Title: Contextuality, the PBR theorem and their effects on simulation of quantum systems

Date: Jul 27, 2017 11:30 AM

URL: http://pirsa.org/17070051

Abstract: This talk will be about constraints on any model which reproduces the qubit stabilizer sub-theory. We show that the minimum number of classical bits required to specify the state of an n-qubit system must scale as $\sim n(n-3)/2$ in any model that does not contradict the predictions of the quantum stabilizer sub-theory. The Gottesman-Knill algorithm, which is a strong simulation algorithm is in fact, very close to this bound as it scales at $\sim n(2n+1)$. This is a result of state-independent contextuality which puts a lower bound on the minimum number of states a model requires in order to reproduce the statistics of the qubit stabilizer sub-theory.

Pirsa: 17070051 Page 1/30

Contextuality, PBR and their effect on the simulation of quantum systems

Angela Karanjai,
Joel Wallman, Stephen Bartlett
arXiv.cominsoon

Pirsa: 17070051 Page 2/30

Pirsa: 17070051 Page 3/30

The main result

The minimum number of classical bits required to specify the state of an n-qubit system in any model that reproduces stabilizer statistics is

$$\frac{n}{2}(n-1)$$

Pirsa: 17070051

Overview

• Why should you care?

How is it related to contextuality?

• How did we do it?

• What now?

Pirsa: 17070051 Page 5/30

What does it mean to simulate quantum statistics?

	P_1	P_2	• • • •	P_n
$oldsymbol{M}_1^1$				
M_1^2				
$oldsymbol{M}_m^{l}$				

 $Pr(k \mid P, M)$

Pirsa: 17070051 Page 6/30

Why should one care about simulation of Quantum systems?

Pirsa: 17070051 Page 7/30

Context

- Stabilizer sub-theory: Fault tolerant quantum computation
- Universal quantum computation: injecting "magic" states into stabilizer circuits

Qudits:

- magic states Contextuality
- Non-negative Wigner functions efficient classical sampling

Qubits: simulability

- state-independent contextuality
- Contextuality a computational resource?
- No efficient classical sampling

Pirsa: 17070051 Page 8/30

What we show

Qubits:

- The explicit effect of state-independent contextuality on size of the state-space of model
- Qubit stabilizer sub-theory is efficiently simulatable because the number of quantum states grows nicely
- A sampling algorithm cannot do much better than Gottesman-Knill

Pirsa: 17070051 Page 9/30

n-Qubit Stabilizer sub-theory

•Measurements: n-qubit Pauli Observables

Preparations: eigenstates of n-qubit Pauli operators

•Transformations: Clifford Unitaries

Pirsa: 17070051 Page 10/30

Ontological Models

- State of the system $\lambda \in \Lambda$
- $Pr(\lambda|P) = \mu_P(\lambda)$
- $\Pr(k|M,\lambda) = \xi_{k,M}(\lambda)$

Reproduce quantum predictions:

$$\Pr(k|M,P) = \sum_{\Lambda} \mu_P(\lambda) \, \xi_{k,M}(\lambda) = Tr(\Pi_k \rho)$$

Pirsa: 17070051 Page 11/30

Pirsa: 17070051

Perfectly distinguishable preparation procedures cannot have ontic overlap

$$Supp(P_{\rho}) \cap Supp(P_{\sigma}) = \emptyset, \quad Tr(\rho\sigma) = 0$$

Pirsa: 17070051 Page 13/30

Perfectly distinguishable preparation procedures cannot have ontic overlap

$$Supp(P_{\rho}) \cap Supp(P_{\sigma}) = \emptyset, \quad Tr(\rho\sigma) = 0$$

Pirsa: 17070051 Page 14/30

Perfectly distinguishable preparation procedures cannot have ontic overlap

$$Supp(P_{\rho}) \cap Supp(P_{\sigma}) = \emptyset, \quad Tr(\rho\sigma) = 0$$

Pirsa: 17070051 Page 15/30

The state of the system can be described after a non-demolition measurement

$$P \xrightarrow{\lambda} M_1 \xrightarrow{\lambda'} M_2 \rightarrow k'$$

$$\xi_{M,k}(\lambda)$$

$$\rho \to \rho'$$

$$\lambda \in Supp(P_{\rho}) \to \lambda' \in Supp(P_{\rho'})$$

Pirsa: 17070051 Page 16/30

Two requirements:

1. Experimentally distinguishable states have disjoint support:

$$Supp(P_{\rho_i}) \cap Supp(P_{\rho_j}) = \emptyset, \quad Tr(\rho_i \rho_j) = 0$$

2. The state of the system can be described even after a measurement:

$$\rho \to \rho'$$
$$\lambda \in Supp(\rho) \to \lambda' \in Supp(\rho')$$

PBR

$$\bigcap_{PBR} Supp(\rho_i) = \emptyset$$

Proof:

$$\rho_{1} = \{XI, IX, XX\}$$
 $\rho_{2} = \{ZI, IZ, ZZ\}$
 $\rho_{3} = \{XI, IZ, XZ\}$
 $\rho_{4} = \{ZI, IX, ZX\}$
 $\rho_{5} = \{YY, ZZ, XX\}$
 $\rho_{6} = \{YY, XZ, ZX\}$
 $\rho_{7} = \{YY, XZ, ZX\}$
 $\rho_{7} = \{YY, XZ, ZX\}$
 $\rho_{7} = \{YY, XZ, ZX\}$

Contextuality restricts overlap between states

	$ ho_3$	$ ho_4$	
$ ho_1$	X_{1}	X_2	XX
$ ho_2$	Z_2	$Z_{_{1}}$	ZZ
	XZ	ZX	YY

Pirsa: 17070051 Page 19/30

Result applies to sets equivalent to PBR set

$$Def: s = \{\rho_i\}, h = \{\sigma_i\}, s \sim h \text{ iff } \exists C \text{ s.t. } C^+\rho_i C = \sigma_i$$

$$\bigcap_{e(PBR)} Supp(\rho_i) = \emptyset$$

Proof:

$$\rho_{1} = \{XI, IX, XX\}
C^{+}\rho_{2} = \{ZI, IZ, ZZ\}
\rho_{3} = \{XI, IZ, XZ\}$$

$$\rho_{3} = \{XI, IZ, XZ\}$$

$$\rho_{4} = \{ZI, IX, ZX\}$$

$$\rho_{4} = \{ZI, IX, ZX\}$$

$$\rho_{5} = \{-YY, ZZ, XX\}
\rho_{6} = \{-YY, XZ, -ZX\}$$

$$\rho_{6} = \{-YY, -XZ, ZX\}$$

Pirsa: 17070051

Other PBR like sets with empty overlap

$$e\{\langle ZI,IZ\rangle,\langle XI,IX\rangle,\langle XI,IY\rangle,\langle YI,IZ\rangle\}$$

$$e\{\langle ZI,IZ\rangle,\langle XI,IX\rangle,\langle XI,IY\rangle,\langle YI,IY\rangle\}$$

$$e\{\langle ZI,IZ\rangle,\langle XI,IX\rangle,\langle XI,IY\rangle,\langle XX,ZY\rangle\}$$

All sets can be used to construct proofs of contextuality

Pirsa: 17070051 Page 21/30

Other sets with empty overlap

For a system of 2 qubits,

$$\bigcap_{s} Supp(\rho_{i}) = \emptyset, \forall |s| > 5$$

Proof:

One cannot construct any set of states with more than 5 states, such that one of its subsets of 4 is not PBR like.

Pirsa: 17070051 Page 22/30

n-qubits

For a system of n qubits,

$$\bigcap_{s} Supp(\rho_{i}) = \emptyset, \forall |s| > 3^{n-2}5$$

Proof: On the board (If I have time)

Pirsa: 17070051 Page 23/30

n-qubits

$$\bigcap_{s} Supp(\rho_{i}) = \emptyset, \forall |s| > 3^{n-2}5$$

This implies that any ontic state can be in support of at most $3^{n-2}5$ stabilizer states (preparation procedures corresponding to $3^{n-2}5$ stabilizer states).

Min no. ontic states required = (no.of stabilizer states) / (max no. of states the ontic state can be in the supp of)

$$\min |\Lambda| = \frac{|stab|}{\max |s|}$$

n-qubits

$$\min |\Lambda| \sim 2^{\frac{n^2}{2} - \frac{1}{2}n}$$

Minimum number of classical bits required to specify ontic state:

$$\sim \frac{1}{2}n(n-1)$$

Gottesman-Knill simulation:

$$n(2n + 1)$$

Answers to questions about contextuality and qubit stabilizers

Q: What is the effect of the presence of contextuality in the qubit sub-theory on simulation?

A: No model can do much better than Gottesman-Knill min. information required for any model is asymptotically $\sim n^2$

Q: How is it different from the qudit sub-theory?

A: The absence of contextuality allows a sampling algorithm to do better than Gottesman-Knill. Wigner function $\sim n$

Pirsa: 17070051 Page 26/30

Contextuality: an explicit link to classical simulation

- Can this approach be applied to other subtheories?
- Can we develop a measure of contextuality that has a direct link to simulability?

Pirsa: 17070051 Page 27/30

Contextuality: an explicit link to classical simulation

Definition 3.1.1 A non-contextual value assignment for a set of observables $O = \{O_i | i = 1, ..n\}$ is a function $\nu : O \to R$ such that $\nu(O_i)$ is an eigenvalue of the hermitian operator describing O_j and $\nu(O_iO_j) = \nu(O_i)\nu(O_j)$ if O_i and O_j commute.

Kochen-Specker proof → No non-contextual value assignment possible

Pirsa: 17070051 Page 28/30

Contextuality: an explicit link to classical simulation

Theorem: The eigenstates of a set of observables that do not allow a non-contextual value assignment cannot have an ontic overlap

- ➤ The largest set of quantum states that can be simulated by a single ontic state is the largest set that does not allow a proof of contextuality
- ➤ Min. size of ontic space bounded by the size of the largest set of states that does not allow a proof of contextuality

Pirsa: 17070051 Page 29/30

Summary

- A link between contextuality in qubit stabilizer sub-theory
- A bound on the size of the state space of any model that reproduces qubit- stabilizer statistics
- Can this approach be applied to other quantum sub-theories?

Pirsa: 17070051 Page 30/30