Title: Topological Quantum Computation

Date: Jul 31, 2017 03:00 PM

URL: http://pirsa.org/17070065

Abstract: The (Freedman-Kitaev) topological model for quantum computation is an inherently fault-tolerant computation scheme, storing information in topological (rather than local) degrees of freedom with quantum gates typically realized by braiding quasi-particles in two dimensional media. I will give an overview of this model, emphasizing the mathematical aspects.

Pirsa: 17070065 Page 1/88

Eric Rowell, PI, July 2017

Pirsa: 17070065

Pirsa: 17070065 Page 3/88

Topological Quantum Computation (TQC) is a computational model built upon systems of topological phases.

Pirsa: 17070065 Page 4/88

Topological Quantum Computation (TQC) is a computational model built upon systems of topological phases. 2016 Physics Nobel Prize...

Co-creators: Freedman and Kitaev

 M. Freedman, P/NP, and the quantum field computer. Proc. Natl. Acad. Sci. USA 1998.

イロナイタナイミナイミト ま りなび

Pirsa: 17070065 Page 5/88

Topological Quantum Computation (TQC) is a computational model built upon systems of topological phases. 2016 Physics Nobel Prize...

Co-creators: Freedman and Kitaev

- ► M. Freedman, *P/NP*, and the quantum field computer. Proc. Natl. Acad. Sci. USA 1998.
- Ann. Physics 2003. (preprint 1997).

Pirsa: 17070065 Page 6/88

How does the wave function $\psi(z_1, z_2)$ of point-like particles change under $z_1 \leftrightarrow z_2$?

How does the wave function $\psi(z_1, z_2)$ of point-like particles change under $z_1 \leftrightarrow z_2$?

▶ In \mathbb{R}^3 : $\psi(z_1, z_2) = \pm \psi(z_2, z_1)$ (bosons/fermions)

How does the wave function $\psi(z_1, z_2)$ of point-like particles change under $z_1 \leftrightarrow z_2$?

- ▶ In \mathbb{R}^3 : $\psi(z_1, z_2) = \pm \psi(z_2, z_1)$ (bosons/fermions)
- ▶ Particle exchange \rightsquigarrow reps. of symmetric group S_n
- ▶ In \mathbb{R}^2 : (abelian) anyons: $\psi(z_1, z_2) = e^{i\theta} \psi(z_2, z_1)$

How does the wave function $\psi(z_1, z_2)$ of point-like particles change under $z_1 \leftrightarrow z_2$?

- In \mathbb{R}^3 : $\psi(z_1, z_2) = \pm \psi(z_2, z_1)$ (bosons/fermions)
- ▶ Particle exchange \rightsquigarrow reps. of symmetric group S_n
- ▶ In \mathbb{R}^2 : (abelian) anyons: $\psi(z_1, z_2) = e^{i\theta} \psi(z_2, z_1)$

How does the wave function $\psi(z_1, z_2)$ of point-like particles change under $z_1 \leftrightarrow z_2$?

- In \mathbb{R}^3 : $\psi(z_1, z_2) = \pm \psi(z_2, z_1)$ (bosons/fermions)
- ▶ Particle exchange \rightsquigarrow reps. of symmetric group S_n
- ▶ In \mathbb{R}^2 : (abelian) anyons: $\psi(z_1, z_2) = e^{i\theta} \psi(z_2, z_1)$
- or, if state space has dimension > 1, $\psi_1(z_1, z_2) = \sum_i a_i \psi_j(z_2, z_1)$ non-abelian anyons.

(ロ) (団) (注) (注) 注 り(0

How does the wave function $\psi(z_1, z_2)$ of point-like particles change under $z_1 \leftrightarrow z_2$?

- In \mathbb{R}^3 : $\psi(z_1, z_2) = \pm \psi(z_2, z_1)$ (bosons/fermions)
- ▶ Particle exchange \rightsquigarrow reps. of symmetric group S_n
- ▶ In \mathbb{R}^2 : (abelian) anyons: $\psi(z_1, z_2) = e^{i\theta} \psi(z_2, z_1)$
- or, if state space has dimension > 1, $\psi_1(z_1, z_2) = \sum_j a_j \psi_j(z_2, z_1)$ non-abelian anyons.
- ▶ Particle exchange \rightsquigarrow reps. of braid group \mathcal{B}_n

Pirsa: 17070065 Page 12/88

How does the wave function $\psi(z_1, z_2)$ of point-like particles change under $z_1 \leftrightarrow z_2$?

- In \mathbb{R}^3 : $\psi(z_1, z_2) = \pm \psi(z_2, z_1)$ (bosons/fermions)
- ▶ Particle exchange \rightsquigarrow reps. of symmetric group S_n
- ▶ In \mathbb{R}^2 : (abelian) anyons: $\psi(z_1, z_2) = e^{i\theta} \psi(z_2, z_1)$
- or, if state space has dimension > 1, $\psi_1(z_1, z_2) = \sum_i a_j \psi_j(z_2, z_1)$ non-abelian anyons.
- ▶ Particle exchange \rightsquigarrow reps. of braid group \mathcal{B}_n
- ▶ Why? $\pi_1(\mathbb{R}^3 \setminus \{z_i\}) = 1$ but $\pi_1(\mathbb{R}^2 \setminus \{z_i\}) = F_n$ Free group.

Pirsa: 17070065 Page 13/88

The hero is the Braid Group \mathcal{B}_n : $\sigma_1, \ldots, \sigma_{n-1}$ with

(R1)
$$\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$$

(R2)
$$\sigma_i \sigma_j = \sigma_j \sigma_i$$
 if $|i - j| > 1$

$$\sigma_i \mapsto$$

The hero is the Braid Group \mathcal{B}_n : $\sigma_1, \ldots, \sigma_{n-1}$ with

(R1)
$$\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$$

(R2)
$$\sigma_i \sigma_j = \sigma_j \sigma_i$$
 if $|i - j| > 1$

$$\sigma_i \qquad \mapsto$$

Motions of n points in a disk/Mapping Class Group.

The hero is the **Braid Group** \mathcal{B}_n : $\sigma_1, \ldots, \sigma_{n-1}$ with

(R1)
$$\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$$

(R2)
$$\sigma_i \sigma_j = \sigma_j \sigma_i$$
 if $|i - j| > 1$

$$\sigma_i \qquad \mapsto$$

Motions of n points in a disk/Mapping Class Group.

Topological Model

Pirsa: 17070065 Page 17/88

Foundational Questions

- How to model Anyons on Surfaces? State Spaces?
 Topological Quantum Circuits?
- 2. Why is TQC Fault-tolerant?

Pirsa: 17070065 Page 18/88

Foundational Questions

- How to model Anyons on Surfaces? State Spaces?
 Topological Quantum Circuits?
- 2. Why is TQC Fault-tolerant?
- 3. How Powerful are TQCs?

Modeling Anyons on Surfaces

Definition (Nayak, et al '08)

a (bosonic) system is in a topological phase if its low-energy effective field theory is a topological quantum field theory (TQFT).

イロト イポト イラト イラト ラ りなく

Pirsa: 17070065 Page 20/88

Modeling Anyons on Surfaces

Definition (Nayak, et al '08)

a (bosonic) system is in a topological phase if its low-energy effective field theory is a topological quantum field theory (TQFT).

A (2+1)D **TQFT** assigns to any (surface, boundary data) (M, ℓ) a Hilbert space:

$$(M,\ell) \to \mathcal{H}(M,\ell)$$
.

Pirsa: 17070065 Page 22/88

Modeling Anyons on Surfaces

Definition (Nayak, et al '08)

a (bosonic) system is in a topological phase if its low-energy effective field theory is a topological quantum field theory (TQFT).

A (2+1)D **TQFT** assigns to any (surface, boundary data) (M, ℓ) a Hilbert space:

$$(M,\ell) \to \mathcal{H}(M,\ell)$$
.

Boundary \bigcirc labeled by $i \in \mathcal{L}$: finite set of colors \leftrightarrow (anyons).

Pirsa: 17070065 Page 23/88

Any surface (with ∂) can be built from the following basic pieces:

Pirsa: 17070065 Page 24/88

Any surface (with ∂) can be built from the following basic pieces:

• disk:
$$\mathcal{H}(\bigcirc;i) = \begin{cases} \mathbb{C} & i = 0 \\ 0 & else \end{cases}$$

▶ annulus:
$$\mathcal{H}(\bigcirc; a, b) = \begin{cases} \mathbb{C} & a = b^* \\ 0 & else \end{cases}$$

Any surface (with ∂) can be built from the following basic pieces:

▶ disk:
$$\mathcal{H}(\bigcirc; i) = \begin{cases} \mathbb{C} & i = 0 \\ 0 & else \end{cases}$$

annulus:
$$\mathcal{H}(\bigcirc; a, b) = \begin{cases} \mathbb{C} & a = b^* \\ 0 & else \end{cases}$$

pants:

Any surface (with ∂) can be built from the following basic pieces:

▶ disk:
$$\mathcal{H}(\bigcirc; i) = \begin{cases} \mathbb{C} & i = 0 \\ 0 & else \end{cases}$$

▶ annulus:
$$\mathcal{H}(\bigcirc; a, b) = \begin{cases} \mathbb{C} & a = b^* \\ 0 & else \end{cases}$$

pants:

$$\mathcal{H}(P; a, b, c) = \mathbb{C}^{N(a,b,c)} \setminus \text{choices!}$$

Axiom (Disjoint Union)

$$\mathcal{H}[(M_1,\ell_1)\coprod(M_2,\ell_2)]=\mathcal{H}(M_1,\ell_1)\otimes\mathcal{H}(M_2,\ell_2)$$

Pirsa: 17070065

Axiom (Disjoint Union)

$$\mathcal{H}[(M_1,\ell_1)\coprod(M_2,\ell_2)]=\mathcal{H}(M_1,\ell_1)\otimes\mathcal{H}(M_2,\ell_2)$$

Axiom (Gluing/Locality)

If M is obtained from gluing two boundary circles of M_g together then

Pirsa: 17070065 Page 29/88

Axiom (Disjoint Union)

$$\mathcal{H}[(M_1,\ell_1)\coprod(M_2,\ell_2)]=\mathcal{H}(M_1,\ell_1)\otimes\mathcal{H}(M_2,\ell_2)$$

Axiom (Gluing/Locality)

If M is obtained from gluing two boundary circles of M_{g} together then

$$\mathcal{H}(M,\ell) = \bigoplus_{x \in \mathcal{L}} \mathcal{H}(M_g,\ell,x,x^*)$$

Pirsa: 17070065 Page 30/88

Axiom (Disjoint Union)

$$\mathcal{H}[(M_1,\ell_1)\coprod(M_2,\ell_2)]=\mathcal{H}(M_1,\ell_1)\otimes\mathcal{H}(M_2,\ell_2)$$

Axiom (Gluing/Locality)

If M is obtained from gluing two boundary circles of M_{g} together then

$$\mathcal{H}(M,\ell) = \bigoplus_{x \in \mathcal{L}} \mathcal{H}(M_g,\ell,x,x^*)$$

 (M_g, ℓ, x, x^*)

Fusion Channels

The state-space dimension N(a, b, c) of:

represents the number of ways a and b may fuse to c

Pirsa: 17070065 Page 32/88

Fusion Channels

The state-space dimension N(a, b, c) of:

represents the number of ways a and b may fuse to c Fusion Matrix: $a \to (N_a)_{b,c} = N(a,b,c)$

Fusion Channels

The state-space dimension N(a, b, c) of:

represents the number of ways a and b may fuse to c Fusion Matrix: $a \to (N_a)_{b,c} = N(a,b,c)$

Principle

The Computational Space $\mathcal{H}_n := \mathcal{H}(D^2; a, ..., a)$: the state space of n identical type a anyons in a disk.

イロンイタンイミンイミン を からの

Examples

Fibonacci
$$\mathcal{L} = \{0,1\}$$
:

Examples

Fibonacci
$$\mathcal{L}=\{0,1\}$$
: $N_1=\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \dim(\mathcal{H}_n)=Fib_n$

Ising
$$\mathcal{L} = \{0, 1, 2\}$$
:

Fibonacci
$$\mathcal{L}=\{0,1\}$$
: $\mathcal{N}_1=egin{pmatrix} 0 & 1 \ 1 & 1 \end{pmatrix} \operatorname{dim}(\mathcal{H}_n)=Fib_n$

Ising
$$\mathcal{L} = \{0, 1, 2\}$$
: $N_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \dim(\mathcal{H}_n) = 2^n$

Fibonacci
$$\mathcal{L} = \{0,1\}$$
: $N_1 = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \dim(\mathcal{H}_n) = Fib_n$

Ising
$$\mathcal{L} = \{0, 1, 2\}$$
: $N_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \dim(\mathcal{H}_n) = 2^n$

Most generally: Modular Tensor Categories

Fibonacci
$$\mathcal{L} = \{0,1\}$$
: $N_1 = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \dim(\mathcal{H}_n) = Fib_n$

Ising
$$\mathcal{L} = \{0, 1, 2\}$$
: $N_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \dim(\mathcal{H}_n) = 2^n$

Most generally: Modular Tensor Categories

Sources: Quantum groups:

$$\mathfrak{g} \rightsquigarrow U\mathfrak{g} \rightsquigarrow U_q\mathfrak{g}$$

Fibonacci
$$\mathcal{L} = \{0,1\}$$
: $N_1 = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \dim(\mathcal{H}_n) = Fib_n$

Ising
$$\mathcal{L} = \{0, 1, 2\}$$
: $N_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \dim(\mathcal{H}_n) = 2^n$

Most generally: Modular Tensor Categories

Sources: Quantum groups:

$$\mathfrak{g} \rightsquigarrow U\mathfrak{g} \rightsquigarrow U_q\mathfrak{g} \stackrel{q=e^{\pi i/\ell}}{\leadsto} \operatorname{\mathsf{Rep}}(U_q\mathfrak{g}) \stackrel{/\langle Ann(Tr) \rangle}{\leadsto} \mathcal{C}(\mathfrak{g},\ell),$$

Fibonacci
$$\mathcal{L} = \{0,1\}$$
: $N_1 = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \dim(\mathcal{H}_n) = Fib_n$

Ising
$$\mathcal{L} = \{0, 1, 2\}$$
: $N_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \dim(\mathcal{H}_n) = 2^n$

Most generally: Modular Tensor Categories

Sources: Quantum groups:

$$\mathfrak{g} \leadsto U\mathfrak{g} \leadsto U_q\mathfrak{g} \stackrel{q=e^{\pi i/\ell}}{\leadsto} \mathsf{Rep}(U_q\mathfrak{g}) \stackrel{/\langle Ann(Tr) \rangle}{\leadsto} \mathcal{C}(\mathfrak{g},\ell),$$

 $\mathsf{Rep}(D^\omega G)$ Drinfeld doubles/centers ...

Theorem (Bruillard, Ng, R, Wang)

For fixed k, finitely many models with $|\mathcal{L}| = k$

Pirsa: 17070065 Page 41/88

$\mathsf{Anyon}\;\mathsf{Model}{\leftrightarrow}\;\mathsf{Modular}\;\mathsf{Category}$

anyonic system	Modular Category
anyon types $x \in \mathcal{L}$	simple X
vacuum $0 \in \mathcal{L}$	1
x* antiparticle	dual X*
$\mathcal{H}(P; x, y, z)$ state space	$Hom(X \otimes Y, Z)$
particle exchange	braiding $c_{X,X}$
Locality	Gluing Axiom
Entanglement	Disjoint Union Axiom
anyon types distinguishable	$\det(S) \neq 0$
topological spin	θ_X
n anyon state space	$End(X^{\otimes n})$

Pirsa: 17070065 Page 42/88

Topological Circuits and Fault-Tolerance

Fix anyon a

 $lacksymbol{\sigma}_i \in \mathcal{B}_n$ acts on $\mathcal{H}_n = \operatorname{End}(X_a^{\otimes n})$ by particle exchange

- ▶ Braid group representation ρ_a : $\mathcal{B}_n \to U(\mathcal{H}_n)$
- Quantum Gates: $\rho_a(\sigma_i)$,

Pirsa: 17070065 Page 43/88

Topological Circuits and Fault-Tolerance

Fix anyon a

 $lacksymbol{\sigma}_i \in \mathcal{B}_n$ acts on $\mathcal{H}_n = \operatorname{End}(X_a^{\otimes n})$ by particle exchange

- ▶ Braid group representation ρ_a : $\mathcal{B}_n \to U(\mathcal{H}_n)$
- Quantum Gates: $\rho_a(\sigma_i)$,
- ▶ Quantum Circuits: $\rho_a(\beta)$, $\beta \in \mathcal{B}_n$

Principle

Information is de-localized

Fault-Tolerance as errors are local.

Pirsa: 17070065 Page 44/88

Topological Circuits and Fault-Tolerance

Fix anyon a

 $lacksymbol{\sigma}_i \in \mathcal{B}_n$ acts on $\mathcal{H}_n = \operatorname{End}(X_a^{\otimes n})$ by particle exchange

- ▶ Braid group representation ρ_a : $\mathcal{B}_n \to U(\mathcal{H}_n)$
- Quantum Gates: $\rho_a(\sigma_i)$,
- ▶ Quantum Circuits: $\rho_a(\beta)$, $\beta \in \mathcal{B}_n$

Principle

Information is de-localized \rightarrow Fault-Tolerance as errors are local. quantum gates $\rho_a(\sigma_i)$ are non-local, topological operations.

イロン イタン イミン イミン ま かなひ

Pirsa: 17070065 Page 45/88

Freedman, Kitaev & Wang showed TQCs have hidden locality: Let $U(\beta) \in \mathbf{U}(\mathcal{H}_n)$ be a braiding quantum circuit.

Pirsa: 17070065 Page 46/88

Freedman, Kitaev & Wang showed TQCs have hidden locality: Let $U(\beta) \in \mathbf{U}(\mathcal{H}_n)$ be a braiding quantum circuit. Goal: simulate U on $V^{\otimes k(n)}$ by local gates for some v.s. V.

▶ Set $V = \bigoplus_{(a,b,c) \in \mathcal{L}^3} \mathcal{H}(P; a, b, c)$

Freedman, Kitaev & Wang showed TQCs have hidden locality: Let $U(\beta) \in \mathbf{U}(\mathcal{H}_n)$ be a braiding quantum circuit. Goal: simulate U on $V^{\otimes k(n)}$ by local gates for some v.s. V.

- ▶ Set $V = \bigoplus_{(a,b,c) \in \mathcal{L}^3} \mathcal{H}(P; a,b,c)$ and $W_n = V^{\otimes (n-1)}$
- ► TQFT axioms (gluing, disjoint union) imply:

$$\mathcal{H}_n \oplus \mathcal{H}_n^{\perp} = W_n$$

Freedman, Kitaev & Wang showed TQCs have hidden locality: Let $U(\beta) \in \mathbf{U}(\mathcal{H}_n)$ be a braiding quantum circuit. Goal: simulate U on $V^{\otimes k(n)}$ by local gates for some v.s. V.

- ▶ Set $V = \bigoplus_{(a,b,c) \in \mathcal{L}^3} \mathcal{H}(P; a,b,c)$ and $W_n = V^{\otimes (n-1)}$
- ► TQFT axioms (gluing, disjoint union) imply:

$$\mathcal{H}_n \oplus \mathcal{H}_n^{\perp} = W_n$$

Remark

V can be quite large and $U(\beta)$ only acts on the subspace \mathcal{H}_n , non-computational space \mathcal{H}_n^{\perp} can be large

Definition

(R, V) is a braided vector space

Pirsa: 17070065 Page 50/88

Definition

(R, V) is a **braided vector space** if $R \in Aut(V \otimes V)$ satisfies

$$(R \otimes I_V)(I_V \otimes R)(R \otimes I_V) = (I_V \otimes R)(R \otimes I_V)(I_V \otimes R)$$

Induces a sequence of local \mathcal{B}_n -reps $(\rho^R, V^{\otimes n})$ by

Definition

(R, V) is a **braided vector space** if $R \in Aut(V \otimes V)$ satisfies

$$(R \otimes I_V)(I_V \otimes R)(R \otimes I_V) = (I_V \otimes R)(R \otimes I_V)(I_V \otimes R)$$

Induces a sequence of local \mathcal{B}_n -reps $(\rho^R, V^{\otimes n})$ by

$$\rho^{R}(\sigma_{i}) = I_{V}^{\otimes i-1} \otimes R \otimes I_{V}^{\otimes n-i-1}$$

Definition

(R, V) is a **braided vector space** if $R \in Aut(V \otimes V)$ satisfies

$$(R \otimes I_V)(I_V \otimes R)(R \otimes I_V) = (I_V \otimes R)(R \otimes I_V)(I_V \otimes R)$$

Induces a sequence of local \mathcal{B}_n -reps $(\rho^R, V^{\otimes n})$ by

$$\rho^{R}(\sigma_{i}) = I_{V}^{\otimes i-1} \otimes R \otimes I_{V}^{\otimes n-i-1}$$

$$v_1 \otimes \cdots \otimes v_i \otimes v_{i+1} \otimes \cdots \otimes v_n \stackrel{\rho^R(\sigma_i)}{\longrightarrow} v_1 \otimes \cdots \otimes R(v_i \otimes v_{i+1}) \otimes \cdots \otimes v_n$$

Pirsa: 17070065 Page 53/88

Definition (R, Wang '12)

A **localization** of a sequence of \mathcal{B}_n -reps. (ρ_n, V_n) is a braided vector space (R, W) and

Pirsa: 17070065 Page 54/88

Definition (R, Wang '12)

A **localization** of a sequence of \mathcal{B}_n -reps. (ρ_n, V_n) is a braided vector space (R, W) and injective algebra maps $\tau_n : \mathbb{C}\rho_n(\mathcal{B}_n) \to \operatorname{End}(W^{\otimes n})$

(ロ) (団) (量) (量) 量 り(0)

Pirsa: 17070065 Page 55/88

Definition (R, Wang '12)

A **localization** of a sequence of \mathcal{B}_n -reps. (ρ_n, V_n) is a braided vector space (R, W) and injective algebra maps $\tau_n : \mathbb{C}\rho_n(\mathcal{B}_n) \to \operatorname{End}(W^{\otimes n})$ such that the following diagram commutes:

Pirsa: 17070065 Page 56/88

Definition (R, Wang '12)

A **localization** of a sequence of \mathcal{B}_n -reps. (ρ_n, V_n) is a braided vector space (R, W) and injective algebra maps $\tau_n : \mathbb{C}\rho_n(\mathcal{B}_n) \to \operatorname{End}(W^{\otimes n})$ such that the following diagram commutes:

Idea: Push braiding gates inside a braided QCM.

Pirsa: 17070065 Page 57/88

Let
$$R = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix}$$

Let
$$R = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix}$$

Theorem (Franko, R, Wang '06)

$$(R, \mathbb{C}^2)$$
 localizes Ising $(\rho_n^X, \mathcal{H}_n)$ for $X = X_1 \in \mathcal{C}(\mathfrak{sl}_2, 4)$

Let
$$R = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix}$$

Theorem (Franko, R, Wang '06)

 (R, \mathbb{C}^2) localizes Ising $(\rho_n^X, \mathcal{H}_n)$ for $X = X_1 \in \mathcal{C}(\mathfrak{sl}_2, 4)$

Remark

Notice: object X is not a vector space!

Pirsa: 17070065 Page 60/88

Let
$$R = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix}$$

Theorem (Franko, R, Wang '06)

 (R, \mathbb{C}^2) localizes Ising $(\rho_n^X, \mathcal{H}_n)$ for $X = X_1 \in \mathcal{C}(\mathfrak{sl}_2, 4)$

Remark

Notice: object X is not a vector space! hidden locality has $\dim(V) = 10$, $\dim(W) = 10^{n-1}$ while $\dim(\mathcal{H}_n) \in O(2^n)$.

Let
$$R = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix}$$

Theorem (Franko, R, Wang '06)

 (R, \mathbb{C}^2) localizes Ising $(\rho_n^X, \mathcal{H}_n)$ for $X = X_1 \in \mathcal{C}(\mathfrak{sl}_2, 4)$

Remark

Notice: object X is not a vector space! hidden locality has $\dim(V) = 10$, $\dim(W) = 10^{n-1}$ while $\dim(\mathcal{H}_n) \in O(2^n)$.

Pirsa: 17070065 Page 62/88

Let
$$R = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 0 & 1\\ 0 & 1 & -1 & 0\\ 0 & 1 & 1 & 0\\ -1 & 0 & 0 & 1 \end{pmatrix}$$

Theorem (Franko, R, Wang '06)

 (R, \mathbb{C}^2) localizes Ising $(\rho_n^X, \mathcal{H}_n)$ for $X = X_1 \in \mathcal{C}(\mathfrak{sl}_2, 4)$

Remark

Notice: object X is not a vector space! hidden locality has $\dim(V) = 10$, $\dim(W) = 10^{n-1}$ while $\dim(\mathcal{H}_n) \in O(2^n)$.

Theorem (R, Wang '12)

Fibonacci not localizable.

Pirsa: 17070065 Page 63/88

Question (Quantum Information)

When does an anyon a provide universal computation models?

イロン イボン イミン イミン を りなび

Pirsa: 17070065 Page 64/88

Question (Quantum Information)

When does an anyon a provide universal computation models? I.e. when can any quantum circuit be (approximately) realized by a braiding circuit?

Pirsa: 17070065 Page 65/88

Question (Quantum Information)

When does an anyon a provide universal computation models? I.e. when can any quantum circuit be (approximately) realized by a braiding circuit?

Fibonacci anyon τ is universal. [Freedman, Larsen, Wang '02]

Ising anyon σ is not universal: particle exchange generates a finite group. [Jones '86]

Pirsa: 17070065 Page 66/88

Question (Quantum Information)

When does an anyon a provide universal computation models? I.e. when can any quantum circuit be (approximately) realized by a braiding circuit?

Fibonacci anyon τ is universal. [Freedman, Larsen, Wang '02]

Ising anyon σ is not universal: particle exchange generates a finite group. [Jones '86]

KEY:
$$\overline{\rho_{\tau}(\mathcal{B}_n)} \supset SU(f_n) \times SU(f_{n-1})$$
, where $\mathcal{H}_n \cong \mathbb{C}^{f_n} \oplus \mathbb{C}^{f_{n-1}}$,

$$f_n = \frac{(1+\sqrt{5})^n - (1-\sqrt{5})^2}{2^n\sqrt{5}}$$

Quantum Dimensions

Definition

Let dim(a) be the maximal (Perron-Frobenius) eigenvalue of N_a .

Pirsa: 17070065 Page 68/88

Quantum Dimensions

Definition

Let dim(a) be the maximal (Perron-Frobenius) eigenvalue of N_a .

- 1. Physically: Loop amplitudes \bigcirc_a
- 2. $\dim \mathcal{H}_n \approx \dim(a)^n$
- 3. Coincides with quantum dimension for $U_q\mathfrak{g}$

Pirsa: 17070065 Page 69/88

Quantum Dimensions

Definition

Let dim(a) be the maximal (Perron-Frobenius) eigenvalue of N_a .

- 1. Physically: Loop amplitudes Oa
- 2. dim $\mathcal{H}_n \approx \dim(a)^n$
- 3. Coincides with quantum dimension for $U_q\mathfrak{g}$

$$\dim(\sigma) = \sqrt{2}$$
 (Ising) while $\dim(\tau) = \frac{1+\sqrt{5}}{2}$ (Fibonacci).

One Statistic to rule them all?

Anyon a is

▶ non-abelian if $\rho_a(\mathcal{B}_n)$ is non-abelian

Pirsa: 17070065 Page 71/88

One Statistic to rule them all?

Anyon a is

- ▶ non-abelian if $\rho_a(\mathcal{B}_n)$ is non-abelian
- ▶ Universal if $\overline{\rho_a(\mathcal{B}_n)}$ infinite modulo center

Pirsa: 17070065 Page 72/88

Anyon a is

- ▶ non-abelian if $\rho_a(\mathcal{B}_n)$ is non-abelian
- ▶ Universal if $\overline{\rho_a(\mathcal{B}_n)}$ infinite modulo center
- ▶ Localizable if $\rho_a(\mathcal{B}_n)$ simulated on QCM via Yang-Baxter operator gate R

Pirsa: 17070065 Page 73/88

Anyon a is

- ▶ non-abelian if $\rho_a(\mathcal{B}_n)$ is non-abelian
- ▶ Universal if $\overline{\rho_a(\mathcal{B}_n)}$ infinite modulo center
- ▶ Localizable if $\rho_a(\mathcal{B}_n)$ simulated on QCM via Yang-Baxter operator gate R

Principle

All determined by dim(a):

Pirsa: 17070065 Page 74/88

Anyon a is

- ▶ non-abelian if $\rho_a(\mathcal{B}_n)$ is non-abelian
- ▶ Universal if $\overline{\rho_a(\mathcal{B}_n)}$ infinite modulo center
- ▶ Localizable if $\rho_a(\mathcal{B}_n)$ simulated on QCM via Yang-Baxter operator gate R

Principle

All determined by dim(a):

▶ non-abelian anyons: dim(a) > 1

Pirsa: 17070065 Page 75/88

Anyon a is

- ▶ non-abelian if $\rho_a(\mathcal{B}_n)$ is non-abelian
- Universal if $\overline{\rho_a(\mathcal{B}_n)}$ infinite modulo center
- ▶ Localizable if $\rho_a(\mathcal{B}_n)$ simulated on QCM via Yang-Baxter operator gate R

Principle

All determined by dim(a):

- ▶ non-abelian anyons: dim(a) > 1
- ▶ Universal anyons: $\dim(a)^2 \notin \mathbb{Z}$ (conj. 2007)
- ▶ Localizable anyons: $dim(a)^2 \in \mathbb{Z}$ (conj.)

Pirsa: 17070065 Page 76/88

Anyon a is

- ▶ non-abelian if $\rho_a(\mathcal{B}_n)$ is non-abelian
- ▶ Universal if $\overline{\rho_a(\mathcal{B}_n)}$ infinite modulo center
- ▶ Localizable if $\rho_a(\mathcal{B}_n)$ simulated on QCM via Yang-Baxter operator gate R

Principle

All determined by dim(a):

- ▶ non-abelian anyons: dim(a) > 1
- ▶ Universal anyons: $\dim(a)^2 \notin \mathbb{Z}$ (conj. 2007)
- ▶ Localizable anyons: $dim(a)^2 \in \mathbb{Z}$ (conj.)

True for "fundamental" anyons in all quantum group models.

<ロ> (日) (日) (日) (日) 日 の(○)

Pirsa: 17070065 Page 77/88

If dim(a) > 1 there is a $b \neq v$ (v = vacuum) with $N(a, a, b) \neq 0$.

(ロ) (団) (注) (注) 注 り(0

If dim(a) > 1 there is a $b \neq v$ (v = vacuum) with $N(a, a, b) \neq 0$.

$$\begin{vmatrix} b & b & a \\ & & a & \neq 0 \\ & & a & \end{vmatrix}$$

If dim(a) > 1 there is a $b \neq v$ (v = vacuum) with $N(a, a, b) \neq 0$.

IF particle exchange is γId then

If dim(a) > 1 there is a $b \neq v$ (v = vacuum) with $N(a, a, b) \neq 0$.

$$\begin{vmatrix} b \\ b \\ a \end{vmatrix} = \alpha \begin{vmatrix} a \\ a \end{vmatrix} \neq 0$$

IF particle exchange is γId then

$$\begin{vmatrix} b \\ b \\ \end{vmatrix} = \gamma \begin{vmatrix} a \\ v \end{vmatrix} = 0$$

Current/Future Directions The story does not end here!

Pirsa: 17070065 Page 82/88

The story does not end here! Refinements are possible:

▶ 3D materials/Loop-like excitations?

Pirsa: 17070065 Page 83/88

The story does not end here! Refinements are possible:

- ▶ 3D materials/Loop-like excitations?
- ► Fermions ↔ Fermionic Modular Categories

Pirsa: 17070065 Page 84/88

The story does not end here! Refinements are possible:

- ▶ 3D materials/Loop-like excitations?
- ► Fermions ↔ Fermionic Modular Categories
- Gapped boundaries/defects?
- Symmetry Enriched Topological Phases?

Pirsa: 17070065 Page 85/88

The story does not end here! Refinements are possible:

- ▶ 3D materials/Loop-like excitations?
- ► Fermions ↔ Fermionic Modular Categories
- Gapped boundaries/defects?
- Symmetry Enriched Topological Phases?
- Measurement assisted protocols?

Pirsa: 17070065 Page 86/88

Pirsa: 17070065 Page 87/88

THANK YOU!

see: arXiv:1705.06206