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Abstract: A variety of models, especialy Kitaev models, quantum Chern-Simons theory, and models from 3d quantum gravity, hint at a kind of
lattice gauge theory in which the gauge group is generalized to a Hopf algebra. However, until recently, no general notion of Hopf algebra gauge
theory was available. In this self-contained introduction, | will cover background on lattice gauge theory and Hopf algebras, and explain our recent
construction of Hopf algebra gauge theory on a ribbon graph (arXiv:1512.03966). The resulting theory parallels ordinary lattice gauge theory,
generalizing its structure only as necessary to accommodate more general Hopf algebras. All of the key features of gauge theory, including gauge
transformations, connections, holonomy and curvature, and observables, have Hopf algebra analogues, but with a richer structure arising from
non-cocommuntativity, the key property distinguishing Hopf algebras from groups. Main results include topological invariance of algebras of
observables, and a gauge theoretic derivation of algebras previously obtained in the combinatorial quantization of Chern-Simons theory.
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Q

Hopf algebra gauge theory

Goal: Conservative generalization of (lattice) gauge theory from
groups to Hopf algebras.
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Goal: Conservative generalization of (lattice) gauge theory from
groups to Hopf algebras.

Why?

e Deep ideas for groups deserve Hopf algebra analogues!
(Hopf algebras are groups .. .in Vect.)
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Hopt algebra gauge theory

Goal: Conservative generalization of (lattice) gauge theory from
groups to Hopf algebras.

Why?

e Deep ideas for groups deserve Hopf algebra analogues!
(Hopf algebras are groups ...in Vect.)

e Gauge theoretic understanding of existing models, e.g.:
Turaev—Viro as regularization of 3d quantum gravity,
Combinatorial quantization of Chern-Simons theory,

Other gauge-theory-like models with specific algebras, bases,

lattices. etc.

Page 5/51



Pirsa: 17080001

Q

Hopf algebra gauge theory

Goal: Conservative generalization of (lattice) gauge theory from
groups to Hopf algebras.

Why?

e Deep ideas for groups deserve Hopf algebra analogues!
(Hopf algebras are groups .. .in Vect.)

e Gauge theoretic understanding of existing models, e.g.:
Turaev—Viro as regularization of 3d quantum gravity,
Combinatorial quantization of Chern-Simons theory,

Other gauge-theory-like models with specific algebras, bases,

lattices. etc.

e Kitaev models. (See Catherine Meusburger’s talk, up next!)
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Strategy

Take lattice gauge theory, and apply the monoidal functor

(FinSet, x,1) — (Vect, ®, C)

to everything in sight.

FinSet Vect

sets vector spaces

or better: coalgebras

gToups Hopf algebras
oroup actions Hopf aleebra modules
o o

Then generalize to other fin. dim. Hopf algebras (conservatively!)
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Result

Reproduce Hamiltonian quantum Chern-Simons theory.
e topological invariant: quantum moduli space
(analog of the moduli space of flat (classical) connections)
e derived “axiomatically” by generalizing gauge theory, rather than
quantizing Poisson structures.
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Hopf algebras

A Hopf algebra is a bialgebra H with antipode S: H — H, drawn

as:

Satisfying:
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Bialgebras

A bialgebra is an algebra:

b s
. AA N
-0 Y-Il  A-T

and a coalgebra:
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Q
Lattice gauge theory

Graph with set V of vertices, set E of edges.
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Lattice gauge theory

Graph with set V of vertices, set E of edges.
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Q
Lattice gauge theory

Graph with set V of vertices, set E of edges.

ay

ary

as

ag

ai,---a7 € G. G¥ is the set of connections
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Q
Lattice gauge theory

Graph with set V of vertices, set E of edges.

gs

@i a7 € G GF is the set of connections
Gii;— - g5.€ G GV is the group of gauge transformations.
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Q
Lattice gauge theory

Graph with set V of vertices, set E of edges.

ai,...a7 € G. GF is the set of connections
G5 -~ 45 € &= GV is the group of gauge transformations.

Action of GY on GE: eg. a1 — gra193 .
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Q

Hopf algebra gauge theory from group gauge theory

Gauge theory for GG

Gauge theory for C|G|

Gauge group G
Gauge trans.: G = GY
Connections: A = G¥
Gauge action:

>D:GxA— A

Functions:

Gauge Hopf algebra C|G|
Gauge trans.: G = C[G]®"
Connections: A = (C[(;]I;L:E

Gauge action:
>:GRA—->A

Functions:

A* = {f: A— C} 2 C[G]*®” A* = C[G]*®*
Observables: A; = C A" with Observables: A = C A" with
f(g>a) = f(a) flg>a) = €(g)f(a)
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Q

Hopf algebra gauge theory from group gauge theory

Gauge theory for GG

Gauge theory for C|G|

Gauge group G _
Gauge trans.: G = GY
Connections: A = GF
Gauge action:

>D:GxA— A
Functions:
A* ={f: A— C} =C|G]*®*

Observables: A* C A* with

1mnv

flg>a) = f(a)

Gauge Hopf algebra C|G|
Gauge trans.: G = C[G]®"
Connections: A = (C[(;’]F?E

Gauge action:
>:GRA—->A
Functions:
A= C[G]*Q?,‘:E

Observables: A" C A* with

1nv

flg>a) = €(g)f(a)

(iﬂﬂ]' (lﬂ‘llﬂl“_'\]i'/f\ {.l‘r’\‘l‘l’l ((‘[(I] tn a “VI‘H'ﬂ-(]‘;‘l\\ﬁl\&.':lﬂl]ﬂ] IIF\‘I'\{. :1}0'{\]'\1‘:-1 II
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Hopf algebra gauge theory from group gauge theory

Gauge theory for G

Gauge theory for C|G]

Gauge group G
Gauge trans.: G = GV
Connections: A = GF
Gauge action:

B Gx A — A
Functions:
A* = {f: A— C} 2 C[G]*®”

Observables: A* < A* with

mv

flg>a) = f(a)

Gauge Hopf algebra C|G]|
Gauge trans.: G = (C[(;]-?-ﬂ
Connections: A = (C[(;]-?‘sb

Gauge action:
>D:GRA—- A
Functions:
A= Cler®

Observables: A" < A* with

nv

flg>a) =¢€(g)f(a)

Goal: Generalize from C[G] to a finite-dimensional Hopf algebra H .
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Gauge transformations
For a Hopft algebra H, the gauge action on connections should be
> - H-f«:‘t' R H-?%I:E —) H-FI:E
To make this linear, we need H’s comultiplication:
A:-H—->HQH

to “duplicate” vertex elements:

/

\ 92)
gd(3)
(¢} - %mu—
d(4)
/ qg(5)

\

If H is not cocommutative, we need a total order at each vertex!
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Gauge transformations

Otherwise, copy the gauge action as closely as possible:

i

I\J\
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Gauge transformations

Otherwise, copy the gauge action as closely as possible:

\ g(2) .‘i{,;;. -‘h’-sa

49(3)

[} r
g(1) > 9(1) 91y

g
/ (s 9(s) 9(6)

®a®- P - ®gyyaS(ga) @
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Ribbon Graphs

A graph with cyclically ordered edge-ends is a ribbon graph
—> surface with boundary.

— closed surface, after sewing discs.

We’ve got a bit more. .. A graph with totally ordered edge-ends is a
ciliated ribbon graph

End result is independent of ‘ciliation’ up to isomorphism, but the
cyclic order matters

== Hopft algebra gauge theory is fundamentally 2-dimensional.
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Hopt gauge theory

So far, we’ve got...
, o

Groups Hopf algebras

Gauge group G Gauge Hopf algebra H
Graph (V, F) Ciliated ribbon graph (V. FE)
Gauge trans.: G = GV Gauge trans.: G = H®Y
Connections: A = GF Connections: A = H®F
Functions: A* = Fun(G) = C[G]* | Functions: A* = J2 i
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Observables

Groups

Hopf algebras

Observables are functions
f:GF = C
that are gauge invariant:
flga)=f(a) VgeG”

Functions form an algebra in an
obvious way: A* & Fun(G)®*

Observables form a subalgebra.

Observables are linear maps
f: H®E 5 C
that are gauge invariant:
f(g>a) =e(g)f(a) Vge HE

Functions form an algebra in an
‘obvious’ way: A* = H*®F
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Observables

Groups

Hopf algebras

Observables are functions
i EY €
that are gauge invariant:

flga) = [la) Vg e GV

Functions form an algebra in an
obvious way: A* = Fun(G)®~

Observables form a subalgebra.

Observables are linear maps
f: B®= 5 ¢
that are gauge invariant:

flg>a) = e(g)f(a) Vg€ HE

Functions form an algebra in an
‘obvious’ way: A* = H*®~
Observables are not a subalgebra,
unless H is cocommutative!
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Observables

Groups

Hopf algebras

Observables are functions
-G =
that are gauge invariant:

flara)= fla) Vg € GV

Functions form an algebra in an
obvious way: A* = le((;’)i‘ib

Observables form a subalgebra.

Observables are linear maps
- Ho= ¢
that are gauge invariant:
flg>a) =€(g)f(a) Vge H®Y

New approach: generalize algebra

structure on A* =~ H*®E. ..

so that observables form a
subalgebra.

But first, why doesn’t the obvious algebra structure work?
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Module coalgebras

To get a gauge-invariant subalgebra A;  C A",

we need the action of G to preserve the algebra structure of A*
& preserve the coalgebra structure of A.
This means we need A to be a G-module coalgebra:

A(h> a)=A(h) > A(a) e(h>a) = e(h)e(a)

In the group case, this works automatically.

For Hopf algebras it does NOT work if we use the tensor product

coalgebra structure on A = H®E unless H is cocommutative.

For example ...
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Example: Gauge theory “on the edge”
Graph with one edge, two vertices:

i b h
. < . (k' ® h) > b= h'bS(h)

For a module coalgebra, we need:
/ [ /
A((h ®h)>a)=Ah ® h) > A(a)
However, with the “obvious” coalgebra structure, we find

LHS ,1{1)(1'(1}8(,1(2)) }i }}. 2)(1(2}5'(,).(1))

RIIS ’?21)“(1)5(]?(1)) X h. 2)(1(2)3(13.(2))

Fails because S is a coalgebra antthomomorphism:

But S is not the only problem ...
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Example: Single vertex

Another example:

Edges all get acted on by gauge transformation at the vertex

But tensor product of module coalgebras is not generally a module
coalgebral

(More problems with ordering of factors in comultiplication...)
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Quasitriangular Hopf Algebras

op

Need to relate A with A .

Suggests using a quasitriangular Hopf algebra, with R-matrix
Re H® H.

A°°(h) = RA(h)R™! Vhe H

This helps. For example ...

Page 34/51



Pirsa: 17080001

Gauge theory “on the edge”

Gauge transformations: G = H @ H as a Hopf algebra.

Connections: A = H as a vector space.
G-module structure:

h' b h

(' ® h) > b= h'bS(h)

Coalgebra structure: (H, 4, ¢)
d(a) = A(a)Ra
This gives a module coalgebra.

Functions: Dual of G-module coalgebra structure on A
= right G-module algebra structure on A*
—= observables are a subalgebra.
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Example: Single vertex

Solution is related to Majid’s ‘braided tensor products’ of module
(co)algebras . ..
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Example: Single vertex

Solution is related to Majid’s ‘braided tensor products’ of module
(co)algebras . ..

But how do we figure this out systematically?
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Plan: Axioms for Gauge Theory

Decide on axioms! What should a Hopf algebra gauge theory be like?
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Plan: Axioms for Gauge Theory

Decide on axioms! What should a Hopf algebra gauge theory be like?

e Mimic the gauge action from the group case
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Plan: Axioms for Gauge Theory

Decide on axioms! What should a Hopf algebra gauge theory be like?
e Mimic the gauge action from the group case

e GGive a comodule algebra of connections
— module algebra of functions.
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Plan: Axioms for Gauge Theory

Decide on axioms! What should a Hopf algebra gauge theory be like?
e Mimic the gauge action from the group case

e Give a comodule algebra of connections
— module algebra of functions.

e Have an algebra of functions that is “local”
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Local algebra
Since A* = Q) K*, we have embeddings for edges:
be: K= - A telov) =: (@),
and pairs of edges:
tees KO K™ — A teorta)=Aev)oe

Say an algebra structure on A* = K*®£ with unit 1®9¥ is local if:
(1) each ¢.(K™) is a subalgebra of A*
(ii) each tee(K* ® K*) is a subalgebra of A*
(iii) If e, e’ € E have no common vertex:
(a)e - (B)er= (B)or-{)e = (& ® B)ce for all o, € K*
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Hopf Algebra Gauge Theory
(E,V) a ciliated ribbon graph, H a Hopf algebra.

Gauge theory on I' with values in H consists of:
1 The Hopf algebra G = H®V.
2 The vector space A = H®F equipped with a coalgebra structure
such that the dual algebra structure on A* = H*®¥ is local.
3 A left G module structure >: G ® A = A on A such that:
(i) > makes A into a G module coalgebra,
(ii) > acts “as expected” for gauge transformations on single
edges. That is: if e € F is not a loop, and v € V is not an

endpoint of e:
(1) > (). = €(h)(a).
(R)t(e) B (a)e = (hK)e
(P)se) B> (@)e = (aS(h))e-
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Example: Single vertex

(thought of as a degenerate ‘graph’)

For H quasi-triangular, there’s an essentially unique algebra structure
on A* compatible with Hopf algebra gauge theory axioms:

((}),' - (‘J)I = ((1 X ))),, 1 <y
((}),' . (Cf)f = (J’(]) X (1), R> ((}'(2) X _,;"Zf(z)),"}' e

and for ¢ = 7, we have two choices:

(a); - (B)i = (af); “normal”
(@)i- (8)i = (Ba) @ ), R) (B2)a(2))i “twisted”

independently for each edge end. (Reversing arrows requires
semistmple, or more generally, ribbon Hopf alg.)
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Strategy: Dissect the graph! (Locality lets us do this)

For each edge, one half-edge is “normal”, and the other is “twisted”.

Comultiplication in H* gives an injective linear map

G : .«4*—>®.«4i

Theorem: The image of G* is a subalgebra and a K®"-submodule
of ®, A%. Pulling back this structure makes A* := K*®¥ into the
algebra of functions for a Hopf algebra gauge theory.
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Example: Single vertex

(thought of as a degenerate ‘graph’)

For H quasi-triangular, there’s an essentially unique algebra structure
on A* compatible with Hopf algebra gauge theory axioms:

(@)i - (B); = (a® B)i; <3

((}‘),' . (‘j’)f = (‘{(I) X (1), R> ((}'(2) X J(z)),} i
and for ¢« = j, we have two choices:

(&) -(B); = (@f); “normal”

(@)i - (8)i = (Ba) ® ), R) (B2)e(2))i “twisted”

independently for each edge end. (Reversing arrows requires
semistmple, or more generally, ribbon Hopf alg.)

Page 46/51



Pirsa: 17080001

Strategy: Dissect the graph! (Locality lets us do this)

For each edge, one half-edge i1s “normal”, and the other is “twisted”.

Comultiplication in H* gives an injective linear map

G @A

Theorem: The image of G* is a subalgebra and a K®"-submodule
= =

of ®, A%. Pulling back this structure makes A* := K*®¥ into the

algebra of functions for a Hopf algebra gauge theory.
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Results

e Hopf gauge theory determined by axioms: locality, module
(co)algebra, and expected local gauge action.

*

inuv

e In any Hopf algebra gauge theory A’ C A* is a subalgebra, the

algebra of observables.
e Examples:
e H = C[G] = Lattice gauge theory for G.
e H= D(H), single edge = Heisenberg double of H
e H= D(H), single looped edge = D(H)

e Algebra of functions coincides with the “lattice algebra” from
combinatorial quantization of Chern-Simons theory. [Alekseev,
Grosse, Schomerus 94|, [Buffenoir, Roche 95]

e Topological invariant of the surface with boundary obtained from
the ribbon graph.
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Holonomy

If H is semisimple, then Hopf algebra gauge theory has a holonomy
functor:
Hol: P — hom(H®¥, H)

P is the path groupoid of the graph:
e objects: vertices

e morphisms: equivalence classes of edge-paths.

hom(H®¥, H) is an algebra with multiplication

f-g=mo(f®g)olg

Associative algebra < linear category with one object.
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Curvature

e Holonomy around a face is curvature. A connection is flat if
curvature at every face is 1.
e A Haar integral in H™* gives rise to a projector

Pat : O .

1nv mv

Image of Ph.t is the quantum moduli space
[Alekseev, Grosse, Schomerus '94|, [Buffenoir Roche ’95],

[Meusburger, W|

e Topological invariant of the closed surface obtained from the
ribbon graph. (Quantum analog of hom(m, G)/G).
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More information (and references)

C. Meusburger, D. K. Wise, Hopf algebra gauge theory on a ribbon
graph, arXiv:1512.03966

Catherine’s talk. after the coffee break.
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