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Contextuality: changing perspectives

Initial focus:
@ Showing QM is contextual (KS theorem, and related “no-go theorems”)
@ Philosophical interpretations
Recent directions:
@ Structural theory of contextuality
@ General mathematical setting in which contextuality can be defined
@ General structural results, in QM and beyond

There are several current approaches, some represented at this meeting.
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Contextuality and its consequences

Interesting outcomes:

e Recognizing contextuality in a wide range of situations, in and beyond QM

Recognizing that contextuality is not a single undifferentiated phenomenon,
but there is a hierarchy of strengths of contextuality

e Quantifying contextuality; contextuality as a resource
@ Using contextuality as a resource to gain quantum advantage

Foundational significance: leading us to a deeper understanding of contextuality
and its consequences.
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An empirical model e : (X, M, O) is a family
e = {ec}cem

of probability distributions e~ € Prob(O¢), on the joint outcomes of performing
the measurements in each context.

If C = {x;,...,x,}. then we can write p.(J | X) for ec({x; — o;}).
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The sheaf-theoretic approach in a nutshell?

A measurement scenario is (X, M, O): measurement labels, sets of compatible
measurements, outcomes.

An empirical model e : (X, M, O) is a family

e = {ec}cem

of probability distributions e~ € Prob(O%), on the joint outcomes of performing
the measurements in each context.

If C = {xy,...,x,}. then we can write p.(& | X) for ec({x; — o;}).
Compatibility (generalized no-signalling): for all C, C' € AM:

eclcrcr = ec'|cnce

Non-contextuality is existence of a “global section”: joint distribution
d € Prob(OX) such that

ec = d|c for all C € M

1SA and A. Brandenburger, NJP 2011, ar)(lv 1102. 0264
Samson Abramsky (Department of Computer Science  Tg 1 ‘ [ : {
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Bundle Pictures?

Logical Contextuality

@ lgnore precise probabilities
@ Ewvents are possible or not
e E.g. the Hardy model:

00 | 01 | 10

2Contextuality, cohomology and paradox, SA, Rui Barbosa., Kohei Kishida, Ray Lal and Shane
Mansfield, arXiv:1502.03097
Samson Abramsky (Department of Computer Science
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Geometry of Empirical Models

For any given measurement scenario:

(Probabilistic) Contextuality: relative interior
Logical Contextuality:

faces
Strong Contextuality:
faces consisting only of contextual points

(e.g. vertices)
AvN Contextuality:
AvN C SC

Probabilistic < Logical < Strong < AvN

In terms of well-known quantum examples, we have

Bell < Hardy < GHZ < Mermin AvN

Samson Abramsky (Department of Computer Science 10
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Steps towards a theory

@ Cohomology of contextuality; computing obstructions to global sections.

@ Characterizing which states can achieve the various levels of the contextuality
hierarchy.

@ Characterizing AvN arguments for stabilisers. Giovanni’s poster.
@ The quantum monad.

@ Quantitative measures and resource theory for contextuality: Shane's talk.
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@ O-cochains C%(X) are tuples (r; | C; € M), where each r; is a Z-linear
combination of assignments s : C; — O.

@ 1l-cochains C*(X) are tuples (r; | C;, C; € M), r; is a Z-linear combination
of assignments s : C; — O, where C; := C;, N C;.

@ 2-cochains C2(X) are tuples (rjx | G, C; € M), rj is a Z-linear combination
of assignments s : C;;z — O, where Cj, := ;N C N Cp.
Higher-dimensional cochains are defined similarly. The cochains in each dimension
form Abelian groups under componentwise addition.
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@ 0O-cochains C%(X) are tuples (r; | C; € M), where each r; is a Z-linear
combination of assignments s : C; — O.

@ 1l-cochains C*(X) are tuples (r; | C;, C; € M), r; is a Z-linear combination
of assignments s : C; — O, where C;; := G, N C;.

@ 2-cochains C?(X) are tuples (rjx | C;, C; € M), rj is a Z-linear combination
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Cohomology in a nutshell: Given a contextuality scenario & = (X, M, O), define

@ O-cochains C9(X) are tuples (r; | C; € M), where each r; is a Z-linear
combination of assignments s : C; — O.

@ 1l-cochains C*(X) are tuples (r; | C;, C; € M), r; is a Z-linear combination
of assignments s : C; — O, where C; := C; N C;.

@ 2-cochains C2(X) are tuples (ryx | C;, C; € M), rj is a Z-linear combination
of assignments s : C;;, — O, where C,Jk =G NG N C.
Higher-dimensional cochains are defined similarly. The cochains in each dimension
form Abelian groups under componentwise addition.

We have a cochain complex:
-2

co(x) 2~ ci(x) 2~ 2 (x) -
The coboundary maps are defined by
50((!',')),‘)‘ -— f‘;lc,, - ’:EIC.;-: 61((!',)*)) = rile.;k - rik[Cg;. o & rjk|Cﬁ_..‘.
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Cohomology groups and obstructions

The coboundary maps satisfy 6''* ¢ §° = 0, hence B'(X) C Z/(X), where:
@ B'(X) := im §' are the coboundaries in dimension 7/,
@ Z'(X) := kerd' 't — the cocycles in dimension .
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group in dimension 7/: _ _ .
H((X) := Z2'(X)/B'(X).

Intuitively, elements of this group are "“co-holes”, i.e. cocycles which don’t arise as
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Cohomology groups and obstructions

The coboundary maps satisfy 8! c §° = 0, hence B (X) C Z/(X). where:
@ B'(X) := im §' are the coboundaries in dimension 7/,
@ Z'(X) := kerd’' 't — the cocycles in dimension J.

Now the homological algebra machine can run. We can define the cohomology
group in dimension /: _ _ .
H((X) := Z2(X)/B'(X).

Intuitively, elements of this group are “co-holes”, i.e. cocycles which don’t arise as
coboundaries, identified up to coboundary.

In our setting, they give witnesses for obstructions to gluing local sections
together, i.e. witnesses for contextuality.

The O-cocycles are the families (r;) which are compatible, meaning that
rilc, = rjICg for all 7, .

If we want to fix attention on a particular local section s; : C; — O, we can use
relative cohomology to pick out those cocycles with r = s;.
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Defining the obstruction

Now we use the cohomology machinery. From the connecting homomorphism of
the long exact sequence, we can define a map v which for each local assignment
s : C; — O assigns an element v(s) € H}(X. C,) in the first relative cohomology

group.
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Defining the obstruction

Now we use the cohomology machinery. From the connecting homomorphism of
the long exact sequence, we can define a map v which for each local assignment
s : C; — O assigns an element v(s) € H}(X. C,) in the first relative cohomology
group.

T heorem

For all s, v(s) = 0 iff s can be extended to a compatible family (r;) with r; = s,
i.e. to a global section. Thus if v(s) # 0, the empirical model is logically
contextual at s. If this holds for all s, the model is strongly contextual.
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Now we use the cohomology machinery. From the connecting homomorphism of
the long exact sequence, we can define a map v which for each local assignment
s : C; — O assigns an element v(s) € H}(X. C,) in the first relative cohomology
group.

T heorem

For all s, v(s) = 0 iff s can be extended to a compatible family (r;) with r; = s,

i.e. to a global section. Thus if v(s) # 0, the empirical model is logically
contextual at s. If this holds for all s, the model is strongly contextual.

Thus cohomology gives us a computable invariant, which provides a sufficient
condition, and a witness, for contextuality.
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Defining the obstruction

Now we use the cohomology machinery. From the connecting homomorphism of
the long exact sequence, we can define a map v which for each local assignment
s : C; — O assigns an element v(s) € HY(X, C,) in the first relative cohomology
group.

T heorem

For all s, v(s) = 0 iff s can be extended to a compatible family (r;) with r; = s,

i.e. to a global section. Thus if v(s) # 0, the empirical model is logically
contextual at s. If this holds for all s, the model is strongly contextual.

Thus cohomology gives us a computable invariant, which provides a sufficient
condition, and a witness, for contextuality.

N.B. The condition is not in general necessary: there are false positives.
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For the expert

We are using the Cech cohomology of a presheaf associated with the empirical
model.
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For the expert

We are using the Cech cohomology of a presheaf associated with the empirical
model.

The no-signalling (compatibility) property of the model allows us to use the Snake
Lemma of homological algebra to construct the connecting homomorphism:

HO (M, F5) —= HO(M, F) —= H(M, F|y) ~

Y

¥ ¥
00— CO(M, Fz) — CO(M, F) CoO(M,Fly) ——=0

i‘
|
|
|

Y ] Y
0 — = ZI(M, Fg) —= Z}(M, F) —= Z} (M, Fly) —=0
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Applications
We have computed cohomological witnesses for contextuality for many examples,
including: GHZ, Kochen-Specker constructions, Peres-Mermin magic square,
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Applications

We have computed cohomological witnesses for contextuality for many examples,
including: GHZ, Kochen-Specker constructions, Peres-Mermin magic square, ...

We have also shown that cohomology detects contextuality for a large class of
examples, including All-versus-Nothing arguments in the sense of Mermin.

AVNR(E) => SC(AffX) => CSCgr(X) => CSCz(X) => SC(X).
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Applications
We have computed cohomological witnesses for contextuality for many examples,
including: GHZ, Kochen-Specker constructions, Peres-Mermin magic square, .

We have also shown that cohomology detects contextuality for a large class of
examples, including All-versus-Nothing arguments in the sense of Mermin.

AVNR(E) => SC(AffX) => CSCgr(X) => CSCz(X) => SC(X).

These ideas have led to a number of interesting developments by other
researchers:

@ Frank Roumen has adapted our ideas to the setting of effect algebras, using
cyclic cohomology (Connes).
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Applications
We have computed cohomological witnesses for contextuality for many examples,
including: GHZ, Kochen-Specker constructions, Peres-Mermin magic square, ...

We have also shown that cohomology detects contextuality for a large class of
examples, including All-versus-Nothing arguments in the sense of Mermin.

AvNR(E) => SC(AffX) => CSCgr(X) => CSCz(X) => SC(X).

These ideas have led to a number of interesting developments by other
researchers:

@ Frank Roumen has adapted our ideas to the setting of effect algebras, using
cyclic cohomology (Connes).

@ Robert Raussendorf (with Stephen Bartlett and others) is actively pursuing
the cohomological approach to contextuality using group cohomology, with
applications e.g. in MBQC.
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Applications
We have computed cohomological witnesses for contextuality for many examples,
including: GHZ, Kochen-Specker constructions, Peres-Mermin magic square, ...

We have also shown that cohomology detects contextuality for a large class of
examples, including All-versus-Nothing arguments in the sense of Mermin.

AVNR(E) => SC(AffX) => CSCgr(X) => CSCz(X) => SC(X).

These ideas have led to a number of interesting developments by other
researchers:

@ Frank Roumen has adapted our ideas to the setting of effect algebras, using
cyclic cohomology (Connes).

Robert Raussendorf (with Stephen Bartlett and others) is actively pursuing
the cohomological approach to contextuality using group cohomology, with
applications e.g. in MBQC.

A group in Hannover are using our approach to study multipartite
entanglement monogamies, with applications to the ground state problem for
complex many-body quantum systems.
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Characterization of state contextuality

A quantum realization of an empirical model e : (X, M, O) is given by a state,
together with measurements corresponding to the labels in X. These jointly
determine the probabilities, via the Born rule.
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Cohomology of contextuality>
Cohomology in a nutshell: Given a contextuality scenario ¥ = (X, M, O), define

@ O-cochains C9(X) are tuples (r; | C; € M), where each r; is a Z-linear
combination of assignments s : C; — O.

@ 1l-cochains C*(X) are tuples (r; | C;, C; € M), r; is a Z-linear combination
of assignments s : C; — O, where C; := C; N C;.

@ 2-cochains C?(X) are tuples (ryx | C;, C; € M), rj is a Z-linear combination
of assignments s : C;;z — O, where C := NG N Cp.
Higher-dimensional cochains are defined similarly. The cochains in each dimension
form Abelian groups under componentwise addition.

We have a cochain complex:

Co(X) 2 CY(X) = C3(¥) =

3Cohomology of non-locality and contex‘tuallty SA, R. Barbosa and S. Mansfield, arXiv:1111.36
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Applications

We have computed cohomological witnesses for contextuality for many examples,
including: GHZ, Kochen-Specker constructions, Peres-Mermin magic square, ...

We have also shown that cohomology detects contextuality for a large class of
examples, including All-versus-Nothing arguments in the sense of Mermin.

AVNR(E) => SC(AffX) => CSCgr(X) => CSCz(X) => SC(X).
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Characterization of state contextuality

A quantum realization of an empirical model e : (X, M, O) is given by a state,
together with measurements corresponding to the labels in X. These jointly
determine the probabilities, via the Born rule.
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Characterization of state contextuality

A quantum realization of an empirical model e : (X, M, O) is given by a state,

together with measurements corresponding to the labels in X. These jointly
determine the probabilities, via the Born rule.

Now we can ask, given a state p, what is the highest level of contextuality we can
reach, as we range over all (finite) sets of measurements?
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Characterization of state contextuality

A quantum realization of an empirical model e : (X, M, O) is given by a state,
together with measurements corresponding to the labels in X. These jointly
determine the probabilities, via the Born rule.

Now we can ask, given a state p, what is the highest level of contextuality we can
reach, as we range over all (finite) sets of measurements?

In particular, we can ask:

@ For which states can we find measurements yielding a logically contextual
empirical model? - ie. a Hardy paradox?
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Characterization of state contextuality

A quantum realization of an empirical model e : (X, M, O) is given by a state,
together with measurements corresponding to the labels in X. These jointly
determine the probabilities, via the Born rule.

Now we can ask, given a state p, what is the highest level of contextuality we can
reach, as we range over all (finite) sets of measurements?

In particular, we can ask:

@ For which states can we find measurements yielding a logically contextual
empirical model? - ie. a Hardy paradox?

@ Similarly for strong contextuality, and All-versus-Nothing arguments?
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Characterization of state contextuality

A quantum realization of an empirical model e : (X, M, O) is given by a state,
together with measurements corresponding to the labels in X. These jointly
determine the probabilities, via the Born rule.

Now we can ask, given a state p, what is the highest level of contextuality we can
reach, as we range over all (finite) sets of measurements?

In particular, we can ask:

@ For which states can we find measurements yielding a logically contextual
empirical model? - i.e. a Hardy paradox?

@ Similarly for strong contextuality, and All-versus-Nothing arguments?

We shall briefly summarize the answers to these questions which have been
obtained so far.
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Logical contextuality

As observed by Hardy, his construction works for all bipartite pure entangled
states, except the maximally entangled states.

Shane Mansfield showed in his thesis that logical contextuality cannot be obtained
for maximally entangled bipartite states, for any finite set of measurements.
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Logical contextuality

As observed by Hardy, his construction works for all bipartite pure ent

' angled
states, except the maximally entangled states. :

Shane Mansfield showed in his thesis that logical contextuality cannot be obtained
for maximally entangled bipartite states, for any finite set of measurements.

T heorem

2 An n-qubit pure state admits measurements for which it is logically contextual,
if and only if it cannot be written as a product of one-qubit states and maximally
entangled bipartite states. Moreover, these measurements can be computed from
the state.

2Hardy is (almost) everywhere, SA, Carmen Constantin and Shenggang YinE. Inf.

and Comp. 2016. 2rXiv:1506.01365
_,_.M/"')

e
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Logical contextuality

As observed by Hardy, his construction works for all bipartite pure entangled
states, except the maximally entangled states.

Shane Mansfield showed in his thesis that logical contextuality cannot be obtained
for maximally entangled bipartite states, for any finite set of measurements.

T heorem

? An n-qubit pure state admits measurements for which it is logically contextual,

if and only if it cannot be written as a product of one-qubit states and maximally

entangled bipartite states. Moreover, these measurements can be computed from
the state.

“Hardy is (almost) everywhere, SA, Carmen Constantin and Shenggang Ying, Inf.
and Comp. 2016, arXiv:1506.01365
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Strong contextuality

As shown (in effect) in*, no two-qubit state can achieve strong contextuality.

“Brassard, Methot and Tapp (2005)
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Strong contextuality
As shown (in effect) in*, no two-qubit state can achieve strong contextuality.

For three-qubit states, we use the Dur-Vidal-Cirac characterization of
SLOCC-classes:

GHZ

T heorem

? Only states in the GHZ sLoOcCC-class can achieve strong contextuality with any

finite set of measurements. Moreover, these states must be of a constrained form
( “balanced” ), and only equatorial measurements need be considered.

“Minimal quantum resources for strong non-locality, SA, R. Barbosa, G. Caru, N. de
Silva, K. Kishida and S. Mansfield, TQC 2017, arXiv:1705.09312

“Brassard, Methot and Tapp (2005)
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Attenuating entanglement
We define a family {|¥,)} of tripartite states in distinct LU-classes within the

GHZ sLoOcC-class. Two of the qubits are maximally entangled, and the
entanglement with the third decreases with n.
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Attenuating entanglement

We define a family {|¥,)} of tripartite states in distinct LU-classes within the
GHZ sLoOcC-class. Two of the qubits are maximally entangled, and the
entanglement with the third decreases with n.

Define
W) = VK(0)|0)|va) + [1)[1}|wa))

where

| A A A A
'va) = cos 2[0) + sin 2[1), [wa) := sin 2IO) + cos 2[1)
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Attenuating entanglement

We define a family {|¥,)} of tripartite states in distinct LU-classes within the
GHZ sLoOcC-class. Two of the qubits are maximally entangled, and the
entanglement with the third decreases with n.

Define -
[Wa) = VK(|0)[0)|va) + |1)[1}|wn))
where

| - — A a A PP e A A
'va) = cos 2IO) + sin > 1), |wa) := sin > |0) + cos > [1)

The von Neumann entanglement entropy between the first two qubits and the
third as a function of A:

Ll

Kk

Samson Abramsky (Department of Computer Science  Towards & mathem
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Strong contextuality with weak entanglement

We define |¥,) := |¥., ), where A, :=

n-

%

T heorem

? For each |¢,), we can find n measurements for each qubit in the entangled pair,
g

and a single measurement for the third qubit, such that the resulting empirical
model is strongly contextual.

“Minimal quantum resources for strong non-locality, SA, R. Barbosa, G. Caru, N. de
Silva, K. Kishida and S. Mansfield, TQC 2017, arXiv:1705.09312
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Strong contextuality with weak entanglement

We define |¥,) := |¥., ), where A\, :=

2 n-

T heorem

? For each |¢,), we can find n measurements for each qubit in the entangled pair,
and a single measurement for the third qubit, such that the resulting empirical
model is strongly contextual.

“Minimal quantum resources for strong non-locality, SA, R. Barbosa, G. Caru, N. de
Silva, K. Kishida and S. Mansfield, TQC 2017, arXiv:1705.09312

Thus we can trade number of measurements against degree of entanglement with
the third qubit, and obtain strong contextuality for every member of the family.
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Strong contextuality with weak entanglement

We define |¥,) := |¥a,), where A\, := 5 — 7

.
T heorem

? For each |¢,), we can find n measurements for each qubit in the entangled pair,
and a single measurement for the third qubit, such that the resulting empirical
model is strongly contextual.

“Minimal quantum resources for strong non-locality, SA, R. Barbosa, G. Caru, N. de
Silva, K. Kishida and S. Mansfield, TQC 2017, arXiv:1705.09312

Thus we can trade number of measurements against degree of entanglement with
the third qubit, and obtain strong contextuality for every member of the family.

A construction by Barrett, Kent and Pironio uses essentially the same
measurements on the maximally entangled bipartite state to achieve strong
contextuality in the limit.
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Strong contextuality with weak entanglement

We define |¢,) := |¢a,), where A\, := 5 — T

'—,;.
T heorem

? For each |¢,), we can find n measurements for each qubit in the entangled pair,
and a single measurement for the third qubit, such that the resulting empirical
model is strongly contextual.

“Minimal quantum resources for strong non-locality, SA, R. Barbosa, G. Caru, N. de
Silva, K. Kishida and S. Mansfield. TQC 2017, arXiv:1705.09312

Thus we can trade number of measurements against degree of entanglement with
the third qubit, and obtain strong contextuality for every member of the family.

A construction by Barrett, Kent and Pironio uses essentially the same

measurements on the maximally entangled bipartite state to achieve strong
contextuality in the limit.

Our family of states, which require only weak entanglement with the third qubit
to achieve full strong contextuality with a finite scenarion, may be advantageous
in experiments to find higher values for the contextual fraction.
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Quantum witnesses for strong contextuality

A quantum witness for strong contextuality of an empirical model e : (X, M, O)
is given by a state ¥, and a PVM P, = {P, ,}oco for each x € X, such that
[Px.0s Px:.or] = 0 whenever x and x’ both occur in some C € M.
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Quantum witnesses for strong contextuality

A quantum witness for strong contextuality of an empirical model e : (X, M, O)

is given by a state ¥, and a PVM P, = {P, ,}oco for each x € X, such that
[Px.o, Px:.or] = 0 whenever x and x’ both occur in some C € M.

These must then satisfy, for all C € M and s € O€:

ec(s) =0 = Y " Pxoy¢¥ =0

where s(x;) = o0;, and Pxo = Px, .0, " - - Px. .ox -
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Quantum witnesses for strong contextuality

A quantum witness for strong contextuality of an empirical model e : (X, M, O)

is given by a state ¥, and a PVM P, = {P, ,}oco for each x € X, such that
[Px.0s Px:,or] = 0 whenever x and x’ both occur in some C € M.

These must then satisfy, for all C € MM and s € O€¢:

ec(s) =0 = Y " Pxoy¢Y =0

where s(x;) = 0;, and Pxo = Px,.0, " - Px..0.-

Example: the GHZ state, with X and Y measurements for each party.
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Quantum witnesses for strong contextuality

A quantum witness for strong contextuality of an empirical model e : (X, M, O)
is given by a state ¥, and a PVM P, = {P, ,}oco for each x € X, such that
[Px.o, Px:.or] = 0 whenever x and x’ both occur in some C € M.

These must then satisfy, for all C € M and s € OF€:
ec(s) =0 = Y " Pxoy¢¥ =0
where s(x;) = 0;, and Pxo = Px,.0, - - - Px. 0. -

Example: the GHZ state, with X and ¥ measurements for each party.

A state-independent quantum witness for e : (X, M, O) is given by a family of
PVM's {P,}.cx which, for any state ¢, yield a quantum witness for e.
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Quantum witnesses for strong contextuality

A quantum witness for strong contextuality of an empirical model e : (X, M, O)
is given by a state ¢, and a PVM P, = {P, ,}oco for each x € X, such that
[Px.0, Px:.or] = 0 whenever x and x’ both occur in some C € M.

These must then satisfy, for all C € M and s € OF€:
ec(s) =0 = Y " Pxo¥ =0
where s(x;) = 0;, and Pxo = Px,.0, - - - Pxs 0. -
Example: the GHZ state, with X and ¥ measurements for each party.

A state-independent quantum witness for e : (X, M, O) is given by a family of
PVM's {P,}.cx which, for any state ¢, yield a quantum witness for e.

The Mermin magic square and Kochen-Specker constructions provide examples of
state-independent quantum witnesses for strong contextuality.
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Quantum witnesses for strong contextuality

A quantum witness for strong contextuality of an empirical model e : (X, M, O)
is given by a state ¥, and a PVM P, = {P, ,}oco for each x € X, such that
[Px.0, Px:.or] = 0 whenever x and x’ both occur in some C € M.

These must then satisfy, for all C € M and s € OF€:

ec(s) =0 = Y ' Pxoy¢¥ =0

where s(x;) = 0;, and Pxo = Px, .0, - - - Px..0.-

Example: the GHZ state, with X and Y measurements for each party.

A state-independent quantum witness for e : (X, M, O) is given by a family of
PVM's {P,}.cx which, for any state ¢, yield a quantum witness for e.

The Mermin magic square and Kochen-Specker constructions provide examples of
state-independent quantum witnesses for strong contextuality.

Note that in the state-independent case, we have the condition:

ec(s) =0 = Pxo=0.
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The quantum monad®

Exact three-way correspondence:

State-independent strong contextuality - = non-local games
. .

T~

N

~a pe
quantum homomorphisms

°The quantum monad on relational structures, SA. Rui Soares Barbosa, Nadish de Silva and
Octavio Zapata, arXiv:1705.07310
Samson Abramsky (Department of Computer Science
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Non-local games
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The Mermin Magic Square

A {
D | E
G| H

The values we can observe for these variables are 0 or 1.

We require that each row and the first two columns have even parity, and the final
column has odd parity.

This translates into 6 linear equations over Zs:

A BaC=0 A DG =0
DoEdF=0 B EaScH=0
GaeHae!l =0 CeoeFal=1
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The Mermin Magic Square

A
D | E
G | H

The values we can observe for these variables are 0 or 1.

We require that each row and the first two columns have even parity, and the final
column has odd parity.

This translates into 6 linear equations over Zs:

A BaC=0 A DS G =0
Do E®F=0 BsEacH=0
GaeHae!/ =0 CeFal=1

Of course, the equations are not satisfiable in Z,!
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Alice-Bob games for binary constraint systems

Alice and Bob can share prior information, but cannot communicate once the
game starts.
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Alice-Bob games for binary constraint systems

Alice and Bob can share prior information, but cannot communicate once the
game starts.

Verifier sends an equation to Alice, and a variable to Bob.
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Alice-Bob games for binary constraint systems

Alice and Bob can share prior information, but cannot communicate once the
game starts.

Verifier sends an equation to Alice, and a variable to Bob.

They win if Alice returns a satisfying assignment for the equation, and Bob
returns a value for the variable consistent with Alice's assignment.
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Alice-Bob games for binary constraint systems

Alice and Bob can share prior information, but cannot communicate once the
game starts.

Verifier sends an equation to Alice, and a variable to Bob.

They win if Alice returns a satisfying assignment for the equation, and Bob
returns a value for the variable consistent with Alice's assignment.

A perfect strategy is one which wins with probability 1.
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Alice-Bob games for binary constraint systems

Alice and Bob can share prior information, but cannot communicate once the
game starts.

Verifier sends an equation to Alice, and a variable to Bob.

They win if Alice returns a satisfying assignment for the equation, and Bob
returns a value for the variable consistent with Alice’s assignment.

A perfect strategy is one which wins with probability 1.

Classically, A-B have a perfect strategy if and only if there is a satisfying
assignment for the equations.
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Alice-Bob games for binary constraint systems

Alice and Bob can share prior information, but cannot communicate once the
game starts.

Verifier sends an equation to Alice, and a variable to Bob.

They win if Alice returns a satisfying assignment for the equation, and Bob
returns a value for the variable consistent with Alice’s assignment.

A perfect strategy is one which wins with probability 1.

Classically, A-B have a perfect strategy if and only if there is a satisfying
assignment for the equations.

Mermin’s construction shows that there is a quantum perfect strategy for the
magic square.
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Recent results

These games for general binary constraint systems studied by Cleve, Mittal, Liu
and Slofstra.
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Recent results

These games for general binary constraint systems studied by Cleve, Mittal, Liu
and Slofstra.

They show that have a quantum perfect strategy is equivalent to a purely

group-theoretic condition on a solution group which can be associated to each
system of binary equations.
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Recent results

These games for general binary constraint systems studied by Cleve, Mittal, Liu
and Slofstra.

They show that have a quantum perfect strategy is equivalent to a purely

group-theoretic condition on a solution group which can be associated to each
system of binary equations.

Major recent result by Slofstra:

T heorem

Every finitely presented group can be embedded in a solution group.
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Recent results

These games for general binary constraint systems studied by Cleve, Mittal, Liu
and Slofstra.

They show that have a quantum perfect strategy is equivalent to a purely

group-theoretic condition on a solution group which can be associated to each
system of binary equations.

Major recent result by Slofstra:

T heorem

Every finitely presented group can be embedded in a solution group.

Corollaries:

@ There are finite systems of boolean equations which have quantum perfect

strategies in infinite-dimensional Hilbert space, but not in any finite
dimension.

@ The question:

Given a binary constraint system, does a quantum perfect strategy exist?

iIs undecidable.
Samson Abramsky (Department of Computer Science  T¢ 2 mathem th of ¢ tuality

I
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Homomorphisms of relational structures

A relational vocabulary o is a family of relation symbols R;, each of arity k; € N.
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Homomorphisms of relational structures

A relational vocabulary o is a family of relation symbols R;, each of arity k; € N.

A relational structure for o is A = (A, R, ..., R;'). where R C A%,
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Homomorphisms of relational structures

A relational vocabulary o is a family of relation symbols R;, each of arity k; € N.
A relational structure for o is A = (A, R{*, ..., R;'). where R C A%,

A homomorphism of o-structures f : A — B is a function f : A — B such that,
for all i and x € A%

x € RY = f(x) e RB.
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Homomorphisms of relational structures

A relational vocabulary o is a family of relation symbols R;, each of arity k; € N.

A relational structure for o is A = (A, R, ..., R;'). where R C A%,

A homomorphism of o-structures f : A — B is a function f : A — B such that,
for all i and x € A%

x e RY = f(x) e RB.

There notions are pervasive in
@ logic (model theory),

@ computer science (databases, constraint satisfaction, finite model theory)
@ combinatorics (graphs and graph homomorphisms).
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Homomorphisms of relational structures

A relational vocabulary o is a family of relation symbols R;, each of arity k; € N.
A relational structure for o is A = (A, R{*, ..., R;'). where R C A%,

A homomorphism of o-structures f : A — B is a function f : A — B such that,
for all i and x € A%

x € R* = f(x) € RB.

There notions are pervasive in
@ logic (model theory),
@ computer science (databases, constraint satisfaction, finite model theory)
@ combinatorics (graphs and graph homomorphisms).

What could it mean to quantize these fundamental structures?
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The homomorphism game

Consider the following game, played on finite structures A, B, in which Alice and
Bob cooperate to convince a Verifier that there is a homomorphism from A to B:
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The homomorphism game

Consider the following game, played on finite structures A, B, in which Alice and
Bob cooperate to convince a Verifier that there is a homomorphism from A to B:

@ Alice and Bob are separated, and not allowed to communicate (exchange
classical information) while the game is played.
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The homomorphism game

Consider the following game, played on finite structures A, B, in which Alice and
Bob cooperate to convince a Verifier that there is a homomorphism from A to B:

@ Alice and Bob are separated, and not allowed to communicate (exchange
classical information) while the game is played.

@ In a play of the game, the Verifier sends Alice an index a, and a tuple
x € R{'; and Bob an element x € A.

a ]
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The homomorphism game

Consider the following game, played on finite structures A, B, in which Alice and
Bob cooperate to convince a Verifier that there is a homomorphism from A to B:

Alice and Bob are separated, and not allowed to communicate (exchange
classical information) while the game is played.

In a play of the game, the Verifier sends Alice an index a, and a tuple
x € R{'; and Bob an element x € A.

a3 ]

Alice returns a tuple y € B*:, and Bob returns an element y € B.
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The homomorphism game

Consider the following game, played on finite structures A, B, in which Alice and
Bob cooperate to convince a Verifier that there is a homomorphism from A to B:

@ Alice and Bob are separated, and not allowed to communicate (exchange
classical information) while the game is played.

In a play of the game, the Verifier sends Alice an index a, and a tuple
x € R7'; and Bob an element x € A.

a3 L]
Alice returns a tuple y € B*:, and Bob returns an element y € B.

Alice and Bob win that play if

(i) y e RY
(i) x=x;, = y=yi,1<i< k.
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The homomorphism game

Consider the following game, played on finite structures A, B, in which Alice and
Bob cooperate to convince a Verifier that there is a homomorphism from A to B:

@ Alice and Bob are separated, and not allowed to communicate (exchange
classical information) while the game is played.

In a play of the game, the Verifier sends Alice an index a, and a tuple
x € R, and Bob an element x € A.

a ]

Alice returns a tuple y € B*:, and Bob returns an element y € B.

Alice and Bob win that play if

(i) ye RY
(i) x=%xi = y=y.1<i<ka.

Alice and Bob may use probabilistic strategies. A perfect strategy is one in
which they win with probability 1.
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The homomorphism game

Consider the following game, played on finite structures A, B, in which Alice and
Bob cooperate to convince a Verifier that there is a homomorphism from A to B:

@ Alice and Bob are separated, and not allowed to communicate (exchange
classical information) while the game is played.

In a play of the game, the Verifier sends Alice an index a, and a tuple
x € R{'; and Bob an element x € A.

a ]

Alice returns a tuple y € B*:, and Bob returns an element y € B.

Alice and Bob win that play if

(i) ye RY
(i) x=%xi = y=y.1<i<ka.

Alice and Bob may use probabilistic strategies. A perfect strategy is one in
which they win with probability 1.

If only classical resources are allowed, the existence of a perfect strategy is
equivalent to the existence of a homomorphism from A to B.
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Playing the homomorphism game with quantum resources

@ There are finite-dimensional Hilbert spaces H and K, and a pure state ¥ on
H ® K. Alice can only perform operations on H, while Bob can only perform
operations on K.
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Playing the homomorphism game with quantum resources

@ There are finite-dimensional Hilbert spaces H and K, and a pure state ¥ on
H ® K. Alice can only perform operations on H, while Bob can only perform
operations on K.

@ For each a € [p] and tuple x € R, Alice has a POVM &2 = {&€2 },ca+-
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Playing the homomorphism game with quantum resources

@ There are finite-dimensional Hilbert spaces H and K, and a pure state ¥ on

H ® K. Alice can only perform operations on 4, while Bob can only perform
operations on K.

@ For each a € [p] and tuple x € R, Alice has a POVM &2 = {&£2 },cB+-
@ For each x € A, Bob has a POVM F, = {F, ,},cs
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Playing the homomorphism game with quantum resources

@ There are finite-dimensional Hilbert spaces H and K, and a pure state ¥ on

H ® K. Alice can only perform operations on H, while Bob can only perform
operations on K.

@ For each a € [p] and tuple x € R;*, Alice has a POVM &2 = {&€2 },ca+-
@ For each x € A, Bob has a POVM F, = {F, ,},cs

These resources are used as follows:
@ Given a and x, Alice measures £7 on her part of .
@ Given x, Bob measures F,. on his part of .
@ They obtain the joint outcome (y, y) with probability ¥" (&2, ® F, ,)vY.
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Playing the homomorphism game with quantum resources

@ There are finite-dimensional Hilbert spaces H and KX, and a pure state ¢¥> on

H ® K. Alice can only perform operations on H, while Bob can only perform
operations on K.

@ For each a € [p] and tuple x € R;*, Alice has a POVM &2 = {&€2 },ca+-
@ For each x € A, Bob has a POVM F, = {F, ,},cs

These resources are used as follows:
@ Given a and x, Alice measures £7 on her part of ¢.
@ Given x, Bob measures F,. on his part of .
@ They obtain the joint outcome (y, y) with probability ¥ (&2, ® F, ,)vY.

If with probability 1 the outcome (y, y) satisfies the winning conditions, then this
is @ quantum perfect strategy.
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Playing the homomorphism game with quantum resources

@ There are finite-dimensional Hilbert spaces H and KX, and a pure state ¥> on

H ® K. Alice can only perform operations on 4, while Bob can only perform
operations on K.

@ For each a € [p] and tuple x € R, Alice has a POVM &2 = {&£2 },ca+-
@ For each x € A, Bob has a POVM F, = {F, ,},cs

These resources are used as follows:

@ Given a and x, Alice measures £7 on her part of .
@ Given x, Bob measures . on his part of .
@ They obtain the joint outcome (y, y) with probability ¥"(£2, ® F, ).

If with probability 1 the outcome (y, y) satisfies the winning conditions, then this
is a quantum perfect strategy.

We can write the winning conditions explicitly in terms of the quantum operations:
(QS1) (&, @ F, ,)¥v =0 if x =x; and y # y;
(QS2) w (&2, Nv =0 ify & RE.
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From quantum strategies to quantum homomorphisms®

T heorem

The existence of a quantum perfect strategy implies the existence of a strategy
(2, {&}, {Fx}) with the following properties:

@ The POVM's £ and F are projective.

®Generalizing Cleve and Mittal aanv 1209 2?29 and Man&inska and Roberson arXiv:1212.1724
Samson Abramsky (Department of Computer Science  T¢ ! € ' v
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6

From quantum strategies to quantum homomorphisms

T heorem

The existence of a quantum perfect strategy implies the existence of a strategy
(2, {&}, {Fx}) with the following properties:
@ The POVM's £, and F. are projective.

@ The state ¢ is a maximally entangled state ¢ = 1/\/5 Z —1 6 ® e;.

®Generalizing Cleve and Mittal arXiv:1209. 2729 and Man&inska and Roberson arXiv:1212.1724
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From quantum strategies to quantum homomorphisms®

T heorem
The existence of a quantum perfect strategy implies the existence of a strategy
(2, {&}, {Fx}) with the following properties:

@ The POVM's £ and F are projective.

@ The state ¢ is a maximally entangled state ¢ = 1/\/5 Z —1 6 ® e;.
e If x=x; then E} , = F],.

®Generalizing Cleve and Mittal arXiv:1209. 2729 and Man&inska and Roberson arXiv:1212.1724
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6

From quantum strategies to quantum homomorphisms

T heorem

The existence of a quantum perfect strategy implies the existence of a strategy
(¢, {&x}, {Fx}) with the following properties:

The POVM'’s £, and F. are projective.

The state ¢ is a maximally entangled state ¢ = 1/\/3 Z —1 & ® e;.

If x = x; then E, , = F] .

Ifx e R* andy & RE, then £y = 0.

N.B. In passing to this special form, the dimension is reduced; the process by
which we obtain projective measurements is not at all akin to dilation.
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From quantum strategies to quantum homomorphisms®

T heorem
The existence of a quantum perfect strategy implies the existence of a strategy
(¥, {&k}, {Fx}) with the following properties:

The POVM'’s £, and F. are projective.

The state i is a maximally entangled state ¥ = 1//d Zf_l e X e;.

If x = x; then E, , = F] .

Ifx € R* andy & RE, then £y = 0.

N.B. In passing to this special form, the dimension is reduced; the process by
which we obtain projective measurements is not at all akin to dilation.

This theorem shows that all the information determining the strategy is in Alice’s
operators. Moreover, Alice's operators must be chosen non-contextually, so that
is independent of the context x. This means that we can define projectors

— ! —
= &, whenever x = x;.

®Generalizing Cleve and Mittal arXiv:1209. 2729 and Manélnska and Roberson arXiv:1212.1724
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Quantum homomorphisms
A quantum homomorphism between relational structures A and B is a family of
projectors {Px , }xcay,cs in Proj(d) for some d, satisfying the following
conditions:

e (QH1) For all x € A, 2 e Pxy = 1.

e (QH2) Forall x € RA, x = x;, x' = x;, and y,y’ € B, [Px.,, Px .,/ ] = 0.
Thus we can define a projective measurement Px = {Px y}y. where
P., =P, P

x.y - x1.y1 Xi . Vi ®

e (QH3) If x € R? and y ¢ RP, then P, , = 0.
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Quantum homomorphisms

A quantum homomorphism between relational structures A and B is a family of
projectors {Px , }xca.ycs in Proj(d) for some d, satisfying the following
conditions:

© (QH1) Forall xe A, >° g P., = 1.

e (QH2) Forall x € RA, x = x;, x' = x;j, and y,y" € B, [Px.y, Px.,] = 0.
Thus we can define a projective measurement Px = {Px y}y. where
Pey :=Pyyn " * P+

@ (QH3) If x € R and y ¢ RP, then P, , = 0.

P. P« , = 0 whenever y # y’.
We write A - B for the existence of a quantum homomorphism from A to B.

T heorem

For finite structures A, B, the following are equivalent:
Q@ There is a quantum perfep‘f';:r;'?‘:;*;s'g';i'_'f.'i?:*i?f; 8 f.'ﬁmomorphism game from A to
B I e P s A oy S B S e e T e R

Q A3 B.
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Quantum homomorphisms
A quantum homomorphism between relational structures A and B is a family of
projectors {Px , }xca.ycs in Proj(d) for some d, satisfying the following
conditions:

@ (QH1) Forall xe A, >° g Px, = I.

e (QH2) For all x € RA, x = x;, x' = x;, and y,y’ € B, [Px.y, Px 4] = 0.
Thus we can define a projective measurement Px = {Px y}y. where
Py =P - P

x,Y X1.¥1 - Xy Vi ®

e (QH3) If x € R and y ¢ RP, then P, , = 0.

Py , P« , = 0 whenever y # y’.
We write A - B for the existence of a quantum homomorphism from A to B.

T heorem

For finite structures A, B, the following are equivalent:
© There is a quantum perfef - “17 615 o B r-;l‘f;';;”_.’ﬁmomorphism game from A to
B Ty o G i

e A3 B

Samson Abramsky (Department of Computer Science  Towards a mathematical theory of context

Pirsa: 17070038 Page 137/154



Quantum homomorphisms

A quantum homomorphism between relational structures A and B is a family of
projectors {Px , }xca.ycs in Proj(d) for some d, satisfying the following
conditions:

© (QH1) Forall xe A, >° g Px, = I.

e (QH2) Forall x € RA, x = x;, x' = x;j, and y,y" € B, [Px.y, Px.,] = 0.
Thus we can define a projective measurement Px = {Px y}y. where
Pey :=Pysn " * P

e (QH3) If x € R and y ¢ RP, then P, , = 0.

Py , P« , = 0 whenever y # y’.
We write A - B for the existence of a quantum homomorphism from A to B.

T heorem

For finite structures A, B, the following are equivalent:

© There is a quantum perfect strategy for the homomorphism game from A to
B

Qo A3 B.
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An aside: the quantum monad

For each d € N and o-structure A, we can define a structure Q .4 such that
there is a one-to-one correspondence

A—q>d8 > .A—?QdB
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An aside: the quantum monad

For each d € N and o-structure A, we can define a structure Q,.A such that
there is a one-to-one correspondence

A—q>d8 > .A—?QdB

Thus quantum homomorphisms from A to B correspond bijectively to classical
homomorphisms from A to OuB.
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An aside: the quantum monad

For each d € N and o-structure A, we can define a structure Q.4 such that
there is a one-to-one correspondence

A—q>d8 > .A—}QdB

Thus quantum homomorphisms from A to B correspond bijectively to classical
homomorphisms from A to OgyB.

This construction Q, is part of a graded monad on the category of classical
structures and homomorphisms.
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An aside: the quantum monad

For each d € N and o-structure A, we can define a structure Q .4 such that
there is a one-to-one correspondence

A—q>d8 <> A—?QdB

Thus quantum homomorphisms from A to B correspond bijectively to classical
homomorphisms from A to OgyB.

This construction Q, is part of a graded monad on the category of classical
structures and homomorphisms.

Quantum homomorphisms are Kleisli morphisms for this monad.

This gives an elegant mathematical formulation of quantization for a very broad
range of computational tasks.

Example: quantum versions of graph invariants.
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An aside: the quantum monad

For each d € N and o-structure A, we can define a structure Q .4 such that
there is a one-to-one correspondence

A—q>dB > A—?st

Thus quantum homomorphisms from A to B correspond bijectively to classical
homomorphisms from A to OuB.

This construction Q, is part of a graded monad on the category of classical
structures and homomorphisms.

Quantum homomorphisms are Kleisli morphisms for this monad.

This gives an elegant mathematical formulation of quantization for a very broad
range of computational tasks.
Example: quantum versions of graph invariants.

Monads play a major role in programming language theory as encapsulating
computational effects. E.g. their use in the Haskell programming language.
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State-independent contextuality and quantum
homomorphisms

Given an empirical model e : (X, M, O) we fix an order on X, and introduce a
relation R for each context C € M.

We define a structure A, with universe X, and for each C the relation
{(x1,---, %)}, where C = {x; < --- < xx}.

We define another structure B, with universe O, and for each C the relation
{o | ec(x — o) > 0}.

T heorem

There is a one-to-one correspondence between state-independent quantum
= ) qQ
witnesses for e, and quantum homomorphisms A, — B..
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State-independent contextuality and quantum
homomorphisms

Given an empirical model e : (X, M, O) we fix an order on X, and introduce a
relation R for each context C € M.

We define a structure A, with universe X, and for each C the relation
{(X]_, - ,Xk)}, where C = {Xl < -+ < Xk}.

We define another structure B. with universe O, and for each C the relation
{o | ec(x — 0) > 0}.

T heorem

There is a one-to-one correspondence between state-independent quantum
. . qQ
witnesses for e, and quantum homomorphisms A, — B..

Thus we see that there is a tight connection between state-independent strong
contextuality a /a Kochen-Specker and non-local games, via quantum
homomorphisms. This underwrites and gives a physical warranty for the
assumption of compatibility.
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Final Remarks

Quantum solutions of binary constraint systems are subsumed as special cases of
quantum homomorphisms.

There is also an infinite-dimensional version.
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Final Remarks

Quantum solutions of binary constraint systems are subsumed as special cases of
quantum homomorphisms.

There is also an infinite-dimensional version.

Some further questions:
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Final Remarks

Quantum solutions of binary constraint systems are subsumed as special cases of
quantum homomorphisms.

There is also an infinite-dimensional version.

Some further questions:

@ What about state-dependent contextuality?
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Final Remarks

Quantum solutions of binary constraint systems are subsumed as special cases of
quantum homomorphisms.

There is also an infinite-dimensional version.

Some further questions:
@ What about state-dependent contextuality?

@ Quantifying bounds on success probabilities in the non-perfect case — cf. the
contextual fraction.
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Envoi

Contextuality in physics raises deep questions about the nature of reality. But it is
also a new kind of resource, which yields new possibilities in information
processing tasks.

The challenge is to find methods to harness this resource, and understand its
structure.
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Envoi

Contextuality in physics raises deep questions about the nature of reality. But it is
also a new kind of resource, which yields new possibilities in information
processing tasks.

The challenge is to find methods to harness this resource, and understand its
structure.

By using these notions, we may come to understand them better. This may be

the only way!
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Envoi

Contextuality in physics raises deep questions about the nature of reality. But it is
also a new kind of resource, which yields new possibilities in information
processing tasks.

The challenge is to find methods to harness this resource, and understand its
structure.

By using these notions, we may come to understand them better. This may be

the only way!

Under the rubric of " local consistency, global inconsistency” contextuality is a

pervasive notion, arising e.g. in constraint satisfaction, databases, distributed
computation and elsewhere in classical computation.
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Envoi

Contextuality in physics raises deep questions about the nature of reality. But it is
also a new kind of resource, which yields new possibilities in information
processing tasks.

The challenge is to find methods to harness this resource, and understand its
structure.

By using these notions, we may come to understand them better. This may be

the only way!

Under the rubric of " local consistency, global inconsistency” contextuality is a

pervasive notion, arising e.g. in constraint satisfaction, databases, distributed
computation and elsewhere in classical computation.

Using the quantum monad and related constructions provides a systematic means
of quantizing classical computational tasks in a structural way.
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The Penrose Tribar
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