valued trace and relative Deligne product

$$\text{e.g.} \quad \ \mathcal{C}(\mathrm{I}) = \mathcal{M}_1 \boxtimes_{\mathcal{A}_1} \mathcal{B} \boxtimes_{\mathcal{A}_2} \mathcal{M}_2 \quad \text{ for } \quad \mathrm{I} =$$

AT B
AT B

F P 1 8 17 - p 21/2



### EXAMPLE -

Dijkgraaf-Witten theory for  $(G, \omega)$ 

- = TV-BW theory for fusion category  $(G-Vect)^{\omega}$
- indecomposable bimodule categories classified by subgroup  $H \leq G \times G$  and 2-cocycle  $\theta$  satisfying  $d\theta = p_1^*\omega \cdot (p_2^*\omega)^{-1}$

OSTRIK 2003

- reproduce category for circle  $\mathbb{S}^1$  with one vertex lebeled by  $(H, \theta)$ :  $G \times G$ -graded vector spaces with twisted  $G \times H$ -action
- furnishes realization of category-valued trace of the bimodule category

F-SCHAUMANN-SCHWEIGERT 2017

\_\_\_\_\_

Pirsa: 17080003 Page 85/99

# **Conformal blocks** Topological defects Important task: construct spaces of conformal blocks / state spaces for any surface $\Sigma$ F P 1.8.17 - p. 23/25

Pirsa: 17080003 Page 86/99

Topological defects

Important task:

construct spaces of conformal blocks / state spaces for any surface  $\Sigma$ 

- Ingredients:
  - $\sim$   $\Sigma$  endowed with structure of finite polygonal complex, orientations ......
- a guiding principle: generalizes a theory of flat connections
  - $\sim$  1-cells (bimodule categories  $\mathcal{B}_e$ ) supply dynamical degrees of freedom
  - each 2-cell supplies a flatness condition

just like in tensor network models

Topological defects

Important task:

construct spaces of conformal blocks / state spaces for any surface  $\Sigma$ 

- Ingredients:
  - $\sim$   $\Sigma$  endowed with structure of finite polygonal complex, orientations .....
  - ightharpoonup replace each vertex  $v \in \Sigma$  by decorated 1-manifold  $S_v$
  - conformal blocks given by functor

$$Bl_{\Sigma}\colonigspace \sum_{v\in\partial\Sigma_{\mathsf{in}}}\!\mathcal{C}(S_v)\longrightarrowigspace \sum_{v\in\partial\Sigma_{\mathsf{out}}}\!\mathcal{C}(S_v)$$

IF P 1\_8\_17 - p. 23/2

Topological defects



Important task:

construct spaces of conformal blocks / state spaces for any surface  $\Sigma$ 

Ingredients:

- $\sim$   $\Sigma$  endowed with structure of finite polygonal complex, orientations .....
- ightharpoonup replace each vertex  $v \in \Sigma$  by decorated 1-manifold  $S_v$
- conformal blocks given by functor

 $Bl_{\Sigma} \colon \bigotimes_{v \in \Sigma} \mathcal{C}(S_v) \longrightarrow \mathcal{V}ect$  (w.l.o.g. only incoming vertices)

r functor must be left exact for compatibility with □ / ⊠

(parallel formulation with right exact functors)

F P 1\_8\_17 - p. 23/2

Pirsa: 17080003 Page 89/99

Topological defects



Important task:

construct spaces of conformal blocks / state spaces for any surface  $\Sigma$ 

- Ingredients:
  - ► ∑ endowed with structure of finite polygonal complex, orientations ......
  - replace each vertex  $v \in \Sigma$  by decorated 1-manifold  $S_v$
  - conformal blocks given by functor

$$Bl_{\Sigma} \colon \bigotimes_{v \in \Sigma} \mathcal{C}(S_v) \longrightarrow \mathcal{V}ect$$
 (w.l.o.g. only incoming vertices)

- r functor must be left exact for compatibility with □ / ☒
- Step 1 of construction: pre-blocks
  - ightharpoonup left exact functor  $pBl: \bigotimes_{v \in \Sigma} \mathcal{B}(S_v) \longrightarrow \mathcal{V}ect$  defined as a state sum

$$pBl_{\Sigma} = igotimes_{e \in \Sigma} (\oint^{b \in \mathcal{B}_e} \operatorname{Hom}(-, b_e^\# \boxtimes b_e))$$

$$\boxtimes_{v \in \Sigma} \mathcal{B}(S_v) \simeq \boxtimes_{e \in \Sigma} (\mathcal{B}_e^\# \boxtimes \mathcal{B}_e)$$

F P 1.8.17 - p. 23/2



### EXAMPLE

- disk with one incoming and one outgoing 0-cell:

  - O-cells labeled by 
     Nop 
     M
  - rade bimodules for functor categories (Eilenberg-Watts calculus)

$$\mathcal{R}ex(\mathcal{N}, \mathcal{M}) \xrightarrow{\simeq} \mathcal{N}^{\mathrm{op}} \boxtimes \mathcal{M} 
F \longmapsto \int_{n \in \mathcal{N}} F(n) \boxtimes m$$

 $\operatorname{Hom}_{\mathcal{N}}(-,\overline{n})^* \otimes m \longleftrightarrow \overline{n} \boxtimes m$ 

SHIMIZU 2017

F-SCHAUMANN-SCHWEIGERT 2017

- ightharpoonup specify insertions  $\overline{n}_1 \boxtimes m_1$ ,  $\overline{n}_2 \boxtimes m_2 \in \mathcal{N}^{\mathrm{op}} \boxtimes \mathcal{M}$
- $\longrightarrow$  state sum  $\int^{n \in \mathcal{N}} \int^{m \in \mathcal{M}} \operatorname{Hom}(\overline{n}_1 \boxtimes m_1 \boxtimes n_2 \boxtimes \overline{m}_2, \overline{n} \boxtimes m \boxtimes n \boxtimes \overline{m})$

$$\cong \operatorname{Hom}_{\mathcal{N}}(n_2, n_1) \otimes \operatorname{Hom}_{\mathcal{M}}(m_1, m_2)$$

$$\cong \int_{n \in \mathcal{N}} \operatorname{Hom}(F_1(n), F_2(n)) \cong \operatorname{Nat}(F_1, F_2)$$

$$F_1 = \operatorname{Hom}_{\mathcal{N}}(-, \overline{n}_1)^* \otimes m_1$$

$$F_2 = \operatorname{Hom}_{\mathcal{N}}(-, \overline{n}_2)^* \otimes m_2$$

IF P 1\_8\_17 - p. 24/2



Topological defects

### **EXAMPLE** -

- disk with one incoming and one outgoing 0-cell:
  - 1-cells labeled by bimodule categories N and M
  - •• 0-cells labeled by  $\mathcal{N}^{\mathrm{op}} \boxtimes \mathcal{M}$
  - rade bimodules for functor categories (Eilenberg-Watts calculus)

$$\mathcal{R}ex(\mathcal{N}, \mathcal{M}) \xrightarrow{\simeq} \mathcal{N}^{\mathrm{op}} \boxtimes \mathcal{M}$$

$$F \longmapsto \int_{n \in \mathcal{N}} F(n) \boxtimes m$$

 $\operatorname{Hom}_{\mathcal{N}}(-,\overline{n})^* \otimes m \longleftrightarrow \overline{n} \boxtimes m$ 

SHIMIZU 2017

F-SCHAUMANN-SCHWEIGERT 2017

- ightharpoonup specify insertions  $\overline{n}_1 \boxtimes m_1$ ,  $\overline{n}_2 \boxtimes m_2 \in \mathcal{N}^{\mathrm{op}} \boxtimes \mathcal{M}$
- $\longrightarrow$  state sum  $\int^{n \in \mathcal{N}} \int^{m \in \mathcal{M}} \operatorname{Hom}(\overline{n}_1 \boxtimes m_1 \boxtimes n_2 \boxtimes \overline{m}_2, \overline{n} \boxtimes m \boxtimes n \boxtimes \overline{m})$

$$\cong \operatorname{Hom}_{\mathcal{N}}(n_2, n_1) \otimes \operatorname{Hom}_{\mathcal{M}}(m_1, m_2)$$

$$\cong \int_{n \in \mathcal{N}} \operatorname{Hom}(F_1(n), F_2(n)) \cong \operatorname{Nat}(F_1, F_2)$$

$$F_1 = \operatorname{Hom}_{\mathcal{N}}(-, \overline{n}_1)^* \otimes m_1$$

$$F_2 = \operatorname{Hom}_{\mathcal{N}}(-, \overline{n}_2)^* \otimes m_2$$

IF P 1.8.17 - p. 24/2

Topological defects

### **EXAMPLE** -

- disk with one incoming and one outgoing 0-cell:
  - 1-cells labeled by bimodule categories N and M
  - 0-cells labeled by  $\mathcal{N}^{\mathrm{op}} \boxtimes \mathcal{M}$
  - rade bimodules for functor categories (Eilenberg-Watts calculus)

$$\mathcal{R}ex(\mathcal{N},\mathcal{M}) \xrightarrow{\simeq} \mathcal{N}^{\mathrm{op}} \boxtimes \mathcal{M}$$

$$F \longmapsto \int_{n \in \mathcal{N}} F(n) \boxtimes m$$

 $\operatorname{Hom}_{\mathcal{N}}(-,\overline{n})^* \otimes m \longleftrightarrow \overline{n} \boxtimes m$ 

SHIMIZU 2017

F-SCHAUMANN-SCHWEIGERT 2017

- ightharpoonup specify insertions  $\overline{n}_1 \boxtimes m_1$ ,  $\overline{n}_2 \boxtimes m_2 \in \mathcal{N}^{\mathrm{op}} \boxtimes \mathcal{M}$
- ightharpoonup state sum  $\int^{n \in \mathcal{N}} \int^{m \in \mathcal{M}} \operatorname{Hom}(\overline{n}_1 \boxtimes m_1 \boxtimes n_2 \boxtimes \overline{m}_2, \overline{n} \boxtimes m \boxtimes n \boxtimes \overline{m})$

$$\cong \operatorname{Hom}_{\mathcal{N}}(n_2, n_1) \otimes \operatorname{Hom}_{\mathcal{M}}(m_1, m_2)$$

$$\cong \int_{n \in \mathcal{N}} \operatorname{Hom}(F_1(n), F_2(n)) \cong \operatorname{Nat}(F_1, F_2)$$

- similarly for more 0-cells
- rethus: pre-blocks = natural transformations

F P 1 8 17 - p 24/2

Pirsa: 17080003 Page 94/99

Topological defects



- Step 2 of construction: from pre-blocks to blocks
  - functors associated to vertices via E-W are module functors

THEOREM — Conformal blocks -

genus-0 conformal blocks = spaces of module natural transformations

F P 1 8 17 - n 25/2

Pirsa: 17080003 Page 95/99

Topological defects



- Step 2 of construction: from pre-blocks to blocks
  - functors associated to vertices via E-W are module functors

genus-0 conformal blocks = spaces of module natural transformations

in the absence of defects recover the blocks of standard TV-BW theory in genus 0

Pirsa: 17080003 Page 96/99

Topological defects



- Step 2 of construction: from pre-blocks to blocks
  - functors associated to vertices via E-W are module functors
  - → impose flatness: equalizers → module natural transformations

THEOREM — Conformal blocks -

genus-0 conformal blocks = spaces of module natural transformations

Pirsa: 17080003 Page 97/99

Topological defects



- Step 2 of construction: from pre-blocks to blocks
  - functors associated to vertices via E-W are module functors

genus-0 conformal blocks = spaces of module natural transformations

in the absence of defects recover the blocks of standard TV-BW theory in genus 0

Topological defects



- Step 2 of construction: from pre-blocks to blocks
  - functors associated to vertices via E-W are module functors
  - impose flatness: equalizers  $\rightarrow$  module natural transformations

THEOREM -

Conformal blocks -

genus-0 conformal blocks = spaces of module natural transformations

### Outlook:

- invariance under relevant moves
- full description of higher-genus conformal blocks
- factorization
- 3-manifolds
- applications, e.g. to logarithmic conformal field theory

JF P 1.8.17 - p. 25/25

Pirsa: 17080003 Page 99/99