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The power of quantum computation

What makes quantum circuits/processes so hard to simulate?

- Exponentially large Hilbert space?
- Entanglement?
- Superposition of many ‘classical’ processes?
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The power of quantum computation — a modern approach

- If the quantum process can be modelled efficiently by a classical stochastic
process, then it is efficiently simulatable classically — not powerful

— Research program: partition quantum operations into two categories
1. Those describable by a classical stochastic process — free operations
2. Those which cannot, which serve as resources
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The power of quantum computation — a modern approach

- If the quantum process can be modelled efficiently by a classical stochastic
process, then it is efficiently simulatable classically — not powerful

Ontological models
— Research program: partition quantum operations into two categories

1. Those describable byca classical stochastic process — free operations

2. Those which cannot, which serve as resources

Negativity

Contextuality
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Simulation as a classical stochastic process

- Quantum state is associated with a probability distribution on a classical
(phase) space

- Transformations associated with a stochastic map

- Measurements associated with conditional probability dist"s
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Simulation as a classical stochastic process

Quantum state is associated with a probability distribution on a classical

(phase) space
Transformations associated with a stochastic map
Measurements associated with conditional probability dist™s

Simulation through Monte Carlo sampling

Corresponds to existence of an ontological model

The University of Sydney
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Ontological models for quantum simulation
(A1)

When does this work exactly and efficiently?
1. A single qubit
2. Gaussian quantum optics

Bartlett, Nemoto, Sanders, Braunstein, PRL (2001)
Mari and Eisert, PRL (2012)

Veitch, Wiebe, Ferrie, Emerson, NJP (2013)

see also Bartlett, Rudolph, Spekkens, PRA (2012)

3. Stabilizer subtheory for odd-dimensional qudits

Veitch, Ferrie, Gross, Emerson, NJP (201 2)
Mari and Eisert, PRL (2012)

All correspond to noncontextual ontological models,
(2) and (3) originating from quasiprobability representations

Statistical noise corresponds exactly to ‘quantum noise’
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Quasiprobabilities

Quasiprobability representations: another way of describing quantum mech.

- Classical hidden variables on a phase space A
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Quasiprobabilities

Quasiprobability representations: another way of describing quantum mech.

- Classical hidden variables on a phase space A

States P — W ye, ()\) Like a probability distribution
Unitaries U — W U ()\ | A/) Like a conditional probability
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Quasiprobabilities

Quasiprobability representations: another way of describing quantum mech.

- Classical hidden variables on a phase space A

States P — W ye, ()\) Like a probability distribution
Unitaries U — W U ()\ | A/) Like a conditional probability
Measurements F, —> VWV (E | )\) Like a conditional probability

- Real valued, normalized like probability distributions

- Born rule as you'd expect: Tr[EUpU'| = Z W(E|\N) Wy (AN )W, (N)

N AN EN
- But can go negative! |
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Quasiprobabilities

Quasiprobability representations: another way of describing quantum mech.

-  Class : -
/ Dual frames formalism \
S Two frames': FA):AeA and GA):de A [
Unit  satisfying A=Y GATr[AF())] VA ity
Mez oSl lity
W,(A) = Tr[F(\)p]
- Re Wy (NN = Te(F(N)UGANUT)

- Bo W (E|\) = Tr[EG(N)] .
 BoR /
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Negativity and nonclassicality

Classical Quantum
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Quasiprobabilities for finite quantum systems

Finite-dimensional quantum systems typically use a discrete phase space

Gibbons, Hoffman, Wootters, PRA (2004); Gross, JMP (2006)
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Negativity and nonclassicality

Classical Quantum
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The landscape

Quasiprobability
representations

Ontological
models

Negative Non-

Contextual

Non-

Negative

Spekkens, PRL (2008)
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Operationalizing nonclassicality

Negativity in a quasiprobability can be related to notions of nonclassicality
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- Negativity = contextuality

Negativity in all quasiprobability
representations is equivalent to a proof of _
contextuality Spekkens, PRL (2007) "
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- Negativity = simulation cost

Negativity quantifies the rate of convergence

of Monte Carlo methods
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Operationalizing nonclassicality

Negativity in a quasiprobability can be related to notions of nonclassicality

- Negativity = contextuality

Negativity in all quasiprobability
representations is equivalent to a proof of _
contextuality Spekkens, PRL (2007) "

- Negativity = simulation cost

Negativity quantifies the rate of convergence

of Monte Carlo methods
Pashayan, Wallman, Bartlett, PRL (2015)
- Negativity = magic

Negative states are those that can be distilled
to magic states, that can supplement Clifford
gates to allow universal quantum computation

Veitch, Mousavian, Gottesman, Emerson, NJP (2014)
Howard, Wallman, Veitch, Emerson, Nature (201 4)
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The landscape

Quasiprobability Ontological

representations models
Negative
9 Non-
Contextual
Non-
Negative
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The landscape

Quasiprobability
representations

Ontological
models

Negative

Non-
Contextual

Non-
Negative

Abandon all hope,

Resources ye who enter here

"Quantum” Efficiently simulatable
The University of Sydney "CIaSS|CaI" Page 14
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Estimating outcome
probabilities of quantum circuits
using quasiprobabilities
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Structure of our result

» Can we push the boundary on simulatability?

Quantify negativity — review

Poly-precision estimators for Born rule probabilities

Born rule probabilities as quasiprobabilistic sum over trajectories
Construct a true probability distribution of trajectories as a Markov chain
Construct an unbiased estimator

Bound convergence of this estimator in terms of the amount of negativity

ok wbpm
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Structure of our result

» Can we push the boundary on simulatability?

Quantify negativity — review

Poly-precision estimators for Born rule probabilities

Born rule probabilities as quasiprobabilistic sum over trajectories
Construct a true probability distribution of trajectories as a Markov chain
Construct an unbiased estimator

Bound convergence of this estimator in terms of the amount of negativity

ok wbpm

Main Result
Estimator converges to true quantum mechanical probability at a rate
determined by the amount of negativity in the circuit
If the negativity is polynomially bounded -> efficiently yields a poly-precision

estimate
Pashayan, Wallman, Bartlett (201 5)
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QUO ntiin ng negaiiVity Veitch, Mousavian, Gottesman, Emerson, NJP (201 4)
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QUG ntiin ng negaiiVity Veitch, Mousavian, Gottesman, Emerson, NJP (201 4)

Define the negativity of a state: the 1-norm of its quasiprobability representation

Mp — Z |Wp()\)|
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QUCi niiin ng negqiiViiy Veitch, Mousavian, Gottesman, Emerson, NJP (201 4)

Define the negativity of a state: the 1-norm of its quasiprobability representation
M, = W,

Negativity is multiplicitive, not additive (could take the log of this quantity)
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QUG ntiin ng negaiiVity Veitch, Mousavian, Gottesman, Emerson, NJP (201 4)

Define the negativity of a state: the 1-norm of its quasiprobability representation

Negativity is multiplicitive, not additive (could take the log of this quantity)

If W, is nonnegative, then M, =1
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Negativity for states, unitaries, measurements

Quantum States Mp = Z |Wp()\)|
AEA

Measurements (POVM elements) Mg = Z |W(E|)\)|
A€EA

Point negativity: AAdgs ()\)

D (Wu (X))

N eEA
maxyea My ()

Unitaries

Negativity: My

The University of Sydney Page 19
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Estimating measurement
probabilities

Pirsa: 17070050 Page 38/61




Trajectories in phase space

What do quasiprobabilities tell us about the probabilities of measurement
outcomes?

p= > W(ENIWu, (ALIAL—1) - Wi, (A1]X0) W, (Xo)
AOs AT 5oy AL
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Trajectories in phase space

What do quasiprobabilities tell us about the probabilities of measurement
outcomes?

D= Z W(EAX)Wu, (AL|AL=1) - Wy, (A |[Ao)W, (o)
X0 AT AL

/

Trajectories through
phase space
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Trajectories in phase space

What do quasiprobabilities tell us about the probabilities of measurement
outcomes?

p= >  W(EN)Wu, (ALAL—1) Wi, (A1]A0)W,(Xo)
A0s A1, L | : |

Trajectories through Quasiprobability associated to each ’rrqiec’rory\
phase space

If these were all nonnegative, it provides a
natural estimation algorithm

Veitch, Ferrie, Gross, Emerson, NJP (201 2)
Mari and Eisert, PRL (201 2)

\ But what if they are negative? /

Can we estimate p by sampling from some true probability distribution?
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What’s a good estimator?

What would make a good estimator of a probability associated with a
measurement outcome?

Poly-precision estimator: for any fixed confidence, yields an estimate within €
of the true Born rule probability using resources that scale polynomially in 1 /€.

The University of Sydney Page 22
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True probabilities from quasiprobabilities

Quasiprobability for a trajectory
W(X) = W(EN)Wu, ALIAL_1) - W, (A1) Ao) W, (Ao)
May be negative, so how do we sample?

The University of Sydney Page 23

Pirsa: 17070050 Page 43/61



True probabilities from quasiprobabilities

Quasiprobability for a trajectory
W(X) = W(EN) W, (ALlAL—1) - W, (AM1]A0) W, (Ao)
May be negative, so how do we sample?

First attempt: sample from Pr()\) = lIT/\/lﬂ M. = Z W(X)|
c by
Estimate of the probability for each trajectory is §; = M. Sign[W (X)]

This gives an unbiased estimator, minimizes the range, and has the smallest
variance of all estimators over the space of trajectories...
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True probabilities from quasiprobabilities

Quasiprobability for a trajectory
H;y(/_\‘ ) = VV(E ‘ A L)I"VU L ()\ L ‘ A L — 1) s e I-’][’yzjl ()\1 ‘ )\())[’Vp ()\())
May be negative, so how do we sample?

| 1% % ( X) |

First attempt: sample from Pr()\) = o

M=) W)
X

Estimate of the probability for each trajectory is §; = M. Sign[W (X)]

This gives an unbiased estimator, minimizes the range, and has the smallest
variance of all estimators over the space of trajectories...

But is impossible to sample from!
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Our algorithm

Circuit with an efficient description (product input + output, local unitaries)
1. Sample initial point in trajectory from modified distribution

Pr(Xo) = [Wy(Xo)l/ M,
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Our algorithm

Circuit with an efficient description (product input + output, local unitaries)
1. Sample initial point in trajectory from modified distribution

Pr(Xo) = [W,(Ao)|/ M,
2. At each timestep [=0,... L, sample from conditional distribution

Pr(Ai[Ai—1) = [Wo, (M| A=) |/ My, (A1)

3. Estimate based on single trajectory

L
}31 ()\) = Mﬁ)Sign[I—*{f}, ()\Q)] H [M U, ()\zf 1)Sign[[’1f{fﬁ ()\1 ’)\[,f 1 )]] ”E ()\L)
I=1
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Properties of this estimate

L
Properhes of estimator P1(A) = M, Sign[W,(\o)] H (Mo, (A 1)Sign[We, (A )] We(AL)
=1
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Properties of this estimate

L
Propernes of estimator P1(N) = M, Sign[W,(\o) H (Mo, (A 1)Sign[We, (A )] We(AL)
- Efficiently computable =l
- Unbiased estimator of Born rule probability

(Pr(N)) = ZMM’

|W ,,(/\0 )| (Wu, (M| 1)|
= 1 (A)
Z} H Mu, (N1

:meﬂpmmmmmW)
¥ =1

— Pr(E|p,U)

The University of Sydney Page 25

Pirsa: 17070050 Page 49/61



Sampling and convergence

Compute p,(\) for s independent trajectories, take the average
- Unbiased, and bound to the interval [— M, +M]

- Use Hoeffding inequality for upper bound on convergence:

Average of s samples will be within € of the quantum probability with
probability 1 — o6 if the total number of samples taken is

s(e,d) = E%Mz In(2/9)
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Sampling and convergence

Compute p,(\) for s independent trajectories, take the average
- Unbiased, and bound to the interval [— M, +M]

- Use Hoeffding inequality for upper bound on convergence:

Average of s samples will be within € of the quantum probability with
probability 1 — o6 if the total number of samples taken is

s(e,d) = G%Mz In(2/9)

If the total negativity grows at most polynomially in N, we have an efficient
estimate of the quantum probability to within ¢ = 1/poly(N) , with an
exponentially small failure probability

The University of Sydney Page 26
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The good...

- Can simulate any quantum process, perhaps inefficiently

-  Quantifies the efficiency using a measure of ‘amount of contextuality’
(negativity)

- It’s actually useful!
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The good...

- Can simulate any quantum process, perhaps inefficiently

-  Quantifies the efficiency using a measure of ‘amount of contextuality’
(negativity)

- It’s actually useful!

the bad...

- Estimating outcomes, not simulating processes
(a challenge when there are many possible outcomes)

The University of Sydney Page 27

Pirsa: 17070050 Page 53/61



The good...
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-  Quantifies the efficiency using a measure of ‘amount of contextuality’
(negativity)

- It’s actually useful!

the bad...

- Estimating outcomes, not simulating processes
(a challenge when there are many possible outcomes)

and the ugly

- Individual runs are not sampled from the correct distribution, only
converges on average
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The good...

- Can simulate any quantum process, perhaps inefficiently

-  Quantifies the efficiency using a measure of ‘amount of contextuality’
(negativity)

- It’s actually useful!

the bad...

- Estimating outcomes, not simulating processes
(a challenge when there are many possible outcomes)

and the ugly

- Individual runs are not sampled from the correct distribution, only
converges on average

We should be able to do better in some cases
e.g., the qubit stabilizer subtheory

The University of Sydney Page 27

Pirsa: 17070050 Page 55/61



The landscape

Quasiprobability
representations

Ontological
models

Negative

Non-
Contextual

Non-
Negative

Abandon all hope,

Resources ye who enter here

"Quantum” Efficiently simulatable
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Understanding contextuality in the qubit stabilizer formalism

Qubit stabilizer theory is
efficiently simulatable, just

like qudit stabilizers \

But the theory is negative in any

Lo oo o quasiprobability representation

It allows state-independent proofs of
contextuality (Peres-Mermin, GHZ)

The University of Sydney
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A case for contextual ontological models

-  What to do about contextuality?
1. Resource theory approach: ban it
2. Simulation approach: embrace it!
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A case for contextual ontological models
-  What to do about contextuality?
1. Resource theory approach: ban it
2. Simulation approach: embrace it!
- 'Better’ simulations via exact Monte Carlo sampling

- Adding a context to the statistical model increases complexity of simulation

— Analogy: simulating a system coupled to a non-Markovian environment
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The landscape

Quasiprobability
representations

Ontological
models

Negative Non-

Contextual

Non-
Negative

Qubit stabilizers
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