Title: Black Hole Entropy from BMS Symmetry at the Horizon

Date: Jul 17, 2017 11:00 AM

URL: http://pirsa.org/17070031

Abstract: One of the basic puzzles of black hole thermodynamics is the simplicity and universality of the Bekenstein-Hawking entropy. The idea that this entropy might be governed by a symmetry at the horizon is an old one, but until now efforts have focused on conformal symmetries, either at infinity or on a "stretched horizon." I argue that a better approach uses a BMS-like symmetry of the horizon itself. This avoids the limitations of previous attempts (including my own), and explains the entropy in terms of a generalization of the Cardy formula for the density of states.

Pirsa: 17070031 Page 1/13

Black hole entropy from BMS symmetry at the horizon

Steve Carlip U.C. Davis

> Perimeter Institute seminar July 2017

Pirsa: 17070031 Page 2/13

The problem of universality: v1

$$S_{BH}=rac{A_{hor}}{4\hbar G}$$

- for black holes, strings, rings, branes, Saturns, ...
- in any dimension
- for any charges
- for any spins
- for "dirty" black holes with distorted horizons

Can change entropy by changing action, but the change is universal

The problem of universality: v2

Black hole entropy can be derived from:

- string theory
 - weakly coupled strings and branes
 - AdS/CFT
 - "fuzzballs"
- loop quantum gravity
 - real (tuned) Barbero-Immirzi parameter
 - self-dual formulation
 - spin networks *inside* the horizon
- entanglement entropy across the horizon
- induced gravity a la Sakharov
- instanton calculations
 - single instanton (Gibbons-Hawking)
 - pair production
- topology with no reference to local states
- QFT with no reference to quantum gravity

All have limitations, but all give the same answer ...

Are we missing some deep structure?

Pirsa: 17070031 Page 4/13

Why universality?

 $S \sim A_{hor} \stackrel{?}{\Rightarrow}$ degrees of freedom on the horizon

But why the universal factor of 1/4?

Old(ish) idea: entropy is governed by a symmetry at the horizon

- Works for (2+1)-dimensional BTZ black hole
- · Some progress for general dimensions

But...

- Methods usually require symmetry at infinity or at "stretched horizon"
- Parameters typically blow up at horizon
- Horizon limit is not always unique
- Approach typically fails badly for two-dimensional dilaton black hole
- Symmetry ought to depend only on null generators of horizon, but doesn't

New ingredients:

- Covariant phase space methods ⇒ symmetry generators on horizon
- Near-horizon symmetry enhanced: conformal→BMS

Pirsa: 17070031 Page 5/13

Two-dimensional dilaton gravity

Black hole exterior

Null dyad (ℓ,n) , $\ell \cdot n = -1$

Normalization $abla_a n^a = 0$, $abla_a \ell^a = \kappa$

$$g_{ab} = -\ell_a n_b - n_a \ell_b$$

Cauchy surface $\Delta \cup \mathscr{I}^+$

$$I_{grav} = rac{1}{16\pi G}\int_{M} (arphi R + V[arphi]) \, \epsilon = rac{1}{8\pi G}\int_{M} igg(-\kappa n^{a}
abla_{a} arphi + rac{1}{2} V[arphi] igg) \, \epsilon$$

$$E_{ab} =
abla_a
abla_b arphi - g_{ab} \Box arphi + rac{1}{2} g_{ab} V = 8\pi G T_{ab}$$

Dilaton $\varphi \sim$ "transverse area"

Horizons and symmetries

Define $D=\ell^a
abla_a$

Isolated horizon:

- Darphi riangleq 0 (vanishing expansion)
- $DR \triangleq 0$ (stationary geometry)
- conformal class of metric fixed at horizon [can be weakened]

Horizon-preserving diffeomorphisms:

$$egin{aligned} \delta_{\xi}arphi &= \xi Darphi \ \delta_{\xi}g_{ab} &= -\left(D+\kappa
ight)\!\xi\,g_{ab} \ \end{aligned}$$
 with $n^a
abla_a\xi \triangleq 0$

But also have an enhanced symmetry near the horizon

Near-horizon shift symmetry:

$$egin{aligned} \hat{\delta}_{\eta}arphi &=
abla_a(\eta\ell^a) = (D+\kappa)\eta \ \hat{\delta}_{\eta}g_{ab} &= (Darphi)\delta\omega_{\eta}\,g_{ab} \end{aligned}$$
 with $n^a
abla_a\eta \triangleq 0$

$$\delta_{\eta}I\sim\int\eta\left[A\ Darphi+B\ DR
ight]\epsilon$$
 ~0 if $\eta o0$ fast enough away from horizon

Equations of motion preserved up to terms $\sim \eta D \varphi$, except

$$\ell^a\ell^b\hat{\delta}_{\eta}T_{ab} riangleqrac{1}{8\pi G}(D-\kappa)D(D+\kappa)\eta$$

(standard conformal anomaly)

Covariant canonical formalism

Basic idea:

phase space (space of initial data) \sim space of classical solutions

- can define symplectic structure on space of classical solutions
- generators of transformations are integrals over Cauchy surface

Simple example: point particle

Can generalize to field theory: integrate over Cauchy surface

$$\omega[\delta_1,\delta_2] o \Omega[\delta_1,\delta_2] = \int_\Sigma \omega[\delta_1,\delta_2]$$

Hamiltonian: for 1-parameter family of transformations $\delta_{ au}$

$$\delta m{H}[au] = \Omega[\delta, \delta_{ au}] \quad \Leftrightarrow \quad \delta_{ au} \Phi^A = (\omega^{-1})^{AB} rac{\delta m{H}[au]}{\delta \Phi^B}$$

(may not exist for all transformations)

Apply to dilaton gravity

Choose (partial) Cauchy surface $\Delta \cup \mathscr{I}^+$

$$\Omega_{\Delta}[(arphi,g);\delta_{1}(arphi,g),\delta_{2}(arphi,g)] = rac{1}{8\pi G}\int_{\Delta}\left[\delta_{1}arphi\,\delta_{2}\kappa-\delta_{1}arphi\,\delta_{2}\kappa
ight]n_{a}$$

Symmetries δ_{ξ} and $\hat{\delta}_{\eta}$ are integrable: generators

$$L[\xi] = rac{1}{8\pi G} \int_{\Lambda} \left[\xi D^2 arphi - \kappa \xi D arphi
ight] n_a$$

$$M[\eta] = rac{1}{8\pi G} \int_{\Delta} \eta \left(D\kappa - rac{1}{2} \kappa^2
ight) n_a$$

Algebra and state-counting

Use covariant canonical formalism to find symmetry algebra:

General formalism:

$$\{H[au_1],H[au_2]\}=\Omega[\delta_{ au_1},\delta_{ au_2}]$$

For dilaton gravity:

$$egin{aligned} i\left\{L_m,L_n
ight\} &= (m-n)L_{m+n} \ i\left\{M_m,M_n
ight\} &= 0 \ i\left\{L_m,M_n
ight\} &= (m-n)M_{m+n} + c_{{\scriptscriptstyle LM}}m(m^2-1)\delta_{m+n,0} \ \end{aligned}$$
 with $c_{{\scriptscriptstyle LM}} = 1/4G$

This is a centrally extended BMS₃ (or Galilean Conformal) algebra

Pirsa: 17070031 Page 11/13

Cardy (1986):

For a unitary two-dimensional conformal field theory, density of states is determined by the central charge

Bagchi, Detournay, Fareghbal, and Simón:

This generalizes to a theory with a BMS3 symmetry

For state with eigenvalues $h_{\scriptscriptstyle L}$ and $h_{\scriptscriptstyle M}$ of L_0 and M_0 , entropy is

$$S \sim 2\pi h_{\scriptscriptstyle L} \sqrt{rac{c_{\scriptscriptstyle LM}}{2h_{\scriptscriptstyle M}}}$$

For black hole, this gives

$$S_{BH} = rac{arphi_{hor}}{4\hbar G}$$

Correct Bekenstein-Hawking entropy!

What next?

- Generalize boundary conditions (allow conformal class of metric to vary)
- Lift explicitly to higher dimensions
- Look for hidden BMS symmetry in other derivations of black hole entropy
- Couple to matter?

Pirsa: 17070031 Page 13/13