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Question: Does
contextuality
play a role in
quantum
computation?

Pirsa: 17070053



Pirsa: 17070053

Measurement-based Quantum

Computation

Classical “parity” computeér

L] L L ]
Multi-qubit “resource state"

3 NON-contextud
hudden varable
mode

Anders and Browne, arXiv:0805.1002
Raussendorf, arXiv:0907.5449

Single Qubit
Measurements

Linear
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Fault tolerant quantum computing

e Many fault tolerant quantum computing models
restricted to stabilizer quantum mechanics.

e Preparation of stabilizer states.

* Clifford group unitaries (generated by H, S,
CNOT)

e Pauli observable measurements X , Z etc.

Stabilizer quantum mechanics
' classical computer

— Gottesman-Knill theorem
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State Injection

U|+) @ (UXU'I')m _—
T

equivalent to

U
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Magic state
distillation

/-qubit Steane code

The state T'|+) promotes q s threshold: 29.2% - tight
stabilizer gm (via state
injection) to full universality.

T4
Given a noisy state p, T'|+) can ‘ O\
be fault tolerantly distilled by Y Dl4)
a process called magic state " :
distillation.’

What properties make
distillable?
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Wigner
negativity?
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Wigner
function

e Wigner (1932)

e Areal valued

representation of a state's
density operator in phase
space

® e.g.position/

momentum
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Wigner
function

* A quasi-probability
distribution

* May take negative values

* Integrating out one
variable leaves a

probability distribution.

e Quantum optics folklore:
Negative Wigner function
Is a signature of non-
classicality.
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®
wlg ner Ihe Discrete Wigner Function®
WILLIAM K. WOOITERS

function for S e

Wootters (1987): Wigner ot antm b, sl Qanim st 5 e

o 1at < [ 1 «a | ] 1 ' EN r whn a 1
functions for d-dimensional bgseckieraryr Pl ; srkertnriory
systems (qudits). | - | ot sy

Gross (2006): Formalism for odd
fl bd SCd on Symplectic structure Hudson™s Theorem lor linite-dimensional quantum systems
of qudit Pauli observables.

All pure stabilizer states are e . Wil s of ol e, ey e i 0 e 3 e e Wi
non-negative and they are the i e e e o '
only pure non-negative states.
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Magic state
distillation

/-qubit Steane code

The state T'|+) promotes q s threshold: 29.2% - tight
stabilizer gm (via state
injection) to full universality.
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Given a noisy state p, T'|+) can ‘ O\
be fault tolerantly distilled by Y Dl4)
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What properties make
distillable?
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Wigner
negativity as a
resource?

Galvao: 2005

Consider the intersection of

positive states of 2 types of Wigner

function...

you recover the one-qubit

stabilizer states.
(cf. Wallman-Bartlett 8-state model)

Galvao: Wigner negativity
necessary for quantum speed-up?

LR

0.6

00

02

04 ;

U6

LLR
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Qudit stabilizer quantum mechanics

d-dimensional state space |0),1),..., d-—1

Generalised Pauli operators: X B 7+ 1) Z=9Y o 71){7

where w = expi2m/d]|.
Notation for tensor products:
’/'t‘f 7!]: ,\‘. 7”' _4-\| P \'I' \'h] F-‘I \'h,' "\-.I ..
il .‘1

- ; 7 v b rbh rre
Commutation rule: 7% X WX Z°

In this talk d will always be odd.

16
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Phase space

Natural association with
points in phase-space
N=7Z) x7Z}.

For each pointu = u.u, ¢ 2

define a Heisenberg-Weyl
operator.

T = @ (w:u:)2 Zu: xu

a1 T :
Note: 2 ° is multiplicative

inverse of 2 in Z,.

(0.0)

(1.0)

(2,0)

(0,1)

(1,1)

(2.1)

(0,2)

(1.2)

(2.2)

17
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Heisenberg-Weyl operators
compose as:

T,T, = "2 'T,T
where
w, vl = u.v, — u,v. mod d
s the symplectic product.

Note that 7, and 7, commute
ff lu. v 0.

axb

laxDb]

d

18
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Contextuality in SQM

 Qubit stabiliser quantum mechanics is
contextual.

e Peres-Mermin square, GHZ-Mermin, etc.
e Butall odd d, qudit SQM is non-contextual.

e Folklore: if a theory has a non-negative
Wigner function it has a non-contextual
hidden variable model.
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Qudit magic states

Similar to qubits, we can devise qudit versions of
fault-tolerant quantum computing, state
injection and magic state distillation.

We can ask the same questions.

Is Wigner negativity necessary for magic state
distillability?

21

Page 23/85



Veitsch, Ferrie, Gross, Emerson (2012):

quantum slates
bound universal states
stabilizer states |

Yes it is. Magic state distillation is impossible for all odd d states
with non-negative Wigner functions, even for non-stabilizer states.
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Gross-Wigner functions

A phase-space representation of p. Assign a basis of Hermitian

7 T

operators to each pointin Q = Z2Z’;:

p=> W,(u)A,

1

We choose the following A, basis (essentially unique - Gross):

Ay = d “X’:;, A, =T A, T!

ucil
The Wigner function is the set of coefficients wrt this basis:
W,(u) —d "Tr|A,p|

23
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Veitsch, Ferrie, Gross,
Emerson (2012):

Stabilizer operations
preserve non-negativity.

Magic state distillation cannot

distill states with non-negative
Wigner functions.

Wigner negativity is a

necessary resource for (odd
qudit) quantum speedup.

24
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Enter
contextuality...

2s

Pirsa: 17070053 Page 27/85



Pirsa: 17070053

A hint:

PIRL. 100, 0200 "N : 11y .
¢

»
Negativity and Contextuality are Equivalent Notions of Nonclassicality

\

26
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@ ©

Howard, Wallman, Veitch, 2%
Emerson (2014): ©) 27

Contextuality is necessary for
magic state distillation in odd
prime d.

All negative-Wigner single-

qudit states violate a CSW

contextuality witness (in a 2- 1

qudit experiment). ® -

13 | @

27

Page 29/85



This talk

>
Pauli measurements on
That nen-contextua . o
HVM is = .
X — represented +——+ | has g non-negative

Spekkens toy theory by a non-contextual Wigner function
generalsed 1o qudils HVM

arxiv.org/ arxiv.org/

1610.07093 1701.07801

28
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We generalise
Spekkens’ theory
gonoeralised to any

dimension d.

We complete
Spekkens’ theory by
gerwving
formal measurement
update rules

Tauli measurements on Simple model! of
4] non-contextual
ropresenrtod — value assignments
by @ non-contextual for Pauli
HVM measurements cr p

for measurements

via
on o
U
n=2 odd group
characters

d quadits

That ron-contextua

']
HVM is

2
has a non-negative

Spekkene’ toy theory Wigner function

generalised 1o quaits

29
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A simple non-contextual
model

e We wish to provide a simpler and more
general proof than Howard et al.

e Keyidea: a simple non-contextual model with
minimal assumptions.

e \We call it a non-contextual value
assignment, NCVA.

e c.f. Kochen, Spekker 1967 (Thank you Andrew!)
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NCVA for Pauli measurements

. m ; )2 . r
We represent Pauli measurements 7T}, = w ") Z" X" by
a non-contextual map from ontic state to outcome.
. . ke
e Label outcomes by corresponding eigenvalues w™, k

e Set of ontic states v € S (no structure or cardinality
assumed).

e Non-contextual measurement map A\, (u):
s ol ;\
e When we measure T}, the outcome w" depends solely
on ontic state v and the observable w.
;-' ,
w' = A, (u)

31
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Examp|e: S Z_'; X :_';

Two example A, (u) maps

)\,,(01): 1 w w?

A, (10) : w o ow  w
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NCVA

We now introduce a probability distribution g, (v)
over ontic states and impose two conditions:

* Model reproduces quantum statistics:

Tr|T,p| = Z)\ u)q,(u)

ve S

e Consistency of commuting sets of observables:

e Forall u,vstu,v] =0

33
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Example

A non-negative Wigner function provides an example of an NCVA.

Recall: W, (u) =d "Tr[A,p| = d "Tr[T, AyT) p)

We can transform this:
T.AT, = ) T.TT; =) w"T,

So:

34
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Recall: p Z W,(u)A,

uc )

Hence: Tr|T, p| X W, (u)w™"

ve §)
We can identify:

e 510

o q,(u) = W,(u)

A\ (u) =w™”

Check:
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The Gross-Wigner function satisfies the NCVA
axioms.

In particular,
A (u+v) = A (u)A, (v)
for all u, v st [u,v| = 0.

But, this is not what we have just shown!

36

Pirsa: 17070053 Page 39/85



Pirsa: 17070053

In verifying that last property we did not assume
lu, v| = 0.

As one can readily check:
A (u) = w™" satisfies

Av(u+v) = A (u)A, (v)
for all u,v.

Observation:
A\, (u) is one-dimensional group representation of 2.

It is an irreducable character of (2.

37
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Irreducible Characters
Key properties:

* AM(u+v)=A(u)A, (v)
e One of the following holds:

Y M@ =0  or ) A(v)=19Q

U E! [l SZ
Derives from orthogonality of irreducible characters.

L%

The function w'™™ is an example of a character of €.
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Characters in an NCVA

Recall our definition of the model
e Consistency of commuting sets of observables:
e Forallu,vstiu,vi =20
Av(u+v) = A, (u)A, (v).
We did not assume that A\, (u) is a character of (1.
But we can now derive this.

Lemma: In the Pauli NCVA model, for all n > 2 and all odd
d > 1, all value assignments A, (u) are characters of (1.

39
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Proof sketch:

e Start with u, v and identify a second pair «’, v' such that

I
w,v| = (U, |

e Can always do thisif n > 2.

e Decompose:
ut+v=2"((u+v+d +)+ (u+v—u —7))

Then successively apply
A (u 4+ v) = A, (), (v) when (u, v = 0.

To finally prove that for arbitary u, v:

Av(u+v) = A, (u)A, (v)

40
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The Gross-Wigner function satisfies the NCVA
axioms.

In particular,
A (u+v) = A (u)A, (v)
for all u, v st [u,v| = 0.

But, this is not what we have just shown!

36
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Example: X, Z and X Z.

XZ®I\ XZRI

. / / \ product of
\, commuting
(XZ)" 1 / \, operators

X®Z Z2 X X Z Z® X!

Fa (/ “\ Fa ,/‘\

7\ P f \ J
' \ 4

F \
/ / \ / \
/ \ / \ / \ F \
4 N\ / \
\ / \

AR IRZL 21 IRX .‘("f-),.( I®Z Z."/,f IRX

/ \ / \

41
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NCVA for o implies non-negative Wigner
function

We have already seen:

* Every pwhere W, > 0 has a NCVA model.

Now we show:

e Every p with a Pauli-NCVA satisfies W, > 0.

Proof: Explicit calculation of W,,.

42
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We write down the Wigner function...

W,(u) =d "Tr[A,p] = d *"Tr[Y _ w""T,p]

vl

2n - Wl rem
d 2 W T (T, pl

el

Now we use the NCVA definitions:

Tr|T, p| = Z A (u)g, ()
veS

W,(u) =d "!”Z Zw”"' Av(u) ) q,(u)

ve S \ vl

Finally we note that the term in brackets is a irreducible

character of {2, and hence the sum over the characterisis QO or 24

43
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Thus, (forn > 2 odd d) the existance of a non-
negative Wigner function implies the existance
of a non-contextual model for Pauli

measurements and vice versa.

Interpretation: Contextuality is necessary for
magic state distillation in all odd dimensions.
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Ontic space is phase space

A more detailed calculation gives:
0, (v) = Wp(f(v)
where f(v) is a one-to-one from S to 2.

Hence the ontic space S is isomorphic to phase
space 2.

This is proved, not assumed.

45
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Ontic space is phase space

A more detailed calculation gives:
0, (v) = Wp(f(v)
where f(v) is a one-to-one from S to 2.

Hence the ontic space S is isomorphic to phase
space 2.

This is proved, not assumed.
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* We have thus derived a unique, up to relabelling, a NCHVM for stabilizer
QM based on non-negative Wigner functions or NC value assignments.

Simple moda of
f non-contextual
ragrasanted S— value assignments
oy 4 non-contextual tor Paull
HVYM measurements oo p

for measurormants .
vid
group
characlers

an
n=x2 odd
J gqudits

e oar

-t o alst -1% = "_,41
Spekkens' theory _ has & non-negstive
aneral Sac 1o any Spekkens' toy theory Wigner function
dimension d generalsed 10 quaits

e complete
Spekkens' theory &
denwng
tormial measurement
update rules
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So far, we just have a non-contextual value
assignment model for measurements. It gives us
statistics for

It has:
* ontic state space (L.

e Avalue assignment map satisfying
Ay (u 4+ v) = A, (u)A, (v)

To develop this model into a full theory, we'd
need to add dynamics and measurement update
rules.

47
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Problem: Our model would assign definite
values to sets of non-commuting measurements.

Solution: An epistemic restriction.

48
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In defense of the epistemic view of quantum states: a toy theory

quant-ph/0401052
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Spekken's epistricted theory

e Ontic space: {2

¢ (Observables are linear functionals on 2

or represent as an elementof Z); x Z, u = ajas,... by, bs, . ..
7 nw-r
Or: represent outcomes as w” and in our NCVA notation we'd write:

A () = "

Then the linear functional property implies: Ao(u +v) = A, (u)A,(v)

52
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Rob left us something to do...

0O ¢ othe odd prime

54
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relationship with stabilizer quantum mechanics

Spekkens’ toy model in all dimensions and its
‘\W \‘

-‘ s

e
-

Lorenzo Catani' and Dan E. Browne'

i | d Ast
- T W 60T, UK

e We derive that measurement update rule

e Extend from prime dimensions to compound
dimensions

e Forall odd d - prove full equivalence with
Stabilizer Quantum Mechanics
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Epistemic states in the theory

X=0 X+ P

V = {(0,0),(1,0).(2.0)} P V = {(0,0).(1.1).(2.2)} f

V" ={(0,0).(0,1).(0,2)} V"= {(0,0).(1.2).(2.1)} -
X

V = {(0,0)}

56
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e We are allowed to know a set of commuting observables.

* |nthe phase space formalism, the commuting set is
represented by an isotropic subspace V' ¢ ()

Epistemic states take the form of uniform distributions over a
shifted sub-space (Gross 2006).

e V  isthe setof all points in phase space for whom the
outcome of all observables of V is zero.

* wis a "representative ontic state ". It encodes the outcomes
of all known observables o ;.

57
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Measurement update rule

Recall:

e VV encodes which observables are known.
e wencodes their values.

Need a measurement update rule that

e updates V and w and embodies Spekkens'
epistemic restriction
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Measurement update rule

In arXiv:1701.07801 we derive updating rules
for:

e measurements that commute with all
previously known observables

e measurements that do not commute with all
previously known observables

First we assume that d is prime.

60
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IFigure 4: Updating rules via Venn diagrams. ire above schematically shows the

suhxp;u'r\l‘ "'I A the shifted ones (after ¢ corresponding representative ontic
vectors w,r, w'). In par lar this picture explains the expression V? I rw—w' )N(Vg +r
w’) as a result ulf-l'utl;:'nm:."_Tfu-';]M.;' ng ruics ior the cpisicn subspaces and the rl-]|11'-1"|1;1‘i\1'

t intersection we have to shift the

ontic vectors, It is i?ll;l:-rt.mt to notice that t ot t 1
Nilll‘-;):l('l'\ ! +w and | + I Dack to the sam S 1S e role of w Indeed note that
V- NVy is different from (V- +w Vi +r1

61
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w update rule.

e Let X € Qrepresentthe measurement, and let the outcome

be o.
Typically w encodes the wrong outcome of new measurement:

Yew =0+
Note that £. % = k « 74

Henceset: w' — w — k 'z¥.

This shifts the incorrect value while preserving all observables
that commute with X,

62
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Leaving prime d behind

The Gross-Wigner function is not limited to prime d,
why should Spekkens' model?

Problems to overcome:
e Incompoundd, k ' is not always defined.
e E.g.inZy, 2z = 1 has no solution.
e |In compound d we have a new type of observable.

e All phase space points are no longer equal!

63
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Example: Z,

Consider standard conjugate variables z and
z on a single Z, system.

e z and z measurements output 0, 1,2, 3.
Consider variable 2z.
e |t outcomes mustare: 0, 2,0, 2.

e This is a degenerate observable!

This behaviour is generic in compound d.

Pirsa: 17070053
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Example: 7,

e Consider standard conjugate variables x and
z on a single Z,4 system.

e z and z measurements output 0,1, 2, 3.
e Consider variable 2z.
® |t outcomes mustare: 0, 2,0, 2.

e Thisis a degenerate observable!

This behaviour is generic in compound d.

64
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Course-graining observables

e |etus define any observable whose output spectrum
covers all of Z; as fine-graining.

e All other observables are course-graining.

Observation 1: An observable aX + bP is finegraining iff
none of the common divisors of a and b are a factor of d.

Observation 2: Dividing out all such common divisors
creates a fine-graining observable.

Observation 3: The measurement update rule for prime
d applies in compound d for fine-graining observables.

65
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L=,
e

& v ‘
X w
!
4
\\
Iigure 7 Schematic representation of Coarse-graining decompositions into fine-
graining observables. The ligure above schemat vy represents the relation between the
\I]l]\ll.ut"' l \ \ ..!'.i] their corresponding st v t s W.r r 'he green rectangles

66
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Equivalence of Spekkens Theory and SQM
for all odd d

Non-disturbing Measurements Disturbing Measurements
—
Locallzatom slage Lodalliaton « randomuastion age
Ny \
\-
Figure 9 Equivalence of three theorles in odd dimensions in terms of measurement

updating rules: Spekkens’ toy model, stabilizer quantum mechanics and Gross' theory

67
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We generalise
Spekkens’ theory
gonoeralised to any

dimension d.

We complete
Spekkens’ theory by
gerwving
formal measurement
update rules

Tauli measurements on Simple model! of
4] non-contextual
ropresenrtod — value assignments
by @ non-contextual for Pauli
HVM measurements cr p

for measurements

via
on o
U
n=2 odd group
characters

d quadits

That ron-contextua

']
HVM is

2
has a non-negative

Spekkene’ toy theory Wigner function

generalised 1o quaits
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n=1
What aboutthe n = 1 case? Didn't Howard et al cover
that?

No! n is the number of qudits being measured. Howard
et al require a 2 qudit witness for their construction.

Our results do cover one-qudit states, but a second
qudit needs to be present.

p1/d
In state injection, there is always more than one qudit!

69
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n=1

What can we say about this case?

e Spekkens model is an example of an NCVA
model satisfying the character property.

e But. The proof of the character lemma fails in
n = 1.

70
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XZ&1

(XZ)z ® 1 operators

N

XZR24X XZ®Z'X!

/\ /\

X®2Z Z®X X®z! 7R X!

X®I I®Z ZQ1 IRX XKQI I®Z Z®I1I I1®X

XZ&1
\/ product of
/ commuting
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n=1

Could the character lemma still be true?

No! It is easy to construct counter-examples.

72

Pirsa: 17070053 Page 78/85



n=1

Does Wigner negativity imply non-contextuality
inn =17

No! It is (slightly trickier but possible) to
construct counter-examples.
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Outlook

e What do we learn from the anomoly of the n = 1 case? A

warning for other studies of contextuality? An opportunity to
develop interesting new models?

e Can we derive CWS witnesses from our character proof?
(Peres-Mermin "web"?).

e Can we use the Wigner function to link to Spekkens non-
contextuality?

¢ Now we have a full hidden variable model for odd d SOM what
can we use it for?

* These results fail in even dimensions. But how far can we go
with such analyses for qubits?
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[Juan will tell you]
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