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Abstract: This talk will be about constraints on any model which reproduces the qubit stabilizer sub-theory. We show that the minimum number of
classical bits required to specify the state of an n-qubit system must scale as ~ n(n-3)/2 in any model that does not contradict the predictions of the
guantum stabilizer sub-theory. The Gottesman-Knill algorithm, which is a strong simulation algorithm isin fact, very close to this bound as it scales

at ~n(2n+1). Thisis aresult of state-independent contextuality which puts a lower bound on the minimum number of states a model requires in
order to reproduce the statistics of the qubit stabilizer sub-theory.
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Contextuality, PBR and their effect
on the simulation of quantum
systems
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The main result

The minimum number of classical bits required
to specify the state of an n-qubit system in any
model that reproduces stabilizer statistics is

n
—(n —1
2( )
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Overview

Why should you care?

How is it related to contextuality?

How did we do it?

What now?
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What does it mean to simulate
guantum statistics?

- Pr(k | P,M)
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Why should one care about simulation of Quantum
systems?

Quantum Computation Foundations of QM
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Context

 Stabilizer sub-theory: Fault tolerant quantum computation

* Universal guantum computation: injecting “magic” states
into stabilizer circuits

Qudits:
* magic states €5 Contextuality

» Non-negative Wigner functions mmm) efficient classical
sampling

Qubits: simulability

* state-independent contextuality

« Contextuality a computational resource?
* No efficient classical sampling
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What we show

Qubits:

* The explicit effect of state-independent
contextuality on size of the state-space of
model

* Qubit stabilizer sub-theory is efficiently
simulatable because the number of quantum
states grows nicely

* Asampling algorithm cannot do much better
than Gottesman-Knill

irsa: 17070051 Page 9/30



n-Qubit Stabilizer sub-theory

*Measurements: n-qubit Pauli Observables

*Preparations: eigenstates of n-qubit Pauli
operators

*Transformations: Clifford Unitaries
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Ontological Models

o State of the system A e A

* Pr(A|P) = up(2)
* Pr(kIM,2) = &em(A)

Reproduce quantum predictions:

Pr(kIM,P) = ) ptp(D) Eim () = Tr(ITep)
A
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-k, A

EM k (A)
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Perfectly distinguishable preparation procedures
cannot have ontic overlap

Supp(P,) N\ Supp(F,) =D, Tr(po) =0
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Perfectly distinguishable preparation procedures
cannot have ontic overlap

Supp(P,) N\ Supp(F,) =D, Tr(po) =0

lu'p | lu'/) )
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Perfectly distinguishable preparation procedures
cannot have ontic overlap

Supp(P,) N\ Supp(F,) =D, Tr(po) =0

‘ul’z
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The state of the system can be described after a
non-demolition measurement

A 2
P = piMiya = M«

Up ()L) :EM Kk (A)

p—p
A E Supp(P,) — A'€ Supp(P,)

irsa: 17070051 Page 16/30



Two requirements:

1. Experimentally distinguishable states have disjoint support:

Sup‘p(Ppi) N Supp (ij) = @, Tr(pipj) =0

2. The state of the system can be described even after a
measurement:

p-p
A € Supp(p) - A" € Supp(p")
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PBR

ﬂ Supp(p;) = @

PBR
Proof:
py ={XLIX, XX} p'=YY,-2Z, X X}
0, ={Z1,12,27) vy =1 p,'={YY,ZZ,-X X}
0, ={X1LI1Z, X2 T p,'={YY,XZ ZX}
p, ={Z1,1X,ZX} p,'=YY,XZZX}
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Contextuality restricts overlap
between states

P1

P2

P3

P4

X, X, XX
Z, Z, 77
XZ ZX Yy
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Result applies to sets equivalent to

PBR set
Def :s={p}.h={0},s~hiff ICs:.C*'pC =0,
ﬂSupp(p,.) =
¢(PBR)
Proof:

0 ={XLIX, XX | p'={-YY,ZZ, X X}
C+ pz - {ZI,[Z,ZZ} C ( (}’Y)(. =—1 + p21={'_Y};’ZZ,XX} C
0, ={XLIZ,XZ 0,'={-YY,XZ~-ZX}

P, =121, 1X,ZX} p, ={-YY -XZ7ZX}
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Other PBR like sets with empty overlap

e{(ZIIZ) {XIIX ) { XI,IY){YIIZ)}
e{(ZIIZ)(XIIX) (XI,IY)(YLIY )}
e{(ZIIZ)(XIIX)(XI,IY){ XX ,ZY)}

All sets can be used to construct proofs of contextuality
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Other sets with empty overlap

For a system of 2 qubits,
ﬂ Supp(p,) =,V Isl>5

Proof:

One cannot construct any set of states with more
than 5 states, such that one of its subsets of 4 is not

PBR like.
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n-qubits

For a system of n qubits,

(\Supp(p,) =2,V 51> 3"5

Proof: On the board (If | have time)
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n-qubits
ﬂSup]:)( p)=3,Y1sl>3""75

This implies that any ontic state can be in support of at most
325 stabilizer states (preparation procedures corresponding to
325 stabilizer states) .

Min no. ontic states required = (no.of
stabilizer states) / (max no. of states the
ontic state can be in the supp of)

| stab |

max | s |

minl A |=
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n-qubits

bl
n- 1
-—n

minlAl~22 2

Minimum number of classical bits required to specify ontic state:

]
~—n(n -1
2!1(!1 )

Gottesman-Knill simulation:

n(2n+1)
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Answers to questions about
contextuality and qubit stabilizers

Q: What is the effect of the presence of contextuality in
the qubit sub-theory on simulation?

A: No model can do much better than Gottesman-Knill
min. information required for any model is
asymptotically ~ n”

Q: How is it different from the qudit sub-theory?

A: The absence of contextuality allows a sampling
algorithm to do better than Gottesman-Knill.

Wigner function ~ n
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Contextuality: an explicit link to
classical simulation

* Can this approach be applied to other sub-
theories?

* Can we develop a measure of contextuality
that has a direct link to simulability?
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Contextuality: an explicit link to
classical simulation

Definition 3.1.1 A non-conteztual value assignment for a set of observables
O ={0;li = 1,..n} is a function v : O — R such that v(O;) is an eigenvalue
of the hermitian operator describing O; and v(0;0;) = v(0;)v(0;) if O; and
O, commute.

Kochen-Specker proof =» No non-contextual value assignment possible

Pirsa: 17070051 Page 28/30



irsa: 17070051

Contextuality: an explicit link to
classical simulation

Theorem: The eigenstates of a set of observables
that do not allow a non-contextual value
assignment cannot have an ontic overlap

» The largest set of quantum states that can be
simulated by a single ontic state is the largest set
that does not allow a proof of contextuality

» Min. size of ontic space bounded by the size of
the largest set of states that does not allow a
proof of contextuality
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Summary

* Alink between contextuality in qubit stabilizer
sub-theory

* A bound on the size of the state space of any
model that reproduces qubit- stabilizer
statistics

* Can this approach be applied to other
guantum sub-theories?
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