Title: Going Deep on Spallation Backgrounds

Date: Jul 22, 2017 09:25 AM

URL: http://pirsa.org/17070028

Abstract:

Pirsa: 17070028

Going Deep on Spallation Backgrounds

John Beacom, The Ohio State University

The Ohio State University's Center for Cosmology and AstroParticle Physics

Pirsa: 17070028 Page 2/46

Pirsa: 17070028 Page 3/46

MeV Neutrinos – What are They Good For?

Reactor

Supernova

Atmospheric

Honda

Dark Matter and Neutrinos Workshop, Perimeter Institute, July 2017

Pirsa: 17070028 Page 4/46

Why is Progress Stalled?

Is it a lack of interesting questions?

Is it a lack of big detectors?

Is if fixable?

John Beacom, The Ohio State University

Dark Matter and Neutrinos Workshop, Perimeter Institute, July 2017

3

Pirsa: 17070028 Page 5/46

Why is Progress Stalled?

Is it a lack of interesting questions?

No

Is it a lack of big detectors?

Sort of

Is if fixable?

Yes

John Beacom, The Ohio State University

Dark Matter and Neutrinos Workshop, Perimeter Institute, July 2017

Pirsa: 17070028

✓ Introductory exhortation

John Beacom, The Ohio State University

Dark Matter and Neutrinos Workshop, Perimeter Institute, July 2017

1

Pirsa: 17070028 Page 7/46

✓ Introductory exhortation

Revolutionizing MeV neutrino astronomy

John Beacom, The Ohio State University

Dark Matter and Neutrinos Workshop, Perimeter Institute, July 2017

1

Pirsa: 17070028 Page 8/46

✓ Introductory exhortation

Revolutionizing MeV neutrino astronomy

Spallation: the haunting

John Beacom, The Ohio State University

Dark Matter and Neutrinos Workshop, Perimeter Institute, July 2017

1

Pirsa: 17070028 Page 9/46

✓ Introductory exhortation

Revolutionizing MeV neutrino astronomy

Spallation: the haunting

Spallation: the summoning

John Beacom, The Ohio State University

Dark Matter and Neutrinos Workshop, Perimeter Institute, July 2017

1

Pirsa: 17070028 Page 10/46

Introductory exhortation

Revolutionizing MeV neutrino astronomy

Spallation: the haunting

Spallation: the summoning

Spallation: the vengeance

John Beacom, The Ohio State University

Dark Matter and Neutrinos Workshop, Perimeter Institute, July 2017

1

Pirsa: 17070028 Page 11/46

Introductory exhortation

Revolutionizing MeV neutrino astronomy

Spallation: the haunting

Spallation: the summoning

Spallation: the vengeance

Back to the future with neutrino physics

John Beacom, The Ohio State University

Dark Matter and Neutrinos Workshop, Perimeter Institute, July 2017

1

Pirsa: 17070028 Page 12/46

Pirsa: 17070028 Page 13/46

Basic Features of MeV Neutrino Detection

Detectors must be massive:

Effectiveness depends on volume, not area

Example signals:

$$\nu + e^- \rightarrow \nu + e^-$$

$$\bar{\nu}_e + p \rightarrow e^+ + n$$

John Beacom, The Ohio State University

Dark Matter and Neutrinos Workshop, Perimeter Institute, July 2017

Basic Features of MeV Neutrino Detection

Detectors must be massive:

Effectiveness depends on volume, not area

Example signals:

$$\nu + e^- \to \nu + e^-$$

$$\bar{\nu}_e + p \rightarrow e^+ + n$$

Detectors must be quiet:

Need low natural and induced radioactivities

Example backgrounds:

$$A(Z, N) \to A(Z+1, N-1) + e^- + \bar{\nu}_e$$

John Beacom, The Ohio State University

Dark Matter and Neutrinos Workshop, Perimeter Institute, July 2017

First: Get Multi-kton-Scale Neutrino Detectors

Super-K JUNO DUNE

32 kton water Japan running 20 kton oil China building 34 kton liquid argon
United States

proposing

Excellent performance or prospects for neutrino astronomy

John Beacom, The Ohio State University

Dark Matter and Neutrinos Workshop, Perimeter Institute, July 2017

7

Pirsa: 17070028 Page 16/46

Second: Enable Super-K Selection of Nuebar

The signal reaction produces a neutron, but most backgrounds do not

Beacom and Vagins (2004): First proposal to use dissolved gadolinium in large light water detectors showing it could be practical and effective

 $\bar{\nu}_e + p \rightarrow e^+ + n$

Neutron capture on protons Gamma-ray energy 2.2 MeV Hard to detect in SK

Neutron capture on gadolinium Gamma-ray energy ~ 8 MeV Easily detectable coincidence separated by ~ 4 cm and $\sim 20~\mu s$

John Beacom, The Ohio State University

Dark Matter and Neutrinos Workshop, Perimeter Institute, July 2017

Q

Pirsa: 17070028 Page 17/46

Fate of the GADZOOKS! Proposal

For about 10 years:

Vagins and colleagues developed experimental aspects Beacom and colleagues developed theoretical aspects

John Beacom, The Ohio State University

Dark Matter and Neutrinos Workshop, Perimeter Institute, July 2017

۵

Pirsa: 17070028 Page 18/46

Fate of the GADZOOKS! Proposal

For about 10 years:

Vagins and colleagues developed experimental aspects Beacom and colleagues developed theoretical aspects

Super-K 2015: Yes

[41] Ref. [4] proposed adding a 0.2% gadolinium solution into the SK water. After exhaustive studies, on June 27, 2015, the SK Collaboration formally approved the concept, officially initiating the SuperK-Gd project, which will enhance anti-neutrino detectability (along with other physics capabilities) by dissolving 0.2% gadolinium sulfate by mass in the SK water.

Will greatly increase sensitivity for many studies

John Beacom, The Ohio State University

Dark Matter and Neutrinos Workshop, Perimeter Institute, July 2017

9

Pirsa: 17070028 Page 19/46

Third: Remove Detector Backgrounds

After strong cuts, still large detector backgrounds in Super-K

What causes the backgrounds and can we remove them?

John Beacom, The Ohio State University

Dark Matter and Neutrinos Workshop, Perimeter Institute, July 2017

10

Pirsa: 17070028 Page 20/46

Muon-Induced Spallation Decay Backgrounds

Muon passes through detector Beta decays follow; veto in cylinder

Muon rate 2 Hz; betas to ~ 30 s Cuts face inefficiency or deadtime

John Beacom, The Ohio State University

Dark Matter and Neutrinos Workshop, Perimeter Institute, July 2017

11

Pirsa: 17070028 Page 21/46

Examples of Spallation Backgrounds

Pirsa: 17070028

Spallation: the haunting

Li and Beacom 2014 [arXiv:1402.4687] Isotopes are made by muon secondaries and are calculable

John Beacom, The Ohio State University

Dark Matter and Neutrinos Workshop, Perimeter Institute, July 2017

13

Pirsa: 17070028 Page 23/46

Muons and their Energy Losses

Typical muon energy is 250 GeV; typical energy loss is 8 GeV

John Beacom, The Ohio State University

Dark Matter and Neutrinos Workshop, Perimeter Institute, July 2017

Secondary Particles and their Properties

Secondaries are abundant, low-energy, and near the track

John Beacom, The Ohio State University

Dark Matter and Neutrinos Workshop, Perimeter Institute, July 2017

Spallation Yields and their Parents

Isotope	Half-life (s)	Yield (E > 3.5 MeV) ($\times 10^{-7} \mu^{-1} g^{-1} cm^2$)	Primary process
n			
^{18}N	0.624	0.01	¹⁸ O(n,p)
^{17}N	4.173	0.02	$^{18}O(n,n+p)$
^{16}N	7.13	18	(n,p)
$^{16}\mathrm{C}$	0.747	0.003	$(\pi^-, n+p)$
$^{15}\mathrm{C}$	2.449	0.28	(n,2p)
^{14}B	0.0138	0.02	(n,3p)
¹³ O	0.0086	0.24	$(\mu^-, p+2n+\mu^-+\pi^-)$
$^{-13}{ m B}$	0.0174	1.6	$(\pi^{-}, 2p+n)$
^{12}N	0.0110	1.1	$(\pi^+, 2p + 2n)$
$^{12}\mathrm{B}$	0.0202	9.8	$(n,\alpha+p)$
$^{12}\mathrm{Be}$	0.0236	0.08	$(\pi^-, \alpha+p+n)$
$^{11}\mathrm{Be}$	13.8	0.54	$(n,\alpha+2p)$
$^{11}{ m Li}$	0.0085	0.01	$(\pi^+,5p+\pi^++\pi^0)$
$^{9}\mathrm{C}$	0.127	0.69	$(n,\alpha+4n)$
⁹ Li	0.178	1.5	$(\pi^-, \alpha+2p+n)$
$^{8}\mathrm{B}$	0.77	5.0	$(\pi^+, \alpha + 2p + 2n)$
⁸ Li	0.838	11	$(\pi^-,\alpha+^2H+p+n)$
⁸ He	0.119	0.16	$(\pi^{-},^{3}H+4p+n)$

Spallation yields vary greatly, depend on MeV reactions

John Beacom, The Ohio State University

Dark Matter and Neutrinos Workshop, Perimeter Institute, July 2017

Spallation Decays and their Properties

Time and energy distributions agree with Super-K data

John Beacom, The Ohio State University

Dark Matter and Neutrinos Workshop, Perimeter Institute, July 2017

Li and Beacom 2015a [arXiv:1503.04823] Isotopes are made in showers and are calculable

John Beacom, The Ohio State University

Dark Matter and Neutrinos Workshop, Perimeter Institute, July 2017

18

Pirsa: 17070028 Page 28/46

Showers in Concept and Practice

High-energy particles make showers

John Beacom, The Ohio State University

Dark Matter and Neutrinos Workshop, Perimeter Institute, July 2017

19

Pirsa: 17070028 Page 29/46

Secondary Path Length Spectra from Showers

Path length spectra from showers are near universal

John Beacom, The Ohio State University

Dark Matter and Neutrinos Workshop, Perimeter Institute, July 2017

Muon-Induced Showers and their Properties

Muons make showers of different types, broad spectrum

John Beacom, The Ohio State University

Dark Matter and Neutrinos Workshop, Perimeter Institute, July 2017

Light and Isotope Production by Showers

EM showers make light but not isotopes; hadronic is opposite

John Beacom, The Ohio State University

Dark Matter and Neutrinos Workshop, Perimeter Institute, July 2017

Spallation: the vengeance

Li and Beacom 2015b [arXiv:1508.05389] Isotope production can be identified and localized

John Beacom, The Ohio State University

Dark Matter and Neutrinos Workshop, Perimeter Institute, July 2017

24

Pirsa: 17070028 Page 33/46

Showers Produce Lots of Light

Can we reconstruct the shower?

John Beacom, The Ohio State University

Dark Matter and Neutrinos Workshop, Perimeter Institute, July 2017

25

Pirsa: 17070028 Page 34/46

Where is the Shower?

Left shows Monte Carlo truth; right shows Super-K reality

John Beacom, The Ohio State University

Dark Matter and Neutrinos Workshop, Perimeter Institute, July 2017

Reconstruction Using all PMT Hits

We can rebuild it

John Beacom, The Ohio State University

Dark Matter and Neutrinos Workshop, Perimeter Institute, July 2017

Bespoke Cuts for Every Muon

Harder cuts, smaller volume: better efficiency, less deadtime

John Beacom, The Ohio State University

Dark Matter and Neutrinos Workshop, Perimeter Institute, July 2017

28

Pirsa: 17070028 Page 37/46

Eliminating Spallation Backgrounds

First cut:

Rare but dangerous high-energy showers

Second cut:

Restrict cuts to near shower positions

Third cut (in devel.):

Rare but dangerous hadronic showers

Super-K is already adopting our techniques; more to come Expect to reduce backgrounds in all MeV detectors by ~ 10

John Beacom, The Ohio State University

Dark Matter and Neutrinos Workshop, Perimeter Institute, July 2017

29

Pirsa: 17070028 Page 38/46

MeV Neutrinos – What are They Good For?

Reactor

Supernova

Atmospheric

Dark Matter and Neutrinos Workshop, Perimeter Institute, July 2017

Pirsa: 17070028

Examples of Spallation Backgrounds

Pirsa: 17070028 Page 40/46

Pirsa: 17070028 Page 41/46

Important physics depends on detecting MeV neutrinos

John Beacom, The Ohio State University

Dark Matter and Neutrinos Workshop, Perimeter Institute, July 2017

33

Pirsa: 17070028 Page 42/46

Important physics depends on detecting MeV neutrinos

With better detectors, signal ID, and backgrounds, we can

John Beacom, The Ohio State University

Dark Matter and Neutrinos Workshop, Perimeter Institute, July 2017

33

Pirsa: 17070028 Page 43/46

Important physics depends on detecting MeV neutrinos

With better detectors, signal ID, and backgrounds, we can

Understanding spallation backgrounds is a new opportunity

Theoretical insights are crucial to progress

Backgrounds are made by secondaries

Secondaries are made in showers

Showers can be identified and localized

Applicability to a wide range of underground detectors

John Beacom, The Ohio State University

Dark Matter and Neutrinos Workshop, Perimeter Institute, July 2017

Important physics depends on detecting MeV neutrinos

With better detectors, signal ID, and backgrounds, we can

Understanding spallation backgrounds is a new opportunity

Theoretical insights are crucial to progress Backgrounds are made by secondaries

Secondaries are made in showers

Showers can be identified and localized

Applicability to a wide range of underground detectors

Keep your eye on the career of Shirley Li

John Beacom, The Ohio State University

Dark Matter and Neutrinos Workshop, Perimeter Institute, July 2017

33

Pirsa: 17070028 Page 45/46

Pirsa: 17070028 Page 46/46