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Abstract: The (Freedman-Kitaev) topological model for quantum computation is an inherently fault-tolerant computation scheme, storing
information in topological (rather than local) degrees of freedom with quantum gates typically realized by braiding quasi-particles in two
dimensional media. | will give an overview of this model, emphasizing the mathematical aspects.
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Topological Quantum Computation

Topological Quantum Computation (TQC) is a computational
model built upon systems of
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Topological Quantum Computation

Topological Quantum Computation (TQC) is a computational
model built upon systems of . 2016 Physics
Nobel Prize...

Co-creators: Freedman and Kitaev

» M. Freedman, P/NP, and the quantum field computer. Proc.
Natl. Acad. Sci. USA 1998.
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Topological Quantum Computation

Topological Quantum Computation (TQC) is a computational
model built upon systems of . 2016 Physics
Nobel Prize...

Co-creators: Freedman and Kitaev

» M. Freedman, P/NP, and the quantum field computer. Proc.
Natl. Acad. Sci. USA 1998.

» A. Kitaev, Fault-tolerant quantum computation by anyons.
Ann. Physics 2003. (preprint 1997).
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Exchange Statistics: Anyons

How does the wave function ¢)(z;, z2) of point-like particles change
under z1 < 2o°?
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Exchange Statistics: Anyons

How does the wave function ¢)(z;, z2) of point-like particles change
under z1 < 207

» In R?: ¢(z1,22) = +1(22. z1) (bosons/fermions)
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Exchange Statistics: Anyons

How does the wave function ¢)(z;, z2) of point-like particles change
under z1 < 207

» In R?: ¢(z1,22) = +1(22. z1) (bosons/fermions)
» Particle exchange ~+ reps. of symmetric group S,

» In R2: (21, 22) = eU(22, 21)
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Exchange Statistics: Anyons

How does the wave function ¢(z;. z2) of point-like particles change
under z1 < 207

» In R?: ¢(z1,22) = +1(22. z1) (bosons/fermions)
» Particle exchange ~+ reps. of symmetric group S,

» In R?: (21, 22) = eU(22, 21)
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Exchange Statistics: Anyons

How does the wave function ¢)(z;, z2) of point-like particles change

under z1 < 2o7?
» In R?: ¢(z1,22) = +1(22. z1) (bosons/fermions)
» Particle exchange ~~ reps. of symmetric group S,
» In R?: (21, 22) = eU(2, 21)

» or, if state space has dimension > 1,
1(z1. 22) Z a1y i(z2,z1) non-abelian anyons.
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Exchange Statistics: Anyons

How does the wave function ¢/(z;, z2) of point-like particles change
under z1 < 2o7?

» In R3: (z1,22) = £1¢(22, z1) (bosons/fermions)

» Particle exchange ~~ reps. of symmetric group S,

» In R?: (21, 22) = eU(2, 21)

» or, if state space has dimension > 1,
1(21. 22) Z aj1)j(z2, 21) non-abelian anyons.

» Particle exchange ~~ reps. of braid group B,
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Exchange Statistics: Anyons

How does the wave function ¢/(z;, z2) of point-like particles change
under z1 < 207

» In R3: (z1,20) = £1¢(22, z1) (bosons/fermions)
» Particle exchange ~~ reps. of symmetric group S,
» In R%: : (21, 22) = €9Y(22, 21)

» or, if state space has dimension > 1,
1(21. 22) Z (22, z1) non-abelian anyons.

» Particle exchange ~ reps. of braid group B,

Why? 71(R*\ {z}) = 1 but m1(R? \ {z}) = F, Free group.

v
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The hero is the Braid Group B,: o1..... On—1 With
(R1) 0i0i110i = 0i410i0}41

> 1

(RZ) ('J','(Tj = (Tj('f,' lf ‘I*j

| 1 1+l n

g; —>
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The hero is the Braid Group B,: o1,..., On—1 With
(R1) 0i0it10i = 0i410i0i41

- 21

(R2) ('J','(Tj = (TJ'O',' if ‘I *j

I 1 1+ n

T —

Motions of n points in a disk/Mapping Class Group.
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The hero is the Braid Group B,: oq,..., On—1 With
(R1) 6icit10i = 0i410i0i41

> 1

T —

Motions of n points in a disk/Mapping Class Group.

MCG
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Topological Model

Computation Physics
a &
output measure
(fusion)
G
apply gates braid
anyons
<
initialize create
_ anyons
@

vacuum
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Foundational Questions

1. How to model Anyons on Surfaces? State Spaces?
Topological Quantum Circuits?

2. Why is TQC Fault-tolerant?
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Foundational Questions

1. How to model Anyons on Surfaces? State Spaces?
Topological Quantum Circuits?

2. Why is TQC Fault-tolerant?
3. How Powerful are TQCs?
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Modeling Anyons on Surfaces

Definition (Nayak, et al '08)

a (bosonic) system is in a if its low-energy
effective field theory is a (TQFT).
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Modeling Anyons on Surfaces

Definition (Nayak, et al '08)

a (bosonic) system is in a if its low-energy

effective field theory is a (TQFT).

A (2+1)D TQFT assigns to any (surface, boundary data) (M. /) a
| space:

(M, ) = H(M., ).
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Modeling Anyons on Surfaces

Definition (Nayak, et al '08)
a (bosonic) system is in a topological phase if its low-energy
effective field theory is a (TQFT).
A (2+1)D TQFT assigns to any (surface, boundary data) (M.£) a
space:
(M.€) — H(M.©).

Boundary (O labeled by i € £L: finite set of colors+ (anyons).
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Modeling Anyons on Surfaces

Definition (Nayak, et al '08)
a (bosonic) system is in a if its low-energy
effective field theory is a (TQFT).

A (24+1)D TQFT assigns to any (surface, boundary data) (M. /) a
space:

(M, ) = H(M,?).

Boundary () labeled by i € L: finite set of colors« (anyons).
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Basic pieces/Local Axioms

Any surface (with @) can be built from the following basic pieces:
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Basic pieces/Local Axioms

Any surface (with @) can be built from the following basic pieces:

C i=0
» disk: H( ;:’){ ;

0 else

C a=—«
» annulus: H( - b)= {0 a/
else

Pirsa: 17070065 Page 25/88



Basic pieces/Local Axioms

Any surface (with @) can be built from the following basic pieces:

€ i=1
> disk: H(";i) = :
0 else
C =
» annulus: H( - b} = ?
0 else
> pants:
o —
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Basic pieces/Local Axioms

Any surface (with @) can be built from the following basic pieces:

€ i=1
» disk: H( ;:’){ :

0 else

C a=0b"
» annulus: H( ,a,b) = {0 a/
else

> pants:

P= P - a.bhc)= CN(a.bc) .choices!
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Compatibility Axioms

Axiom (Disjoint Union)
H[(My. ) [T(Ma2, 2)] = H(My, 61) @ H(M;, (2)
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Compatibility Axioms

Axiom (Disjoint Union)
H[(My. 01) [T(Ma, 65)] = H(My, (1) @ H(Ma, (5)
Axiom (Gluing/Locality)

If M is obtained from gluing two boundary circles of M, together
then
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Compatibility Axioms

Axiom (Disjoint Union)
H[(My, (1) [T(Ma, 62)] = H(M,y. (1) @ H(My, (5)
Axiom (Gluing/Locality)

If M is obtained from gluing two boundary circles of M, together
then

H(M. () = P H(M,.l.x.x")

xeLl
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Compatibility Axioms

Axiom (Disjoint Union)
H[(My, 1) [[(Ma, 62)] = H(My, (1) @ H(M,, (5)
Axiom (Gluing/Locality)

If M is obtained from gluing two boundary circles of M, together
then

H(M. () = EHH(M,. £.x. x*)

xeLl

S (Mg) (Mg(xx')
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Fusion Channels

The state-space N(a, b, c) of:

represents the number of ways a and b may fuse to ¢
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Fusion Channels

The state-space N(a, b, c) of:

represents the number of ways a and b may fuse to ¢
Fusion Matrix: a = (N,)p.c = N(a, b, c)
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Fusion Channels

The state-space N(a, b, c) of:

represents the number of ways a and b may fuse to ¢
Fusion Matrix: a = (N,)p.c = N(a, b, c)

Principle
The Computational Space H, := H(D?;a, ..., a): the state space
of n identical type a anyons in a disk.
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Examples

Fibonaeri £.= {0, 1}

Pirsa: 17070065 Page 35/88



Examples

0 1

Fibonacci £ = {0,1}: N; = (1 1

) dim(H,) = Fib,

simg £ —{0.1. 2}

Pirsa: 17070065 Page 36/88



Examples

g 1

Fibonacci £ = {0,1}: N; = (1 ]

) dim(H,) = Fib,

Ising £ = {0,1,2}: Ny =

O = O

1 O
0 1] dim(H,)=2"
1 O
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Examples

g 1

Fibomacci £={0.1} Ny = (1 1

) dim(H,) = Fib,

Ising £ = {0,1,2}: N; = dim(H,) = 2"

O = O
=
O = O

Most generally: Modular Tensor Categories
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Examples

Fibonacci £ = {0,1}: N; = (2 i) dim(H,) = Fib,

Ising £ = {0,1,2}: Ny = dim(H,) = 2"

O == O
=
O == O

Most generally: Modular Tensor Categories
Sources: Quantum groups:

g~ Ug ~ Ugg
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Examples

0 1

Fibonacci £ = {0,1}: N; = (1 ]

) dim(H,) = Fib,

Ising £ ={0,1,2}: N; = dim(H,) = 2"

O = O
=
O = O

Most generally: Modular Tensor Categories

Sources: Quantum groups:

a—=e™i/t /(Ann(Tr
g~ Ug~ Ugg 5" Rep(Ugg) ™" c(g.0),
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Examples

g 1

Fibonacci £ = {0,1}: N; = (1 ]

) dim(H,) = Fib,

Ising £ =4{0,1,2}: Nj = dim(H,) = 2"

O = O
—_ O
O = O

Most generally: Modular Tensor Categories

Sources: Quantum groups:

g=e™'/! /(Ann(Tr
g~ Ug~ Ugg 5 Rep(Ugg) ™™ (g, 0),

Rep(D“ G) Drinfeld doubles/centers ...

Theorem (Bruillard,Ng,R,Wang)
For fixed k, finitely many models with |C| = k
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Anyon Model<+ Modular Category

anyonic system Modular Category
anyon types x € L simple X
vacuum 0 € £ 1
x* antiparticle dual X*
H(P; x,y, z) state space Hom(X ® Y. Z)
particle exchange braiding cx x
Locality Gluing Axiom
Entanglement Disjoint Union Axiom
anyon types distinguishable det(S) # 0
topological spin Hx
n anyon state space End(X®")
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Topological Circuits and Fault-Tolerance

Fix anyon a
» o; € B, acts on ‘H, = End(X?") by particle exchange
@ O o
"/ “

» E . representation p, : B, — U(H,)

» Quantum Gates: p,(0;),
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Topological Circuits and Fault-Tolerance

Fix anyon a
» o € B, acts on H, = End(X$") by particle exchange
/\ i /
@ o o
L/ v
» Bra representation p, : B, — U(H,)

» Quantum Gates: p,(0;),

» Quantum Circuits: p,(3), 5 € B,

Principle

Information is de-localized— Fault-Tolerance as errors are local.
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Topological Circuits and Fault-Tolerance

Fix anyon a
» o; € B, acts on ‘H, = End(X?") by particle exchange
' AT
i@ @]
"/ /

» Braid g representation p, : B, — U(Hn)

o

» Quantum Gates: p,(o;),

» Quantum Circuits: p,(3), 3 € B,

Principle
Information is de-localized— Fault-Tolerance as errors are local.
quantum gates p,(o;) are non-local, topological operations.
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Simulating TQCs on QCM

Freedman, Kitaev & Wang showed TQCs have hidden locality: Let
U(3) € U(H,) be a braiding quantum circuit.
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Simulating TQCs on QCM

Freedman, Kitaev & Wang showed TQCs have hidden locality: Let
U(3) € U(H,) be a braiding quantum circuit.
Goal: simulate U on V®k(n) by gates for some v.s. V.

» Set V = @(arbrc)gﬁg H{F, 2. b c)
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Simulating TQCs on QCM

Freedman, Kitaev & Wang showed TQCs have hidden locality: Let
U(3) € U(H,) be a braiding quantum circuit.

Goal: simulate U on V®k(n) by gates for some v.s. V.
> Set V =D, p.c)ecs H(Pra, b, c) and W, = v®(n-1)
» TQFT axioms ( , disjoint union) imply:

y i apk
Hn'f‘ H,, o Wrr
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Simulating TQCs on QCM

Freedman, Kitaev & Wang showed TQCs have hidden locality: Let
U(3) € U(H,) be a braiding quantum circuit.

Goal: simulate U on V®k(n) by gates for some v.s. V.
» Set V = @(a,b,c)gm H(P;a, b,c) and W, = y®(n-1)
» TQFT axioms ( , disjoint union) imply:

. ek
Hn'T‘H” = Wn

Remark
V' can be quite large and U(/3) only acts on the subspace H,,
non-computational space H+ can be large
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Local BB, representations: Yang-Baxter eqn.

Definition
(R, V) is a braided vector space
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Local BB, representations: Yang-Baxter eqn.

Definition
(R. V) is a braided vector space if R € Aut(V @ V) satisfies

(R Iv)(lv® R)(R® Iv) = (v ® R)(R® lv)(ly ® R)

Induces a sequence of B,-reps (pf. V®") by

Pirsa: 17070065 Page 51/88



Local BB, representations: Yang-Baxter eqn.

Definition
(R. V) is a braided vector space if R € Aut(V @ V) satisfies

(R Iv)(lv@ R)R®Ilv)=(lv®@ R)(R® Iv)(lv ® R)
Induces a sequence of B,-reps (pf, V") by

pPloi) =" ®Re """
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Local B, representations: Yang-Baxter eqn.

Definition
(R. V) is a braided vector space if R € Aut(V @ V) satisfies

(Rl)(W®R)(R®Ilv)=(lv® R)(R® Iv)(lv ® R)
Induces a sequence of B,-reps (pR, V") by

I)R((TI) = I\“}';f-—] R R;‘\ Ii‘/\.!?—{_]_

G T e o
Vl WY * * * KN V’- Vf I '>\‘ oy '>\I V.” ﬁﬁ Vl ‘>‘.' iy '.-\’K.‘ R( V]‘ Vfl | l) P8 St 7, % V.”
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Square Peg, Round Hole?

Definition (R,Wang '12)

A localization of a sequence of B,-reps. (p,. V,) is a braided
vector space (R, W) and
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Square Peg, Round Hole?

Definition (R,Wang '12)

A localization of a sequence of B,-reps. (p,, V,) is a braided
vector space (R, W) and injective algebra maps

Tn : Cpn(B,) — End(W®")
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Square Peg, Round Hole?

Definition (R,Wang '12)
A localization of a sequence of B,-reps. (p,, V,) is a braided

vector space (R, W) and injective algebra maps
™o Cpn(B,) — End(W®") such that the following diagram

commutes:

Page 56/88
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Square Peg, Round Hole?

Definition (R,Wang '12)
A localization of a sequence of B,-reps. (p,, V,) is a braided

vector space (R, W) and injective algebra maps
™o Cpn(B,) — End(W®") such that the following diagram

commutes:
CB,

I'R
Pn

(C/)”(B”) ...... e End(Wriin)

|dea: Push braiding gates inside a braided QCM.

Page 57/88
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Example Ising C(sl,, 4)

1 0 0 1
g & -1 ¢
tR=-1
Le Zle » 1 @
10 0 1
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Example Ising C(sl,, 4)

1 0O O 1
0 1 -1 0

tR=1
Le vz2lo0 1 1 @
-3 0 O 1

Theorem (Franko,R,Wang '06)
(R,C?) localizes Ising (pX,Hn) for X = X1 € C(sl>,4)
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Example Ising C(sl,, 4)

1 0
0 1 -1
]
letR="51 04

p—
_— O O

-1 0 O
Theorem (Franko,R,Wang '06)
(R,C?) localizes Ising (pX.Hn) for X = X1 € C(sl3.4)

Remark
Notice: object X is
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Example Ising C(sl,, 4)

2
Let)'?—v/§

o O -

0
|
1

p—
— O O =

-1 0 O

Theorem (Franko,R,Wang '06)
(R,C?) localizes Ising (pX.Hn) for X = Xy € C(sl3.4)

Remark
Notice: object X is hidden locality has
dim(V) = 10, dim(W) = 10"~! while dim(#,) € O(2").
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Example Ising C(sl,, 4)

1 & o 1
g & & @
tR=-1
Le Zle 3 1 @
e a 1

Theorem (Franko,R,Wang '06)
(R, C?) localizes Ising (pX,H,) for X = X1 € C(sl3, 4)

Remark
Notice: object X is | . ice! hidden locality has
dim(V) = 10, dim(W) = 10”1 while dim(#,) € O(2").
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Example Ising C(sl,, 4)

} & & 1
g & -1 ¢
tR=-
Le vZle 1 1 o
“F 8 e

Theorem (Franko,R,Wang '06)
(R,C?) localizes Ising (pX.Hn) for X = X1 € C(sl3.4)

Remark
Notice: object X is hidden locality has
dim(V) = 10, dim(W) = 10"~ ! while dim(#,) € O(2").

Theorem (R,Wang '12)

Fibonacci not localizable.
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Computational Power: Universal Anyons

Question (Quantum Information)

When does an anyon a provide universal computation models?
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Computational Power: Universal Anyons

Question (Quantum Information)

When does an anyon a provide universal computation models? |.e.
when can any quantum circuit be (approximately) realized by a
braiding circuit?
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Computational Power: Universal Anyons

Question (Quantum Information)

When does an anyon a provide universal computation models? |.e.
when can any quantum circuit be (approximately) realized by a
braiding circuit?

Ising anyon o is not universal:

particle exchange generates a
finite group. [Jones '86]

anyon 7 is universal.
[Freedman,Larsen,Wang '02]
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Computational Power: Universal Anyons

Question (Quantum Information)

When does an anyon a provide universal computation models? |.e.
when can any quantum circuit be (approximately) realized by a
braiding circuit?

Ising anyon o is not universal:

particle exchange generates a
finite group. [Jones '86]

anyon 7 is universal.
[Freedman,Larsen,Wang '02]

KEY: p-(B,) D SU(f,) x SU(f,—1), where H, = C'» ¢ Cl-1,

. (1+v5)" — (1 - v5)°
o 2n\/5
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Quantum Dimensions

Definition
Let be the (Perron-Frobenius) eigenvalue of N,.
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Quantum Dimensions

Definition

Let be the (Perron-Frobenius) eigenvalue of N,.
3 . Loop amplitudes ( ),
2. dimH, ~ dim(a)"
3. Coincides with ion for Ugg

Pirsa: 17070065 Page 69/88



Quantum Dimensions

Definition

Let be the (Perron-Frobenius) eigenvalue of N,.
1. . Loop amplitudes ( ),
2. dimH,, ~ dim(a)"
3. Coincides with ion for Ugg

dim(c) = v/2 (Ising) while dim(7) = 1~-2\E (Fibonacci).
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One to rule them all?

Anyon a is

» non-abelian if p,(B,) is non-abelian
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One to rule them all?

Anyon a is
» non-abelian if p,(B,) is non-abelian

» Universal if p,(B,) infinite modulo center

Pirsa: 17070065 Page 72/88



One to rule them all?

Anyon a is
» non-abelian if p,(B,) is non-abelian
» Universal if p,(B,) infinite modulo center

> if pa(B,) simulated on QCM via Yang-Baxter
operator gate R
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One to rule them all?

Anyon a is
» non-abelian if p,(B,) is non-abelian
» Universal if p,(B,) infinite modulo center

> if pa(B,) simulated on QCM via Yang-Baxter
operator gate R

Principle
All determined by dim(a):
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One to rule them all?

Anyon a is
» non-abelian if p,(B,) is non-abelian
» Universal if p,(B,) infinite modulo center

> if pa(B,) simulated on QCM via Yang-Baxter
operator gate R

Principle
All determined by dim(a):

» non-abelian anyons: dim(a) > 1
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One to rule them all?

Anyon a is
» non-abelian if p,(B,) is non-abelian
» Universal if p,(B,) infinite modulo center

» if pa(B,) simulated on QCM via Yang-Baxter
operator gate R

Principle
All determined by dim(a):
» non-abelian anyons: dim(a) > 1
» Universal anyons: dim(a)? & Z (conj. 2007)

> anyons: dim(a)? € Z (conj.)
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One to rule them all?

Anyon a is
» non-abelian if p,(B,) is non-abelian
» Universal if p,(B,) infinite modulo center

> if pa(B,) simulated on QCM via Yang-Baxter
operator gate R

Principle
All determined by dim(a):

» non-abelian anyons: dim(a) > 1
» Universal anyons: dim(a)? & Z (conj. 2007)
> anyons: dim(a)? € Z (conj.)

True for “fundamental” anyons in all quantum group models.
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dim(a) > 1 implies a Non-Abelian Anyon

If there is a b # v (v = vacuum) with N(a, a, b) # 0.

Pirsa: 17070065 Page 78/88



dim(a) > 1 implies a Non-Abelian Anyon

If there is a b # v (v = vacuum) with N(a, a, b) # 0.
b a
y, b ~ / a
% = a W # 0
//// a
O
vy la
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dim(a) > 1 implies a Non-Abelian Anyon

If there is a b # v (v = vacuum) with N(a, a, b) # 0.
b 3 particle exchange is v /d then
/

y b ~ i a
g =9 W # 0
// a

O

vi la
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dim(a) > 1 implies a Non-Abelian Anyon

If there is a b # v (v = vacuum) with N(a,a. b) # 0.
b = particle exchange is v/d then
/ b a
, o S \/ b a
N T 0 ] # 0 £ L
)
/ a — ~y — 0
é / * }
viola

Pirsa: 17070065 Page 81/88



Current/Future Directions

The story does not end here!
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Current/Future Directions

The story does not end here! Refinements are possible:

» 3D materials/Loop-like excitations?
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Current/Future Directions

The story does not end here! Refinements are possible:
» 3D materials/Loop-like excitations?

» Fermions<» Fermionic Modular Categories
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THANK YOU!

see: arXiv:1705.06206
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