Title: Braided algebra and dual bases of quantum groups

Date: Jul 19, 2017 02:00 PM

URL: http://pirsa.org/17070060

Abstract: The talk is based on my recent work with Ryan Aziz. We find a dual version of a previous double-bosonisation theorem whereby each finite-dimensional braided-Hopf algebra in the category of corepresentations of a coquasitriangular Hopf algebra gives a new larger coquasitriangular Hopf algebra, for example taking c_q[SL_2] to c_q[SL_3] for these quantum groups reduced at certain odd roots of unity. As an application we find new generators for c_q[SL2] with the remarkable property that their monomials are essentially a dual basis to the standard PBW basis of the reduced quantum enveloping algebra u_q(sl2). This allows one to calculate Fourier transform and other results for such quantum groups. Our method also works for even roots of unity where we obtain new finite-dimensional quantum groups, including an 8-dimensional one at q=-1. Our method
br />

can be used to construct many other new finite-dimensional quasitriangular Hopf algebras and their duals that could be fed into applications in quantum gravity and quantum computing.

BRAIDED ALGEBRA AND DUAL BASES

Shahn Majid (QMUL)

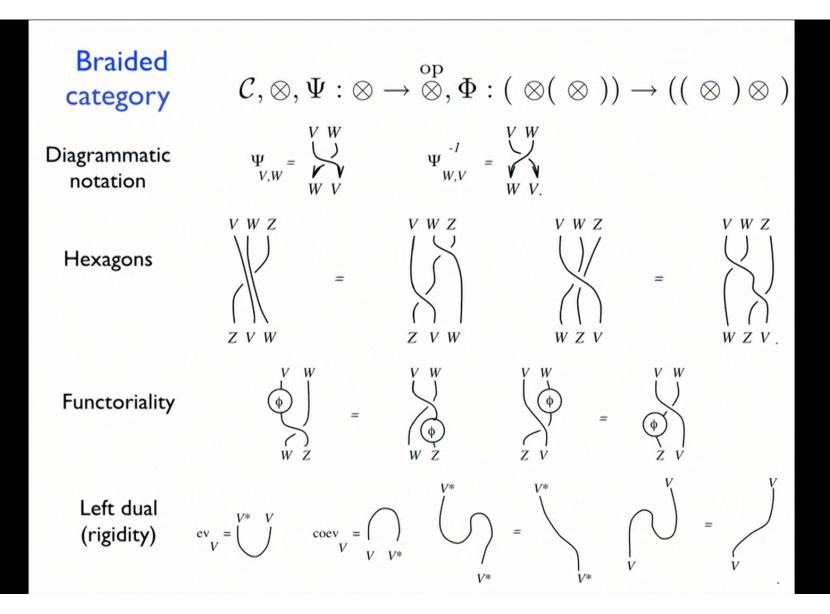
with Ryan Aziz arXiv:1703.03456 (math.QA) S.M. `A quantum groups primer' CUP 2002

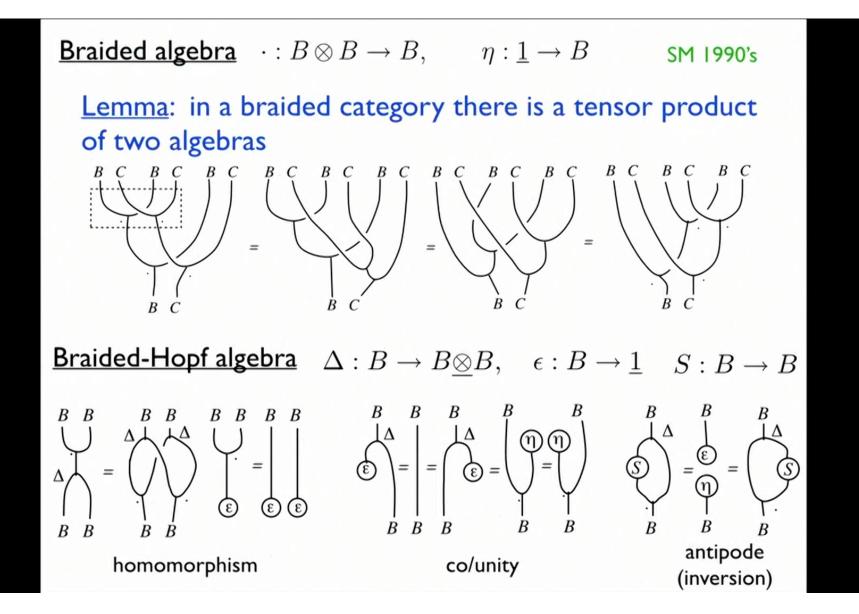
Famous quantum groups from 1980's but root unity versions $q^n = 1$, n odd • $u_q(sl_2)$ $E^n = F^n = 0$, $K^n = 1$, $KEK^{-1} = q^{-2}E$, $KFK^{-1} = q^2F$, $[E, F] = K - K^{-1}$ $\Delta K = K \otimes K$, $\Delta F = F \otimes 1 + K^{-1} \otimes F$, $\Delta E = E \otimes K + 1 \otimes E$

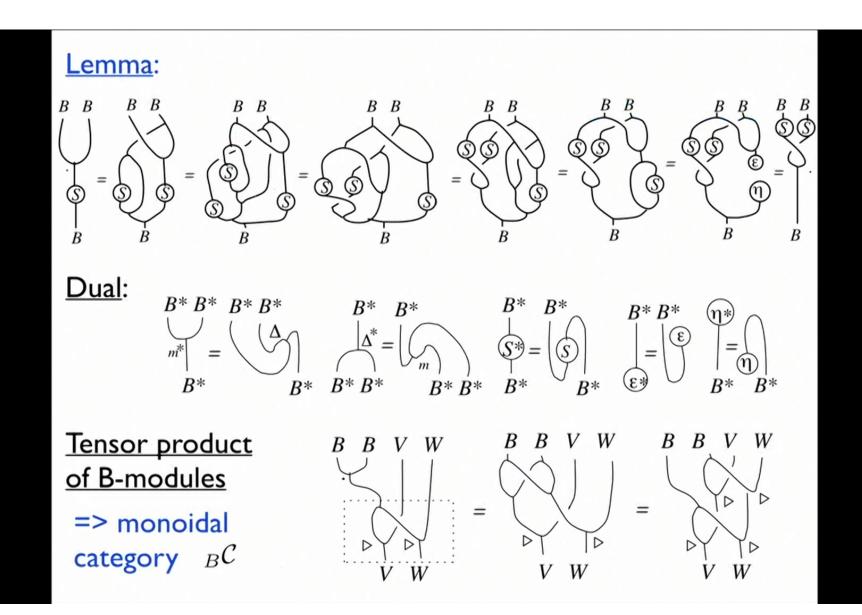
 $\mathcal{R} = \frac{1}{n} \sum_{r,a,b=0}^{n-1} \frac{(-1)^r q^{-2ab}}{[r]_{q^{-2}}} F^r K^a \otimes E^r K^b \in u_q(sl_2) \otimes u_q(sl_2) \Longrightarrow \text{Braided category of repns} \\ => \text{ knot invariants and TQFT}$

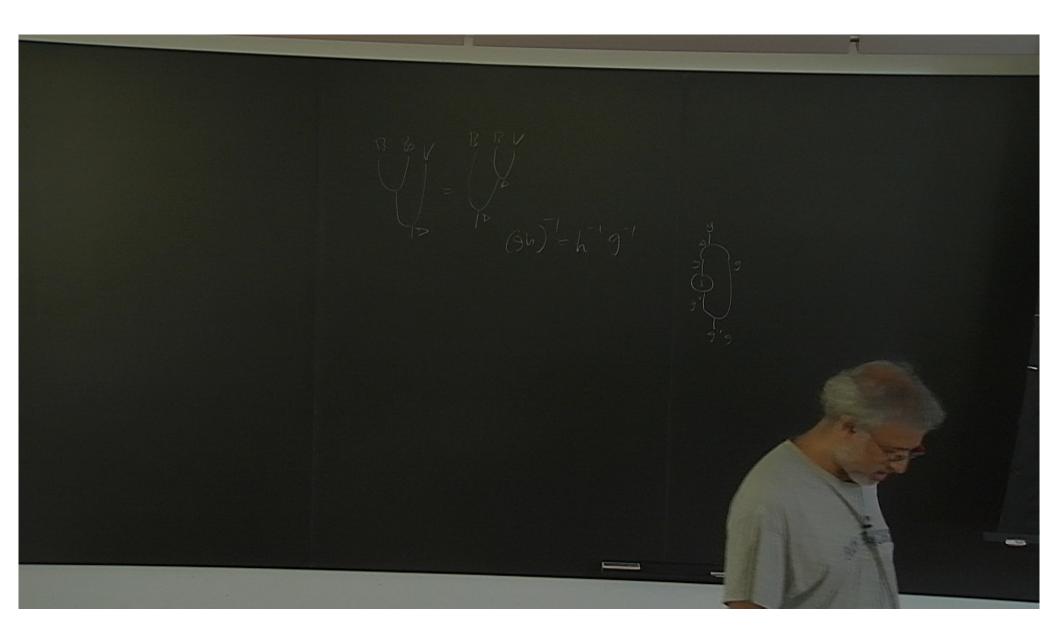
• $c_q[SL_2]$ $a^n = 1 = d^n$, $b^n = 0 = c^n$ $ad - q^{-1}bc = 1$, $da - ad = (q - q^{-1})bc$ $\Delta \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \otimes \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ => For generic q, quantise Poisson-Lie group SU2 => example of `noncommutative geometry'

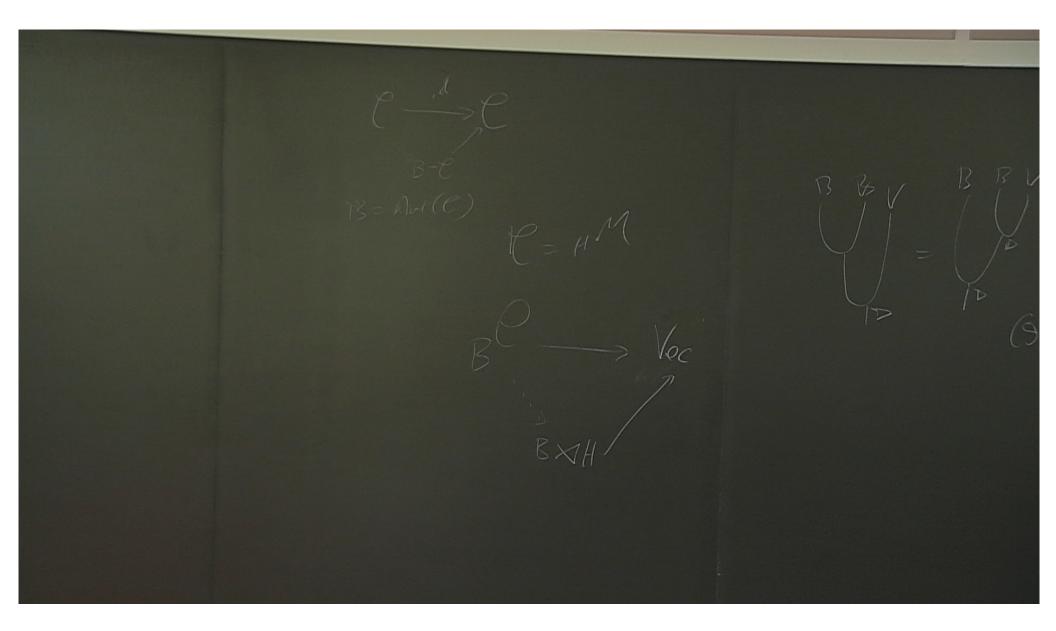
Problem: find basis of $c_q[SL_2]$ dual to PBW basis $\{F^iK^jE^k\}_{0\leq i,j,k< n}$ of $u_q(sl_2)$

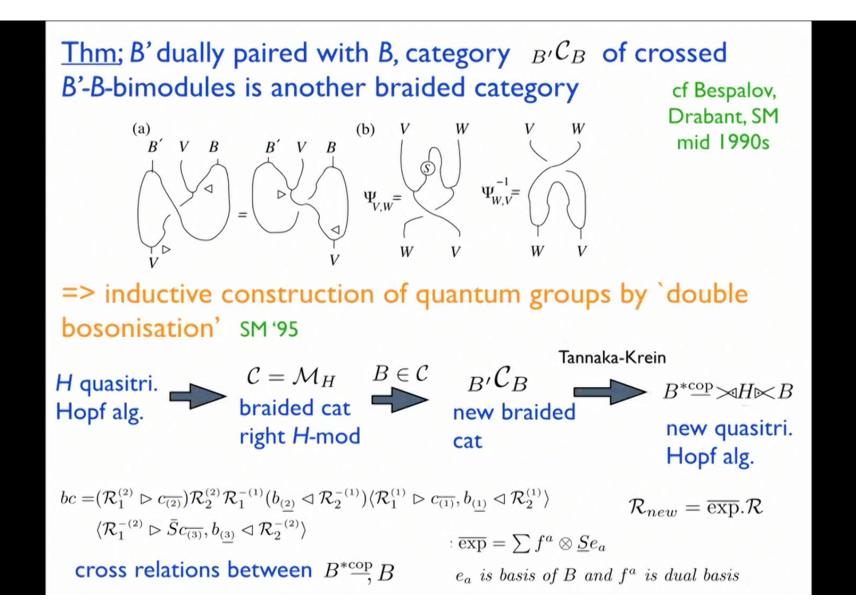


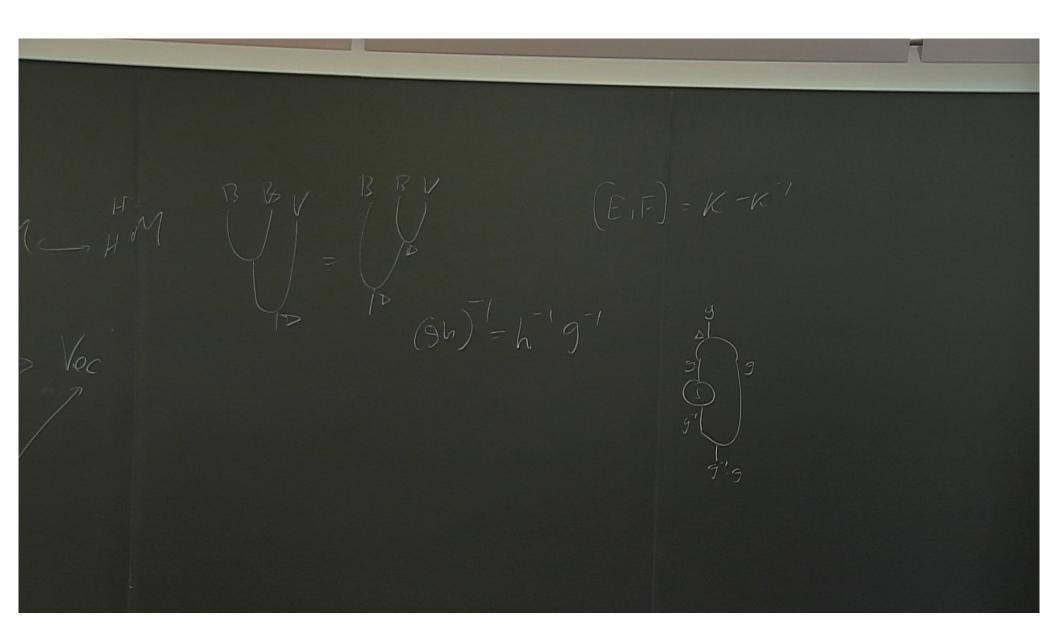




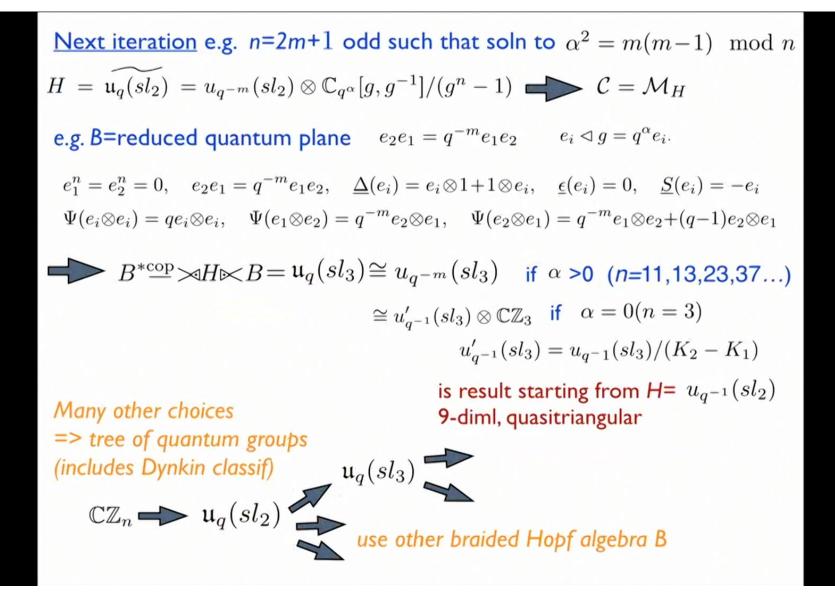


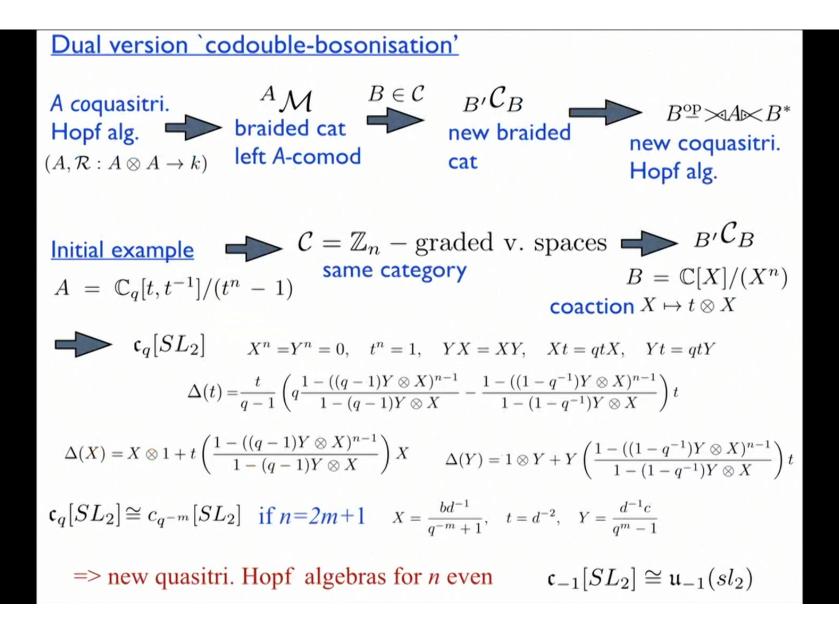






Example $\mathcal{C} = \mathbb{Z}_n - \text{graded v. spaces}$ $H = \mathbb{C}_q \mathbb{Z}_n = \mathbb{C}[K]/(K^n - 1)$ $\mathcal{R}_K = \frac{1}{n} \sum_{a,b=0}^{n-1} q^{-ab} K^a \otimes K^b$ $\blacktriangleright \quad V = \oplus_i V_i, \ v \in V_i <=> |v| = i$ $\Psi_{V,W}(v \otimes w) = q^{|v||w|} w \otimes v$ $B = \mathbb{C}[E]/(E^n) \in \mathcal{C} \qquad E \triangleleft K = qE$ $\underline{\Delta}E = E \otimes 1 + 1 \otimes E \qquad (|E| = 1)$ $B^{* \operatorname{cop}} \rtimes H \bowtie B = \mathfrak{u}_q(sl_2)$ $E^n = F^n = 0, \quad K^n = 1, \quad KEK^{-1} = q^{-1}E, \quad KFK^{-1} = qF, \quad [E, F] = K - K^{-1}$ $\Delta K = K \otimes K, \quad \Delta F = F \otimes 1 + K^{-1} \otimes F, \quad \Delta E = E \otimes K + 1 \otimes E$ $\mathcal{R}_{\mathfrak{u}_q(sl_2)} = \frac{1}{n} \sum_{r, q, b=0}^{n-1} \frac{(-1)^r q^{-ab}}{[r]_{q^{-1}}!} F^r K^a \otimes E^r K^b \qquad [r]_q = \frac{1-q^r}{1-q}$ $\mathfrak{u}_q(sl_2) \cong u_{q^{-m}}(sl_2)$ if n=2m+1R.A./S.M. arXiv:1703.03456 => new quasitri. Hopf algebras for *n* even e.g. $\mathfrak{u}_{-1}(sl_2)$ 8-diml self-dual strictly quasitri. $\mathcal{R} = (1 \otimes 1 - F \otimes E)\mathcal{R}_K$ $E^2 = F^2 = 0, \quad K^2 = 1, \quad EF = FE, \quad KE = -EK, \quad KF = -FK$





Fourier Transform right integral structure $\int : H \to k$, $\int^* : A = H^* \to k$, $\mu = \int (\int^*)$

$$\mathcal{F}(h) = \sum_{a} (\int e_{a}h) f^{a}, \quad \mathcal{F}^{*}(\phi) = \sum_{a} e_{a} \left(\int^{*} \phi f^{a} \right), \quad \mathcal{F}^{*} \circ \mathcal{F} = \mu S$$

 e_a is basis of H, f^a is the dual basis

$$\mathcal{F}: \mathfrak{c}_{q}[SL_{2}] \to \mathfrak{u}_{q}(sl_{2}) \text{ is given by}$$

$$\mathcal{F}(X^{a}t^{b}Y^{c}) = \sum_{l=0}^{n-1} \frac{q^{-(l+a)(1-b)+b(n-1-c)}}{n[n-1-a]_{q^{-1}}![n-1-c]_{q}!} F^{n-1-a}K^{l}E^{n-1-c}$$

$$\mu = \frac{q^{-1}}{n[n-1]_{q^{-1}}![n-1]_{q}!} \qquad \frac{\text{Another application (braiding for TQFT)}}{D(H) = H^{*op} \bowtie H} \qquad \mathcal{R}_{D} = \sum_{l=0}^{n} (f^{a} \otimes 1) \otimes (1 \otimes e_{a})$$

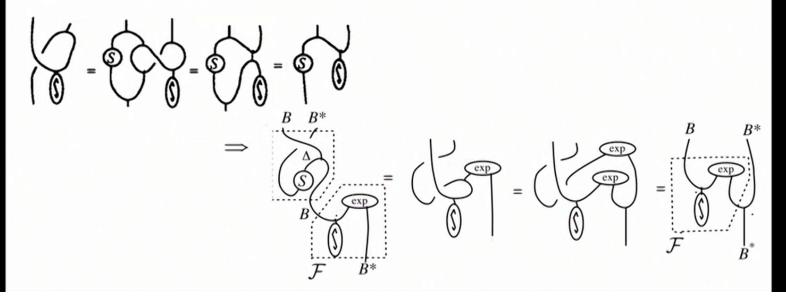
Braided-Hopf Algebra Fourier Transform

Suppose (1) B has a left integral $\int B \to \underline{1}$ $(id \otimes \int)\Delta = \eta \otimes \int$ (2) B has a left dual $ev = \cup : B^* \otimes B \to \underline{1}, \quad coev = \cap = exp : \underline{1} \to B \otimes B^*$

 \Rightarrow braided Fourier transform $\mathcal{F}: B \rightarrow$

$$\mathcal{F}: B \to B^*, \quad \mathcal{F} \circ \operatorname{Reg} = \cdot (\mathcal{F} \otimes \operatorname{id})$$

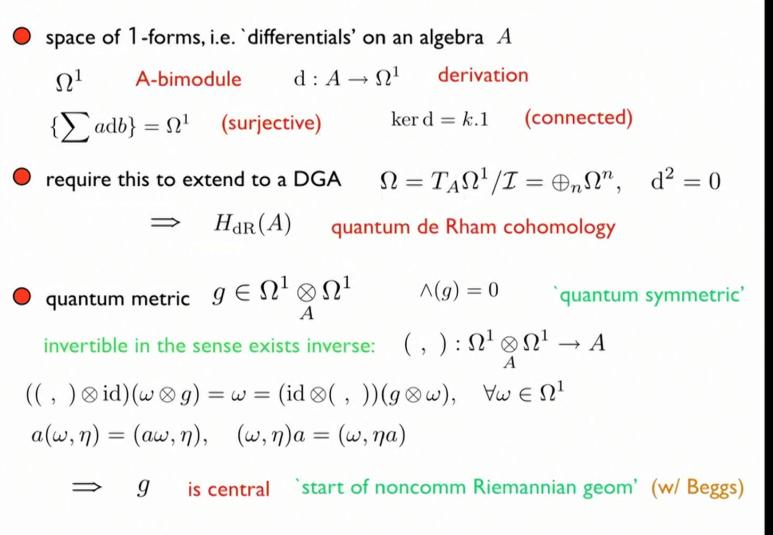
Proof (Kempf & SM '94)



If the integrals are both unimodular and morphisms then $\mathcal{FF}^{\star} = \mu S$ and $[\mathcal{F}, S] = 0$

Example:
$$q^{n+1} = 1$$
 $\mathcal{C} = \mathbb{Z}/(n+1)$ -graded spaces, $B = k[x]/(x^{n+1})$
 $\Psi(x^m \otimes x^p) = q^{mp}x^p \otimes x^m$ $\Delta x = x \otimes 1 + 1 \otimes x$ $\Rightarrow \int x^m = \delta_{m,n}$
 $B^{\star} = k[y]/(y^{n+1})$ $\operatorname{ev}(y^m \otimes x^p) = \delta_{m,p}[m;q]!$ $\exp = \sum_{m=0}^n x^m \otimes y^m/[m;q]!$
 $\mathcal{F}(x^m) = \int x^m \exp(x \otimes y) = \frac{y^{n-m}}{[n-m;q]!}, \quad \mathcal{F}^{\star}(y^m) = \frac{q^{(n-m)^2}x^{n-m}}{[n-m;q]!}, \quad \mu = [n;q]!^{-1}$
 $\mathcal{F}\mathcal{F}^{\star} = q^{2D+1}\mu S$ $S\mathcal{F} = \mathcal{F}Sq^{2D+1}$ D = monomial deg

APPLICATION TO DG OF QUANTUM GROUPS



HODGE OPERATOR ON QUANTUM GROUPS

 $\begin{array}{ll} \Omega(H) & \text{is a super Hopf algebra (Brzezinski),} & S.M. Alg. Repn. Th. 2017 \\ \Omega \cong H \Join \Lambda & \Lambda & \text{a super braided Hopf algebra in} & \mathcal{C} = \overset{\mathbf{x}}{\mathcal{M}}_{H}^{H} = \mathcal{Y} D_{H}^{H} \\ & \text{with primitive generators} & \Lambda^{1} = H^{+}/\mathcal{I} \end{array}$

if Vol , g central and binvariant $\Rightarrow \# = (\mathrm{id} \otimes g \circ \mathcal{F}) : \Omega^n \to \Omega^{top-n}$

Lemma $\mu = \langle \text{Vol}, \text{Vol} \rangle^{-1} \in k^{\times}, \quad \exists \sharp^{-1}, \quad \sharp S = (-1)^{top} S \sharp$

g quantum symetric =>

$$S = (-1)^D$$
, $\sharp^* = \sharp, \sharp^2 = \mu$, on $D = 0, 1, top - 1, top$
exp = $1 \otimes 1 + g + \dots + g^{(n-1)} + \mu \text{Vol} \otimes \text{Vol}$

codifferential and Hodge Laplacian

 $\delta := (S\sharp)^{-1} d(S\sharp), \quad \Box := d\delta + \delta d$ $df = (\partial^a f) e_a, \quad \alpha = \alpha^a e_a, \quad g = g^{ab} e_a \otimes e_b$ $\Rightarrow \quad \delta \alpha = \alpha^a \delta e_a + g_{ab} \partial^a \alpha^b, \quad \Box f = (\partial^a f) \delta e_a + g_{ab} \partial^a \partial^b f$

=> canonical Hodge operator:

$$\exp = \sum_{m=0}^{top} \sum_{I,J} e_{i_1} \cdots e_{i_m} ({}_m B)_{IJ}^{-1} \otimes e_{j_1} \cdots e_{j_m}$$
$${}_m B_{IJ} = \langle e_{i_1} \cdots e_{i_m}, e_{j_1} \cdots e_{j_m} \rangle = \exp(e_{i_1} \otimes e_{i_2} \cdots \otimes e_{i_m}, [m, -\tilde{\Psi}]! (e_{j_1} \otimes e_{j_2} \cdots e_{j_m})$$
$$= g_{i_1p_1} \cdots g_{i_mp_m} [m, -\tilde{\Psi}]!_{j_1j_2 \cdots j_m}^{p_m \cdots p_2p_1}$$

=>

=> on
$$\Omega^D(\mathbb{C}_q[SL_2])$$

 $\sharp^2 = q^6, \quad (D \neq 2); \quad (\sharp - q^4)(\sharp + q^2) = 0, \quad (D = 2).$

up to normalisation obeys the q-Hecke relation