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Overview

@ Motivation: Contextuality and sequential measurements
@ Implementations with nanomechanical oscillators
@ Simulating temporal quantum correlations

@ Structure of temporal correlations

Pirsa: 17070056 Page 3/57



The Kochen-Specker theorem

Pirsa: 17070056 Page 4/57



The Kochen-Specker theorem

Quantum mechanics cannot be explained |
by non-contextual hidden variable models. |

What does non-contextuality mean?
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Compatibility and Noncontextuality

Compatibility

Two measurements A and B are compatible (A ~ B) if they can be mea-
sured simultaneously or in any order without disturbance.
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Compatibility and Noncontextuality

Compatibility

Two measurements A and B are compatible (A ~ B) if they can be mea-
sured simultaneously or in any order without disturbance.

Non-contextuality

Assume that A ~ B and A ~ C. A theory is non-contextual, if it assigns to
A a value v(A) independently whether B or C is measured jointly with A.
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The Peres Mermin square

Consider a four level system (two qubits) and the observables:

A=0,01, B=1®0c,, C=0;Q0,,
a=1Q®ox, b=0,®1L, c=o0xQ o0y,

a=0;Q0x, B=0xQ0;, v=0, Q0.

@ The observables in each row (R;) and column ((;) commute and are

compatible.

Page 8/57
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The Peres Mermin square

Consider a four level system (two qubits) and the observables:

A=c,®1, B=1®0o;, (=090
a=1®0oy, b=0x®1, c¢c=0x® o0,
a=0,80x, B=0xQ0;, v=0,Q0,.

@ The observables in each row (R;) and column ((;) commute and are

compatible.

@ If we assign to each of them a value v = £1 independently of the

row or column, we have

® In QM: C3 = Cey = —1, hence [[_, RiC; = —1.

A. Peres, PLA 151, 107 (1990); D. Mermin, PRL 65, 3373 (1990).
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A testable inequality

Question

Can we translate this into an experimentally testable inequality?

Answer

Consider sequences of measurements. Then, for non-contextual models

(Yup) = (A1B2G3) + (a1hacs) + (@15273)
+(Ara2a3) + (B1b233) — (Crc2y3)
= (R) + (R2) + (R3) + (1) + (G) — (G3) < 4.

Here, (A1B>C3) means the product of the values, when the sequence
A1 B> (3 is measured on a single instance of a state.
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A testable inequality

Question
Can we translate this into an experimentally testable inequality?

Answer

Consider sequences of measurements. Then, for non-contextual models

<"}"\”‘> = (Al B> C3> + <81b2C3> + <n1:f2"‘;3>
HAra2a3) + (Bib233) — (CGieays)
= (R1) + (R2) + (Rs) + (G1) + (G) — (Gs) < 4.

Here, (A1B>C3) means the product of the values, when the sequence
A1 B> (3 is measured on a single instance of a state.

In QM:
(Xmp) =6

for any quantum state (in contrast to a Bell inequality violation).

A. Cabello, PRL 101, 210401 (2008).
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Challenges

Assume that A ~ B and A ~ C. A theory is non-contextual, if it assigns to
A a value v(A) independently whether B or C is measured jointly with A.
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Challenges

Assume that A ~ B and A ~ C. A theory is non-contextual, if it assigns to
A a value v(A) independently whether B or C is measured jointly with A.

Bell

“... there is no a priori reason to believe that the results for |3)(®3| should
be the same. The result of an observation may reasonably depend not only
on the state of the system (including hidden variables), but also on the
complete disposition of the apparatus”

1.5. Bell, Rev. Mod. Phys. 38 227 (1966)

Pirsa: 17070056 Page 13/57



Challenges

Assume that A ~ B and A ~ C. A theory is non-contextual, if it assigns to
A a value v(A) independently whether B or C is measured jointly with A.

Bell

“... there is no a priori reason to believe that the results for |3)(¢3| should
be the same. The result of an observation may reasonably depend not only
on the state of the system (including hidden variables), but also on the
complete disposition of the apparatus”

1.5. Bell, Rev. Mod. Phys. 38 227 (1966)

Peres

“Suppose that we measure A first and only a later time decide whether to
measure B or C or none of them. How can the outcome of the measurement
A depend on this future decision?”

A. Peres, A. Ron, in "Microphysical Reality and Quantum Formalism” Kluwer, 1998
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Underlying Assumptions

Measurements

@ Measurements: Classical procedures applied to some physical system
«, resulting in an outcome +1 and a post-measurement system il

@ Each measurement has to be implemented in each context by the
same device (same detector/laser/gate sequence/PhD student ...)

@ Repeatability needs to be checked.

@ Compatibility needs to be checked.
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Underlying Assumptions

Measurements

@ Measurements: Classical procedures applied to some physical system
«, resulting in an outcome +1 and a post-measurement system 2 i

@ Each measurement has to be implemented in each context by the
same device (same detector/laser/gate sequence/PhD student ...)

@ Repeatability needs to be checked.

@ Compatibility needs to be checked.

Deriving the bound
@ The KS inequality contains nine measurements A, B, ..., 7.
@ For a fixed HV A each measurement has a deterministic assignment.

@ The assignments are independent of the context.
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lon traps

866 nm

@ Typical ions: ?Be™, “°Ca™,
s Ty

@ Single ion manipulation with
focused lasers.

[1)_10) A . i
(¢) 1,00 @ Interaction of the ions: motion

of the ion crystal, or collective
interaction with laser.

1) 1
|O>m|1 ) | ),,‘| }
H. Hiffner, C. Roos, and R. Blatt, Phys. Rep. 469, 155-203 (2008).
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Non-demolition measurements

Aim: We want to measure the inequality from the Mermin-Peres square
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Non-demolition measurements

Aim: We want to measure the inequality from the Mermin-Peres square

Problem

Measurements like o, @ o, cannot be implemented by measuring o, on
each ion, as coherences (like [00) + [11)) would be destroyed.

Pirsa: 17070056 Page 19/57



Non-demolition measurements

Aim: We want to measure the inequality from the Mermin-Peres square

Problem

Measurements like o, @ o, cannot be implemented by measuring o, on
each ion, as coherences (like [00) + [11)) would be destroyed.

Solution

Write 0, ® 6, = Uyl ® rrZ]UL and read out only one ion.

This needs 6 nonlocal gates for R3 or Cs.
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Results for the singlet state

-

-
- +1

1 O+
[s) L@

In summary a total value of (X\p) = 5.46(4) > 4.
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Compatibility and repeatability

@ The order does not really matter, on average (X\ip) = 5.38

1 T

095+ r 1
‘{;I[ I1g : [T I T -

osf 1 Iy I i g

085} 1 i '
row 1 rcn.:r 2 m\:v 3 colu;nn 1 column 2 column 3

@ Repeatability:
p(++ |AA) € [0.95;0.99]
p(+777 + |AAAAA) € [0.9;0.97]

@ Compatibility:
p(+7?+|ABA) € [0.91;0.95]
p(+7?7 4+ |ABCA) ~ 0.9

Q. Gihne et al, PRA 2010

Page 22/57



Peres Mermin squares in various dimensions

-~
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spin qubft . -
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PM square for arbitrary dimensions

Questions
@ Can one generalize the PM square to arbitrary dimensions?

@ What are the appropriate measurements?

¥ 4 :
2 )
magnetic / ,

mechanical i

\
\

resonator |0)
tip - \ —

At

spin qubit ~ -

With this scheme, one can measure modular variables.

A. Asadian et al., PRL 2014
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Modular Variables

@ Consider a harmonic oscillator. The displacement is defined as

D(«) = exp{i(pX — qP)}

with a = q + ip.
@ Modular variables are the real and imaginary part

Dgr(a) = cos(pX — qP); Dj(a) = sin(pX — gP)

Im(a) o

@ Important relation:

D(a)D(B) = s L )D(;’)’)D((r)

= Arbitrary commutation relations

can be realized.

Page 25/57
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PM square for infinite dimensions

We can find a representation of all the nine variables on two oscillators
Wlth q -+ @' — Y3 = 0:

Aip = D,y (—) Az = Dy(—c1) Az =Dy (1)Day (1)
A21 — ’Da‘:(_”Q) A ’D-'?1(_”2) A23 b ’Dal((]z)’D'ﬁ(Hz)
Az = /Dal(ﬂl)pu:(”z) Az = Dal((\z)paz((‘l) Az = pal(”3)paz(“3)
Then, we consider the real part of each column and row
Ci = Re(A1iA2Azi). R; = Re(Aj1Aj2A)3)

and measure it via the modular variables. QM predicts:

(xpm) =R+ R+ R+ G+ C -G =6
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The classical bound

Problem

@ It is known that for complex numbers on the unit circle:

(xpm) < 3V3 = 5.19

A. Plastino et al, PRA 2010

@ But HV models do not fulfil that Re(A;;)? + Im(A;)? =1
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The classical bound

Problem

@ It is known that for complex numbers on the unit circle:
(xpm) < 3V3 = 5.19

A. Plastino et al, PRA 2010
@ But HV models do not fulfil that Re(A;;)? + Im(A;)? =1

@ Define a new quantity

(XM = (xem) — A _[Re(Aj)? + Im(Az)* 1]
j

Then, for A > 4 the bound (xpy) < 3v/3 holds again.

A. Asadian et al, PRL 2015
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Further Results

Single modes

@ One cannot implement the MPS with a single
mode.

@ But note that two modes may be implemented
In a single nanomechanical oscillator.
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Further Results

Single modes

@ One cannot implement the MPS with a single
mode.

@ But note that two modes may be implemented
in a single nanomechanical oscillator.

Arbitrary dimensions
@ Define X and P via the discrete Fourier transform.
@ Define displacements and modular variables

@ If d is even, also the desired commutation relation can be realized.

=> One arrives at an PM square for (nearly) arbitrary dimensions.

A. Asadian et al, PRL 2015
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Classical simulation of Kochen-Specker
experiments
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Initial questions

In an experiment, it was found that:

<;—Y\[p> — 5.46(4) > 4,

@ Is this value surprising?
@ Could it be explained by a classical mechanism?
@ For instance, if the system remembers the measurements made?

@ What memory is required for that?
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Mathematical formulation

@ We have an infinite sequence of questions

T ={ Q1,Qr, Qry1, ..}

@ We obtain an infinite sequence of answers

—
.A —_ { Ar__l. Ar. Ar{__]_. }

@ The questions are chosen randomly from the nine measurements,
the answers obey the conditions of the Peres-Mermin square.
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Simulating simple time series

Hidden Markov models

@ Only one question is allowed = observe random sequence A

@ A HMM has internal states / € {1,..., N}
@ For any state there is an output probability A = {ax} = P(Ak|i)
@ In addition, there are transition probabilities U = {u,—),—} = P(i — jli).

@ Finally, one has an initial state distribution 7; = P(i

C.\/.Q

L. Rabiner, B Juang, IEEE ASSP Magazine, 1986
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Deterministic processes: Mealy machines

Ingredients
@ A memory that can be in states i € {1,..., k}

@ For any memory state there is a table A; with the answers to the
possible questions.

@ For any memory state there is a table U;, describing the update
rules for the memory, depending on the question.

How many memory states are needed to simulate a given process?
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A simple Mealy machine

/r‘_"“\\ rd :__\\ -

(1) (2) (3)

A ~—r

Q a b Q a b Q a b
Al+ - A
ujlr 2 Uu|3 2 Ul1l

Q=1(a,a, b,b,a, b a b, aa,..)
s={LLL. 2231123 )
A=(++ -, -, + + - -, - ..)
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()

e-machines
@ Consider only one question.

@ One can split the answers in past and future

<_
A={.,A5,A 5 A_1}
.a_‘/'l — {AQA1A2}

@ Two pasts are equivalent, if they predict the same future:

G ~%9 o PA5)=PAS)

@ The equivalence classes define the causal states s. The output for a
given causal state defines transitions between them.

@ The statistical complexity is the entropy of the distribution of the
S = {s}. This is the memory required for the simulation.

J. P. Crutchfield, Physica D 75, 11 (1994).
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4

c-transducer

@ We consider questions and answers as a single variable:

& g e

Z = (4.9)

@ Define equivalence relations for the past outcomes:

o~

T ~% o P(A3.%9)=P(A3.%)

@ This defines causal states and the corresponding statistical
complexity.

N. Barnett, J. P. Crutchfield, J. Stat. Phys. 161, 404 (2015).
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HMM and ¢

Properties
@ :-machines are special HMM.
@ c-machines are unifilar: The output defines the transition.

@ For an s-machine the state contains no oracular information
(information about the future that is not contained in the past)

@ In other words: H(S, j\j) =]

J.P. Crutchfield et al., arXiv:1007.5354
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HMM and ¢

Properties
@ :-machines are special HMM.
@ c-machines are unifilar: The output defines the transition.

@ For an s-machine the state contains no oracular information
(information about the future that is not contained in the past)

@ In other words: H(S, j[:ﬁ) =0

J.P. Crutchfield et al., arXiv:1007.5354

Example:Biased flip of a coin

Consider a coin that flips with a certain probability:

P(al — T‘ao — H) — 5 —_ . P(al — H‘ao — T) —

Pirsa: 17070056 Page 40/57



Pirsa: 17070056

Simple example

Simulation with an s-machine
@ The causal states are defined by the last output.
@ Both causal states are equally probable.

@ 1 bit of complexity/memory.

C< \./Cj:)
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Simple example

Simulation with an s-machine
@ The causal states are defined by the last output.
@ Both causal states are equally probable.

@ 1 bit of complexity/memory.
COTE
(’—".I;l’_‘| ‘1. ;T
\_,/ _/HJQ

Simulation with HMM

@ Three states: fair coin, two completely biased coins.

@ If € is small: less than one bit.

7 N\ < N\
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Perfect correlations & Mealy machines

Correlations to be simulated

@ Measurements can be repeated: v(A;|AA) = v(Az|AA) etc.

@ The machine reproduces all six Mermin-Peres predictions.

@ The observables are compatible in a single sequence:

v(A1|ABCA) = v(A4|ABCA) etc.
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Perfect correlations & Mealy machines

Correlations to be simulated
@ Measurements can be repeated: v(A;|AA) = v(A3|AA) etc.
@ The machine reproduces all six Mermin-Peres predictions.

@ The observables are compatible in a single sequence:

v(A1|ABCA) = v(A4|ABCA) etc.

@ The observables fulfil other compatibility constraints, e.g.

V(A |ACaA) = v(As|ACaA).

@ The machine reproduces all quantum predictions.

A ¢
a €

o o @

-~

@
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Four-state Mealy machine

@ Consider the following four A; and the update tables U;:

- - + + - 4+ - 4+ + + + +
- — 4| |+ = = |- = +| |+ - -
+ 4+ 4] [+ + +] [+ - -] |+ - -
0 0 0 4 1 0 1 4 0 00 0
Up: [0 0 3| U,: |0 0 0| Us: |0 0 Of Us: [0 0 2
0 0 2 0 0 0 0 0 0 0 0 3

: : e F A+ R AT — At
@ This machine predicts: C(l)c{l) ,(3)C(3)B(3)A(4)C(4)A(2)...
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Four-state Mealy machine

@ Consider the following four A; and the update tables U;:

- - + Fo— 4] [- + + o+ 4+
~ + |1+ - = |- = +| [+ - -
+ 4+ 4] [+ + +] [+ - -] |+ - -
0 0 0 4 1 0 1 4 0 00 0

Up: [0 0 3| U,: |0 0 0| Us: |0 0 O Us: [0 0 2
0 0 2 0 0 0 0 0 0 0 0 3

: : e F A=t R — A+
@ This machine predicts: C(l)cm ‘;(3)C(3)B(3)A(4)C(4)A(2)...

@ |t reproduces all deterministic predictions of QM for the PM square.

@ Machines with three states cannot do this, so it is optimal.

@ Can all two-qubit effects be simulated with two bits of memory?

M. Kleinmann et al., New J. Phys. 13, 113011 (2011), see also P. Blasiak, Ann. Phys. 353, 326 (2015) G

Fagundes, et al., arXiv:1611.07515
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Improving the Peres-Mermin square

Question

Are there KS inequalities for qubits with a higher violation?

1X 1Y/1_Z Using all Pauli matrices one can find a cor-
X‘I/XX’XY X.Z relation with (xpp) = 15 (in QM), but for
Y1 =YX =YY =YZ noncontextual theories: (ypp) < 9.

Z1 ZX ZY ZZ A. Cabello, Phys. Rev. A 82, 032110 (2010)
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Improving the Peres-Mermin square

Question
Are there KS inequalities for qubits with a higher violation?

1X 1Y/1_Z Using all Pauli matrices one can find a cor-
X‘I/XX’XY X_Z relation with (xpmp) = 15 (in QM), but for
Y1 =YX =YY =YZ noncontextual theories: (yyp) < 9.

Z1 ZX ZY ZZ A. Cabello, Phys. Rev. A 82, 032110 (2010)

Theorem

Simulating this extended PM square for two qubits requires more than two
classical bits as a memory.
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Simulating quantum predictions: s-transducer

1: +++

p LI -

z . ZZ L 5o

§: ==+

3 +++

6: +==

X, X, XX 5L

8: ==+

Q: 44+

10: +=—

ZX XZ W L. ..

12: —4
13141516 17181920 21222324
+ 4+ ! + 4+ 1! + 4+ 1!
rit+e T4 +4i30

@ Measuring a sequence or row projects the system in one of 24
quantum states.

@ [ hese are the causal states of the =-transducer.

A. Cabello, M. Gu, O Giihne, in preparation
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Simulating quantum predictions: s-transducer

@ From the Yu-Oh measurements, one obtains an infinite set of
quantum states.

@ Does an =-transducer require an infinite amount of memory?

A. Cabello, M. Gu, O Giihne, in preparation
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General temporal correlations

BI'/

/A QM =]
LR )
/
_. e
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General temporal correlations

Question

Can we characterize all the probabilities coming from sequential quantum
measurements?’

Properties

@ Consider sequences of length k and the set of all probabilities
> 538ty SO D $) SR SN |
@ The probabilities have to obey the arrow of time (AoT):
p(a.-|AB) = p(a, -|AA)

@ How does this set look?
What are the quantum mechanically allowed probabilities?

L. Clemente, J. Kofler, Phys. Rev. Lett. 116, 150401 (2016)
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General temporal correlations

BI’
NS

oMl BI

LR

For spatial correlations, this is a well studied set.

Picture from L. Clemente, J. Kofler, Phys. Rev. Lett. 116, 150401 (2016)

Pirsa: 17070056 Page 53/57



Results

BI/ N
/ /NS
am, BI

Result 1

The extremal points of the temporal correlation polytope are exactly the |
deterministic assignments that obey AoT.

Result 2

All extremal points can origin from QM, but they may require general
measurements and high-dimensional systems
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Results

BI'/ \
/ /NS
“TQM, B

Result 1

The extremal points of the temporal correlation polytope are exactly the
deterministic assignments that obey AoT.

Result 2

All extremal points can origin from QM, but they may require general |
measurements and high-dimensional systems

Result 3

Some simple extremal points cannot origin from two-dimensional systems.

J. Hoffman, MSc thesis, T. Fritz, NJP 2010, L. Clemente et al., PRL 2016
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Dimension witnesses

@ Consider two measurements with two outcomes and then:
T =p(+ — |AA) + p(+ + |AB) + p(— + |BA) + p(— + |BB)

@ We can reach T = 4 with a deterministic AoT assignment.

@ For qubits: If p(+ — |AA) = p(— + |BB) = 1 the measurements
must be projective.

But then p(+ + |AB) = p(— + |BA) = 1 cannot be reached.

@ We have the inequality
20 3D
T <3.18623 < 4

@ This may be tested experimentally ...

J. Hoffmann et al., in preparation
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Conclusion

Homework for the weekend

Design an experiment, which can be used to test both notions of contex-
tuality at the same time.

DAAD HE
G F U i%#si{haftsmnds. . e rC

FOUNDATIONAL QUESTIONS INSTITUTE FAUNDATION
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